Solid Oxide Fuel Cell and Power System Development at PNNL

Larry Chick Energy Materials Group Pacific Northwest National Laboratory March 29, 2011

Content

Development of SOFC Technology

Fuel Reforming and System Design

Power and Efficiency

Development of SOFC Technology

Fuel Reforming and System Design

SOFC Technology Development at PNNL

- PNNL is the leading US DOE laboratory for SOFC research and development.
 - Active in SOFC development since 1987
 - Over \$100M of SOFC-related funding since 1999
 - Mostly DOE Office of Fossil Energy
 - Solid State Energy Conversion Alliance (SECA)
- PNNL developed anode-supported, thin electrolyte technology.
- Transferred technology to Delphi Corp. starting in 2000.
- Delphi is now supplying SOFC stacks for projects developing power systems at PNNL.

Solid Oxide Fuel Cell Characteristics

- High temperature (~700 800°C)
- Can use H₂, CO and CH₄ as fuel, so can run directly on reformed liquid hydrocarbons.
- Fuel must have very low sulfur levels (<1 ppm to avoid performance loss).

Anode-Supported Thin-Electrolyte Cell Structure

Pacific Northwest

PNNL-Delphi Technology

Thin electrolyte allows good performance at low enough temperatures so that stainless steels can be used as cell frame and separator plate.

Single Cell in Co-flow Cassette

30-Cell Stack in Frame

Cassettes are glass sealed

PNNL-Delphi SECA Team

Delphi's First Commercial Market: APU for Long-Haul Trucks

- Supports "hotel load" so ICU can be shut down at night.
- APU is started up on Monday morning, shut down Friday night.

Delphi Stack Performance

- > 9700 hours
- Total degradation is 1.12% per 500 hours
- Degradation mechanism during initial 1000 hours and after 5000 hours is understood and design 450 Julio 708-3 Fe being 4 mplemented Stack Voltage and Power Density for Constant Current Test

Delphi Stack Performance

Stack endured 200 thermal cycles with minimal degradation

Development of SOFC Technology

Fuel Reforming and System Design

Hydro-Desulfurization Technology

- Funded byArm y/ TARDEC
- Brass board, transportable system
- Ran 10 kW PEM fuel cell
- Demonstrated on JP-8 with 2750 ppm sulfur.
 - Very similar to Jet A, but higher sulfur.
 - Could use JP-5.
 - Bunker fuel would be problematic.

Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System

Efficiency Boost from Steam Reforming

Steam reforming is endothermic

• Heat from SOFC stack is converted into ~25% *increased* chemical energy of reformate:

Steam Reformation of *n*-Dodecane: $C_{12}H_{26} + 12H_2O + heat \rightarrow 12CO + 25H_2$ 7552 9421 kJ/mole (125%)

• System yields >60% net efficiency

 Steam and heat for reforming obtained from SOFC stack exhaust

Partial Oxidation (POx) Reforming

- Some systems use POx reforming.
- POx is exothermic.
- POx reformate has *less* chemical energy than original fuel.
- Example, dodecane: $C_{12}H_{26} + 6O_2 = 12CO + 13H_2 + heat$ 7552 6618 kJ/mole kJ/mole (87%)

SOFC Power System with Steam Reforming and Anode Recycle

TRL-4 Demonstration System with Steam Reforming and Anode Recycle

Pacific Northwest

Development of SOFC Technology

Fuel Reforming and System Design

Power and Efficiency

Higher Power Density Comes with Lower Efficiency

Factors Affecting Power Density (Stack Size)

Voltage

- **Temperature**
- Pressure
- **b** Concentration of H_2 , CO and CH_4 in anode gas (reformate)
- Cell materials

Electrochemical Activity is About to Improve

787 is a More Electric Airplane (MEA)

- Efficiency changes in 787 due to:
 - Composite airframe
 - Efficient no-bleed engines
- Transition in power sources in the MEA
 - Increase in electric power to ~1 MW

No Bleed + MEA Power Bleed Source Cabin Lighting Engine start, De Electrical Avionics. Ice Fuel Pumps, ECS& Pressurization. etc. Cabin Lighting, Avionics, Fuel Pumps. Brakes, Flight Controls, etc. Brakes. Hydraulic Flight Controls, Flight Controls, Landing Gear Landing Gear, etc. Pneumatic Engine start Cowl De-Ice De-Ice FCS & Pressurization Pacific Northwest

NATIONAL LABORATORY

Efficient No-Bleed Engines

Anode Recycle Steam Reformer System with Compressor/Expander

Back-Up Slides

When $Y^{(3+)}$ is substituted into ZrO_2 :

 The material is called yttria-stabilized zirconia (YSZ) because the substitution "locks" the material into the cubic structure.
For every two yttrium ions, one oxygen vacancy is created.
The oxygen vacancies facilitate ionic conductivity; thermally activated oxygen ions can "hop" from vacancy to vacancy.

Pacific Northwest

Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor.

> The output voltage is governed by the Nernst equation:

$$Voltage = \frac{RT}{4F} \ln \frac{P_{O_2(air)}}{P_{O_2(exhaust)}}$$

>Current is near zero.

Pacific Northwest NATIONAL LABORATORY

Upper Limit for Steel Framed Planar SOFC Technology: ~850°C

Effect of Pressure on SOFC Power Density

Reformate Gives Lower Power than Moist Hydrogen

Delphi Generation 4 SOFC Technology

Delphi Gen 4 Cassette 403 cm² Active Area

Manifold, load plate and current collectors = 33.5 kg

Predicted Effects of Pressure and Cell Voltage on System Efficiency and Stack Mass

For SOFC System with Steam Reformer, Anode Recycle and Compressor/Expander

	SOFC Cell Voltage			
Pressure	0.85	0.80	0.75	0.70
0.8 atm	75%/7455	71%/3358	68%/2168	64%/1608
3 atm	75%/4291	70%/1933	66%/1404	61%/1120
8 atm	75%/2959	70%/1333	65%/1034	61%/859

Efficiency/Mass*

Efficiency = Net Electrical Energy Supplied to Bus / LHV of Kerosene

*Mass is for cassettes needed to generate 821 kW gross power.

