High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

Presented by Tom Briggs

Kukwon Cho, Scott Curran, Junghwan Kim, Eric Nafziger, Robert Wagner Oak Ridge National Laboratory

Gurpreet Singh, Ken Howden, Steve Goguen, Kellen Schefter Vehicle Technologies U.S. Department of Energy

2011 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review

May 10, 2011

ACE016

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project overview

This project addresses current DOE VT objectives. The present focus is on high efficiency stratified combustion approaches that can achieve diesel-equivalent efficiency with substantially reduced emissions.

Timeline

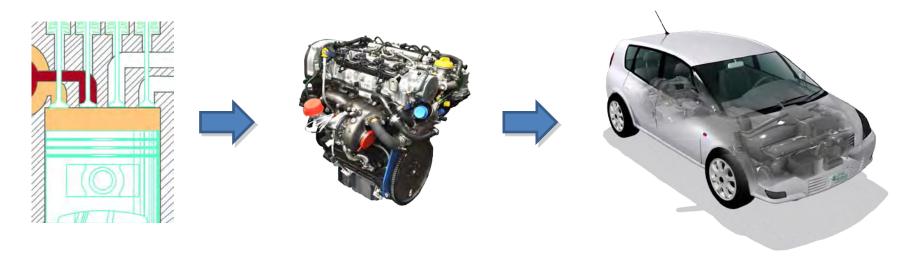
- Consistent with VT MYPP
- Activity scope changes to address DOE needs

Budget

- FY 2010 \$300k (High Efficiency Clean Combustion) + \$300k (High Dilution Stoichiometric GDI Combustion)
- FY 2011 \$300k (High Efficiency Clean Combustion) + \$350k (High Dilutution Stoichiometric GDI Combustion)

Barriers

- Efficiency/emissions
- Combustion control
- VT performance milestones


Partners / Interactions

- Regular status reports to DOE
- University of Wisconsin Madison: RCCI modeling and single-cylinder engine experiments
- University of Michigan: Predictive GDI modeling for cycle simulation
- BorgWarner: Advanced turbocharging and EGR systems
- Robert Bosch LLC: GDI engine controls and hardware

Relevance & Milestones

Objective is to develop and assess advanced combustion approaches on multicylinder engines for achieving diesel-like efficiency with low engine-out emissions

- FY 2010 Q3 Met
 Demonstrated efficiency & emissions potential of dual-fuel advanced combustion on a multicylinder light-duty engine
- FY 2011 Q4 In Progress

 Demonstrate high-dilution GDI combustion with low engine-out emissions

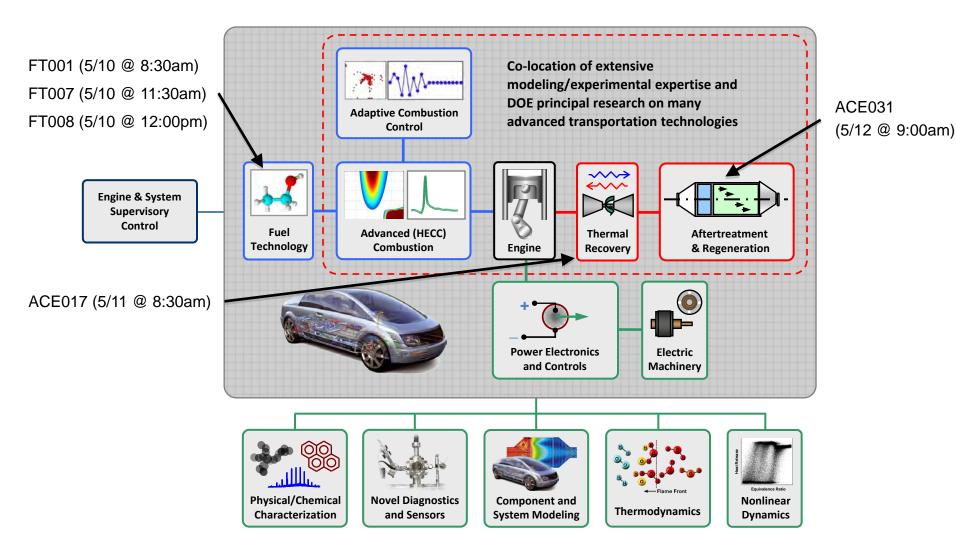
Approach: Address implementation of advanced combustion on production-like engine hardware

