Integrating CSP w/ TES into a Utility System

Brad Albert General Manager Resource Management

April 25, 2013

Outline

Background on APS

History of Solana

Value of CSP

Challenges and Resource Outlook

Arizona Public Service Co.

Largest utility in Arizona

- 1.1 million customer accounts
- ▶ 34,646 square miles

Scope of Energy Delivery

- 28,000 distribution miles
- 5,300 transmission miles
- 410 substations

Resources

- 8,600 MW total capacity
- Peak demand 7,300 MW
- Over 1,000 MWs of renewables owned or in development

🜔 aps

Regulatory Commitments

Arizona's Renewable Energy Standard (RES)

- 15% of retail sales by 2025
 - ▷ 4.0% in 2013, increasing one half-percent annually to 5% in 2015
 - DE Requirement is 30% (of total)

2009 APS Rate Case Settlement Agreement

- Requires an additional 1.7 GWHs above 2008 contracts
- Represents approximately 3.4 GWHs by 2015
- Projected to be >10% of retail sales by 2015

APS is on-track to meet these targets

Projected 2013 Energy Mix

Five Major Categories of Resources

Nuclear Palo Verde	 Reliable source of carbon-free around- the-clock power Lowest operating cost 	1,146 MWs
Coal • Four Corners • Cholla • Navajo	 Affordable source of around-the-clock power Relatively expensive and time consuming to start/stop 	1,753 MWs
 Natural Gas Intermediate Units Redhawk, Gila, Arlington West Phoenix Units 1-5 Saguaro and Ocotillo Steamers 	 Large, high efficiency units Long start-up, required minimum up and down times Reliable and flexible to system demands 	3,371 MWs
 Natural Gas Peaking Units Sundance Yucca West Phoenix, Saguaro, and Ocotillo GTs 	 Small, less efficient units Short start –up, can be online in 10-30 minutes Very flexible 	1,017 MWs
 Renewables Wind Solar Geothermal/Biomass 	 Clean source of energy Most sources are non-dispatchable (must take energy as it is produced) 	475 MWs

APS Renewable Generation

Renewable Resource Summary

Renewable Resources by Type (by end of 2014):

Wind	289 MWs
Geo./Biomass/LFG	32
Solar PV	225
Solar CSP/TES	250
Total =	796 MWs

Note – does not include Distributed Energy (DE) which is currently over 200 MWs

History of Solana

APS Selected Solana via a competitive solicitation process

- 2007 Renewable Resource RFP
- Solana was not the lowest LCOE resource
- Selected because it provided a favorable overall value proposition for our customers
- APS entered into a 30 year PPA to purchase all of Solana's energy production

Solana (Solar Trough with Storage)

Developer - Abengoa

Location – 10 miles west of Gila Bend, AZ

Total Generation – 250 MW ~ about 900,000 MWHs energy production per year (approximately 3% of APS overall energy requirements)

Size – 3 square miles

Construction – Scheduled completion date of Summer, 2013

Thermal Energy Storage – Includes 6 hours of thermal energy storage

Environmental Benefits

Zero Emissions

- > 475,000 tons annually of carbon dioxide
- > 520 tons annually of sulfur dioxide
- > 1,065 tons annually of nitrogen oxides
- Equivalent to taking half the cars off US 60 every day
- > 75% Less water then current agricultural use

Value of CSP

Diversification in Several Dimensions

- Technology (PV, CSP w/storage, wind, biomass, geothermal)
- Balanced resource portfolio mix
- Ownership vs. PPA
- Capability to integrate smaller scale projects
- Geographic diversity

What Provides the Best Value for our Customers?

- Cost
- Energy production pattern
- Capacity value (contribution to meeting peak load)
- Impact on system regulation
- Solar PV and diminishing returns

Value of Solar PV Declines as Deployment Levels Increase

APS Solar Production on Peak Day 2012

- Illustration of declining capacity value
- Actual solar production and load data
- Six operating solar plants
 - Five plants SAT
 - One plant fixed position, south facing
- Peak day, August 8, 2012

Operating Solar Plant Capacity (MW)				
	Facility	Peak	Coincident	
PPA	1) Prescott	10	9	
	2) Bagdad	14	11	
	3) Ajo	4	3	
AZ Sun	4) Cotton Center	18	14	
	5) Paloma	17	10	
	6) Hyder I	15	13	
Total		78	60	

Solar Output on APS System Peak Day (August 8, 2012)

APS System Load Profile With 78 MW Solar PV

APS System Load Profile With 200 MW Solar PV

APS System Load Profile With 500 MW Solar PV

APS System Load Profile With 1,500 MW Solar PV

Solar PV Deployment Impacts System Ops

- Higher penetration of solar creates two daily peaks for gas units
 - Multiple gas unit starts per day
- Natural gas units will need to quickly ramp up and down to respond to peaks

Challenges for APS

Integrating Solana into our System Operations

- Solana is a unique resource
- APS has not had energy storage
- Adds complexity to our optimization decisions
- Operators will need to become familiar with all aspects of Solana to optimize the dispatch
 - Technical aspects of Solana operations
 - Impact of weather variations
 - Contractual terms
- Good communications are critical

Integration of Variable Energy Resources (VERs)

- Good diversity of resource type so far (mix of wind, solar PV, solar CSP, etc.)
- Has been manageable
- Investigating additional tools like EIM, intra-hour markets, ACE diversity
- Need to improve solar forecasting (utility-scale and behind-the-meter)

APS Resource Outlook

Renewable resource needs

- Have/will satisfy near-term targets
- Will not require additional renewable resources (to meet state standard) for several years

Major uncertainties in our resource outlook

- Coal units may require significant upgrades for environmental compliance
- Customer contingent resources dependent upon customer willingness to participate
 - EE standard of 20% by 2020
 - DE is 30% of our renewable requirement

Benefits of Solar CSP with TES

Solana – Meeting our Customer's Energy Needs

- Full capacity contribution during peak load times
 - Note no natural gas co-firing
- Dispatchability to help meet dual-peaks in winter months
- A stable and dependable source of utility electric generation

Solar CSP Deployment – Keys to Success

- Stakeholders must appreciate the value proposition of CSP
- CSP (and competing renewable technologies) must be valued correctly in terms of:
 - Capacity contribution
 - Flexibility
 - Intermittency
- Lowest LCOE does not necessarily lead to lowest overall cost to customers

Thank You

