Welcome! Fiber Reinforced Polymer Composite Manufacturing Workshop January 13, 2014 #### **Mark Johnson** Director Advanced Manufacturing Office manufacturing.energy.gov ### **Breakout Instructions** January 13, 2014 #### **Mark Johnson** Director Advanced Manufacturing Office *manufacturing.energy.gov* ## **Breakout Objectives** #### Let's dig deeper: - Manufacturing Process Technologies Blue Teams A and B (e.g. lay-up techniques, out of the autoclave, novel cure techniques, resin infusion, pultrusion, SMC, tooling, machining) - Enabling Technologies and Approaches Red Team (e.g. design methods and databases, analytical tools, nondestructive evaluation, damage tolerance, joints, repair, other) - Recycled and Emerging Materials Green Team (e.g. recycling carbon fiber, renewable precursor materials, advanced glasses, nanomaterials) ### **EERE 5 Core Questions** - Impact: Is this a high impact problem? - Additionality: How will EERE make a significant difference relative to what other entities are doing? - Openness: Are we focusing on the broad problem we are trying to solve and open to new ideas, new approaches and new performers? - Enduring Economic Benefit: Will this result in enduring economic benefit to the United States? - Proper Role of Government: Why is what we are doing a proper high impact role of government versus something best left to the private sector to address on its own? ## Main R&D Areas for Low-Cost Composites - Manufacturing throughput without degrading performance - Energy use for composite materials and structures fabrication - Recyclability for both in-process scrap and end-of-use. - Enabling technologies and approaches to support improvements to composite manufacturing. ## **Proposed Objectives for Composites** #### Cost: Reduction of the production cost of carbon fiber composites for targeted applications (vehicles, wind, high-pressure gas storage) by >25% in five years, on a pathway to a reduction of cost >50% over 10 years;* #### Energy: - Reduction of life cycle energy and greenhouse gas emissions by more than 50% for fiber reinforced polymer composite applications over a ten year time frame;* - Reduction of the embodied energy and associated greenhouse gas emissions of carbon fiber composites by 50% compared to today's commercial thermoplastic technology and 75% to today's commercial thermoset technology in five years; and #### Recyclability: Demonstration of innovative technologies at sufficient scale for 80% recyclability of both glass and carbon fiber reinforced polymer composites in five years, and >95% in ten years into useful components with projected cost, quality and production volumes at commercial scale competitive with virgin materials. # **Application Areas and CFC Targets** | Application | Current
CFC
Cost | CFC Cost
Reduction
(2018) ¹ | CFC
Ultimate
Cost ^{a,b} | CFC Tensile
Strength ^c | CFC
Stiffness ^c | Production
Range/Cycle Time | |--|------------------------|--|---|--------------------------------------|----------------------------------|--| | Vehicles (Body
Structures) | \$26-
33/kg | 35% | <\$11/kg by
2025 ⁶³
~60% | 0.85GPa ^d
(123ksi) | 96GPa ^d
(14Msi) | 100,000 units/yr
<3min cycle time
(carbon)
<5min cycle time
(glass) ^{63,64} | | Wind (Blades) | \$26/kg | >25% ⁶⁴ | \$17/kg
~35% | 1.903 GPA
(276ksi) | 134GPa
(19.4Msi) ⁶ | 10,000 units/yr (at >60m length blades using carbon fiber) ⁶⁴ | | Compressed Gas
Storage (700 bar
– Type IV) | \$20-
25/kg | 30% ⁶⁴ | \$10-15/kg
~50% ⁶⁸ | 2.55 Gpa
(370ksi) | 135 Gpa
(20Msi) ⁶⁹ | 500,000 units/yr
(carbon fiber) ⁶⁴ | # **Key Questions** - Identify a specific key technology that has the potential to help achieve these objectives and the target application areas or whether the technology is cross-cutting. - What is the state of the art for this technology? Notional Technology Readiness Level/Manufacturing Readiness Level (TRL/MRL) - basic research, applied, pilot scale, commercial? - What are the current limitations/challenges to this technology, in particular ...for use in clean energy and industrial applications? ...that prevents industry from doing this on their own? # **Report Out - Example** | Identified
Technology | Application
Area | State of the Art | Limitations/
Challenges | |--|---------------------|---|---| | ICME - Integrated Computational Materials Engineering The integration of materials information, captured in computational tools, with engineering product performance analysis and manufacturing process simulation. | Cross Cutting | Generally TRL 3-4, with selected (few) examples at TRL 7 and beyond | Need for open demonstrations of the integrated approach Democratizing tools and especially integration approaches Developing open datasets, data management approaches and standards Growing the small community of specialists trained in ICME techniques | | | | | | | | | | | "Don't you need to be like, making something in order to create jobs" - Neil DeGrasse Tyson