Develop and demonstrate technologies through modeling, experiments, and analysis

Modeling

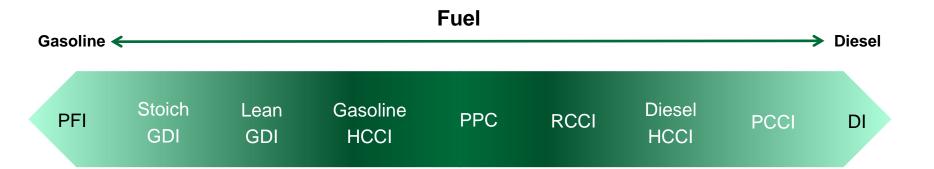
- » Combustion modeling to guide experiments & provide insight into results collaborations with University of Wisconsin & University of Michigan
- » Dynamic modeling to understand processes at the edge of combustion stability use to develop real time controls and feedback metrics
- » Engine-system modeling to understand efficiency opportunities determine where losses are, guide work towards technologies that will reduce them
- » Vehicle system modeling to estimate real-world fuel economy potential indicate the ultimate value of advanced combustion

Experiments


Extend existing success on single-cylinder engines to multi-cylinder engines with real turbomachinery, EGR imbalances, and limited degrees-of-freedom for controls

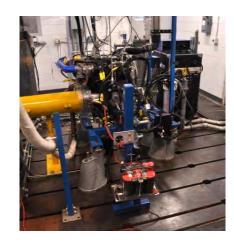
Analysis

- » Second-law thermodynamic analysis to quantify fuel availability distribution and destruction
- » Detailed emissions analysis to understand details of combustion and guide the matching of aftertreatment systems


Comprehensive approach to system efficiency opportunities and challenges builds upon on-going activities at ORNL and elsewhere

Approach: Moving to a fuel-neutral combustion world

- Advanced combustion strategies are increasingly using engine hardware that looks similar
- These strategies also blur the lines between fuel selection and combustion propagation mechanisms



Two engine platforms are in use for this work

- GM EU 1.9-L diesel
- Multiple ECU systems
 - » dSpace MABX/Ricardo VEMPS
 - » GM-supplied "open" ECU
 - » Drivven controller
- Updated hardware
 - » Closed-loop thermal control on coolant, oil, intake, EGR, fuel
 - » PFI fuel system
 - » Low pressure EGR (in progress)

2007 MY GM 1.9-L engine installed in the test cell

- GM NA 2.0-L gasoline "LNF"
- Bosch-supplied "open" ECU
- Hardware updates
 - » Closed-loop thermal control on coolant, oil, intake, EGR, fuel
 - » Low pressure EGR (in progress)
- Developing relationship with Bosch
 - » Planning on supplying a flex fuel version of the LNF developed through a DOEfunded program

2009 MY GM 2.0-L LNF engine installed in the test cell

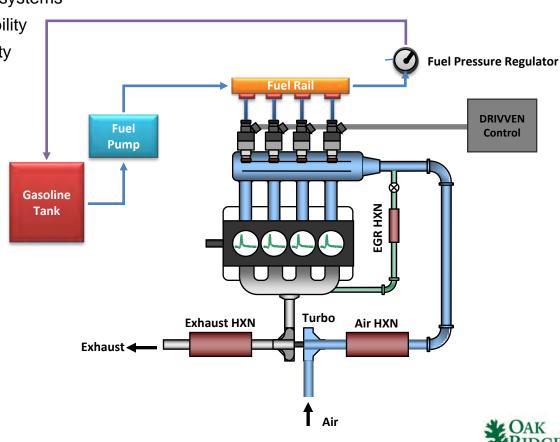
Technical Accomplishments Summary

Continued development of RCCI capability

- » ORNL is running RCCI at both modeled and non-modeled points
- » Exploring steady-state modal points to enable estimation of FTP fuel economy & emissions
- » Demonstrating load expansion beyond PCCI operating range without using EGR
- » Demonstrating simultaneous emissions and efficiency benefit at low speed operation

Significant modifications and upgrades to support high efficiency advanced combustion research

- » Installed new 2007 MY version of the GM 1.9-L engine
- » Commissioned new Drivven engine controller with integrated DAQ & next-cycle feedback control
- » Increased EGR cooling capacity for high-dilution operation, including closed-loop thermal controls


Added new GDI combustion research capability

- » Installed production version of the GM 2.0-L LNF GDI engine
- » Bosch is planning to provide an open ECU for this engine
- » Upgraded emissions analysis to support GDI particulate measurement

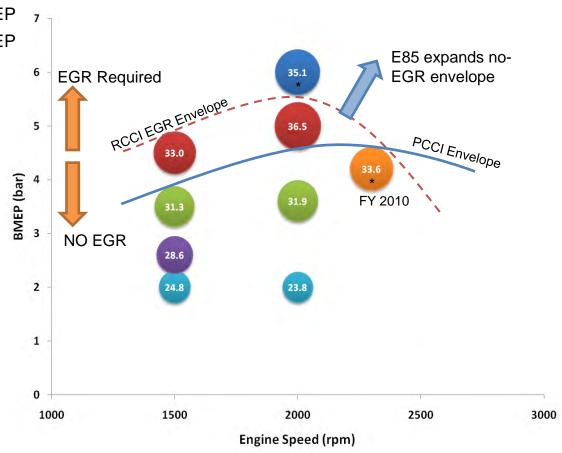
RCCI operation is realized on a modified production GM diesel engine

- Engine uses stock turbocharger and diesel fuel system
- EGR cooler has been upsized for increased EGR cooling capacity
- A PFI fuel system has been added to enable RCCI
- Control is via a Drivven engine control system
 - » Full control of diesel & gasoline fuel systems
 - » Cylinder-to-cylinder balancing capability
 - » Next-cycle feedback control capability
- Engine thermal boundary conditions are in closed-loop control
 - » Coolant
 - » Oil
 - » Fuel
 - » EGR
 - » Intake charge

Current RCCI focus is on drive cycle estimation and load expansion

One experimental point based off modeling at UW: 2000 rpm, 6 bar BMEP

» Limited to single-pulse diesel injection by injector orifice size

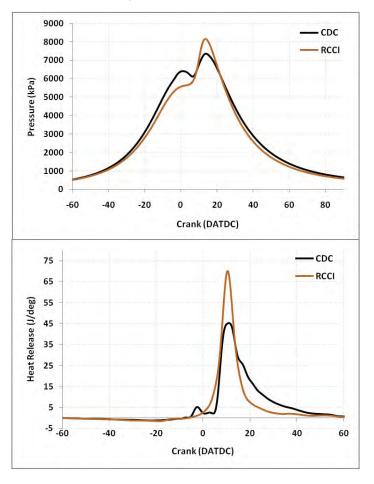

Road-load mapping process started

» 1500 rpm; 2.0, 2.6, 3.5, 4.5 bar BMEP

» 2000 rpm; 2.0, 3.6, 4.0, 5.0 bar BMEP

Observations:

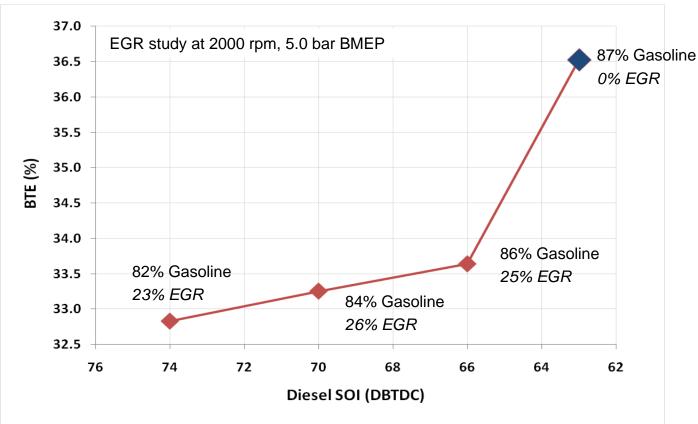
- » RCCI without EGR provides a useful load expansion over previous PCCI work
- » Load range for RCCI with EGR is expected to cover most of engine envelope
- Addition of ethanol to the gasoline extends the no-EGR envelope – will explore this FY in conjunction with fuel technology activities



^{*} These points were guided by CFD modeling at UW-Madison

2000 rpm, 6 bar BMEP operating point details

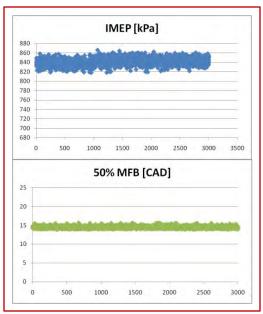
- Conventional operation based on 2007 Opel maps (courtesy GM Europe)
- RCCI experiments carried out with single diesel pulse, 81% gasoline
 - Current injector turndown not suitable for split injection of diesel fuel



	CDC (OEM DRIVVEN)	RCCI (81%gas, SOI 70DBTDC)
BTE (%)	35.9	35.1
BSFC (g/kw-hr)	233	238
MPRR (bar/deg)	2.7	7.3
NOx (ppm)	216	18.5
HC (ppm)	136	3783
CO (ppm)	119	1458
FSN (-)	1.23	0.00
EGR Rate (%)	17.2	32.2
Boost (bar)	1.38	1.27
Swirl Intensity	2.3	2.9
Mass Air Flow (g/s)	36.2	29.5
Exhaust Temp (C)	424	395

Expansion of the no-EGR operating range is significant for efficiency

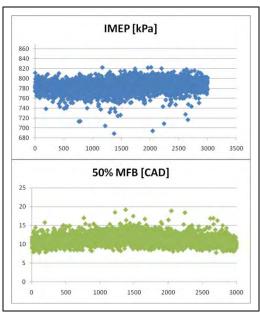
- EGR enables RCCI at higher loads, but with a penalty due to pumping losses
- The turbocharger is limited on how much EGR can be delivered using the production high pressure loop system
- For edge cases, adjusting the fuel split allows a comparison of EGR & no-EGR operation



Combustion stability will add challenges to closed-loop control

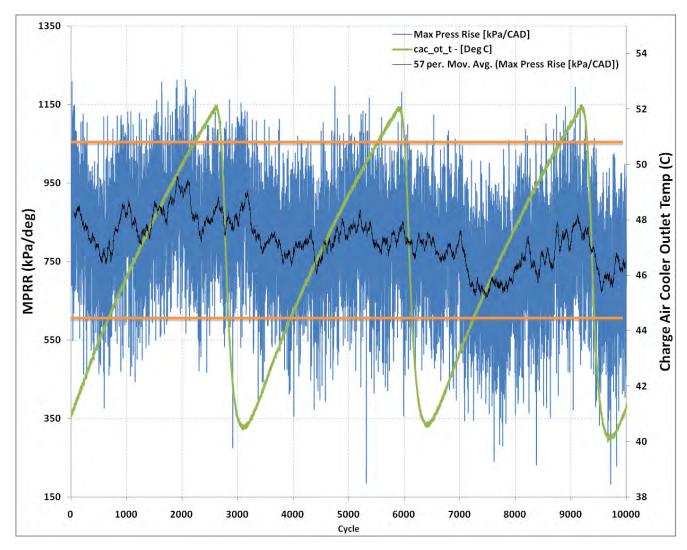
Comparison of 3000 cycles of conventional vs. RCCI

Optimization is expected to reduce the COV of RCCI from its present level


CDC RCCI

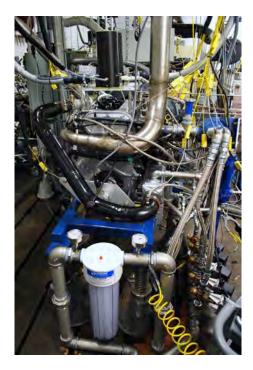
	CDC	RCCI
IMEP COV	0.8	1.8
MFB50 COV	2.0	15.0

Stability dependent on:


- Intake charge temp
- Cylinder balance

Combustion stability is very sensitive to intake charge temperature

Impact of intake temperature on peak pressure rise rate


- Intake charge cycles with EGR & charge air cooler control valve swings
- MPRR shows signs of following intake charge trend
- Improving combustion control for compatibility with production thermal conditions is needed
- Modeling and singlecylinder experiments suggest that lower compression ratio leads to reduced sensitivity to intake temperature

New GDI engine installation expands combustion research capability

- Current engine is the production GM LNF engine
 - » Turbocharged, 260 hp rated power
- Enables exploration of SI-based combustion strategies
- Initial plans are to extend the stoichiometric operating range to high EGR levels
 - » Targeting low engine-out NO_x while maintaining compatibility with three-way catalyst
- Industry-expressed interest in sharing advanced ignition system technology
 - » Necessary enabler for high-boost, high-dilution combustion

Front view of engine in test cell

AVL Micro Soot Sensor to enable measurement of particulate concentration in GDI exhaust

Collaborations and Interactions

University of Wisconsin - Madison

- » Ongoing iteration between modeling, single-cylinder engine, multi-cylinder engine to quantify differences in results and understand tradeoffs
- » Visiting student at ORNL for 6 months to incorporate multi-cylinder work into thesis

BorgWarner

- » Technical input for improving turbocharging efficiency
- » Guidance on optimizing EGR systems

University of Michigan

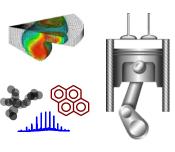
» Submodel development for GT-Power to enable predictive combustion modeling of highly dilute GDI operation

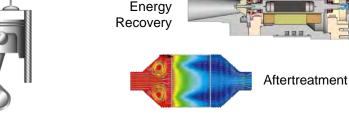
Robert Bosch LLC

- » Supplying open ECU for GM 2.0-L LNF engine
- » Supplying flex-fuel version of LNF engine to extend experimental capability

Other ORNL-DOE Activities

- » Detailed characterization of regulated and unregulated emissions
- » Health effects impact of RCCI particulate emissions
- » Study of aftertreatment system matching to RCCI operation


Next Steps FY 2011


- Optimize RCCI performance on a multicylinder engine
 - » Steady-state modal points for FTP emissions estimation
 - » Map full operating range of RCCI (with and without EGR)
 - » Determine optimum compression ratio for RCCI operation
- Evaluate RCCI fuel effects
 - » Performance with E10, E20, E85 fuels
- Data analysis for deeper understanding of RCCI combustion
 - » Combustion stability issues for feedback control systems
 - » Loss analysis via second-law thermodynamic analysis
 - » Vehicle system modeling to predict real-world benefit of RCCI
- Add low pressure EGR system to improve thermal stability of intake charge
- Perform baseline mapping of production LNF engine
- Install Bosch-supplied flex-fuel LNF engine
- Complete installation of low-pressure EGR system
- Demonstrate high-dilution GDI combustion approach on a multicylinder engine

Future FY 2012

- Continue to develop and assess potential of high efficiency concepts on multicylinder engines
 - Many approaches suggest good performance and emissions on single-cylinder engines
 - Integration with turbomachinery, heat rejection limitations, and other production-hardware restrictions must be addressed to identify technical barriers to implementation
 - Feedback control strategies to enable stable operation must be developed for robust systems
- Leverage with fundamental expertise and on-going activities to better understand systems integration issues and fuel economy potential
 - Detailed emissions characterization
 - Health effects issues
 - Aftertreatment integration
 - Vehicle system and drive-cycle modeling

Thermal

Combustion / Engine

Engine System

Vehicle System

Summary

On track to meet FY 2011 milestones

Relevance

Demonstrating advanced combustion on production-like multicylinder engines

Approach

Comprehensive approach including Modeling + Experiments + Analysis + Collaboration

Technical Accomplishments

- Operating RCCI on-engine at modeled & non-modeled points
- Demonstrating load expansion relative to PCCI with no-EGR RCCI operation
- Demonstrating efficiency tradeoff between EGR & no-EGR cases
- Installed new GDI engine to expand advanced combustion capability to SI-based systems

Collaborations

- Regular communication to DOE, industry, and others through technical meetings and one-on-one interactions
- University of Wisconsin and University of Michigan on combustion modeling
- Robert Bosch LLC on engine controls and engine hardware

Future

- Continue to demonstrate advanced combustion technologies on multicylinder engines
- Address combustion stability and control challenges inherent in advanced combustion
- Address emissions and health effects of advanced combustion strategies

