Integrating CSP w/ TES into a Utility System

Brad Albert
General Manager
Resource Management

April 25, 2013
Outline

- Background on APS
- History of Solana
- Value of CSP
- Challenges and Resource Outlook
Largest utility in Arizona
- 1.1 million customer accounts
- 34,646 square miles

Scope of Energy Delivery
- 28,000 distribution miles
- 5,300 transmission miles
- 410 substations

Resources
- 8,600 MW total capacity
- Peak demand – 7,300 MW
- Over 1,000 MWs of renewables owned or in development
Regulatory Commitments

Arizona’s Renewable Energy Standard (RES)
- 15% of retail sales by 2025
 - 4.0% in 2013, increasing one half-percent annually to 5% in 2015
 - DE Requirement is 30% (of total)

2009 APS Rate Case Settlement Agreement
- Requires an additional 1.7 GWHs above 2008 contracts
- Represents approximately 3.4 GWHs by 2015
- Projected to be >10% of retail sales by 2015

APS is on-track to meet these targets
Projected 2013 Energy Mix

- Coal: 38.4%
- Nuclear: 29.3%
- Natural Gas: 21.7%
- Renewable: 5.7%
- Energy Efficiency: 5.0%
Five Major Categories of Resources

Nuclear
- Palo Verde

- Reliable source of carbon-free around-the-clock power
- Lowest operating cost

Coal
- Four Corners
- Cholla
- Navajo

- Affordable source of around-the-clock power
- Relatively expensive and time consuming to start/stop

Natural Gas Intermediate Units
- Redhawk, Gila, Arlington
- West Phoenix Units 1-5
- Saguaro and Ocotillo Steamers

- Large, high efficiency units
- Long start-up, required minimum up and down times
- Reliable and flexible to system demands

Natural Gas Peaking Units
- Sundance
- Yucca
- West Phoenix, Saguaro, and Ocotillo GTs

- Small, less efficient units
- Short start-up, can be online in 10-30 minutes
- Very flexible

Renewables
- Wind
- Solar
- Geothermal/Biomass

- Clean source of energy
- Most sources are non-dispatchable (must take energy as it is produced)

- 1,146 MWs
- 1,753 MWs
- 3,371 MWs
- 1,017 MWs
- 475 MWs
APS Renewable Generation

Generating Facility Capacity COD
1. CE Turbo
 Capacity: 12
 COD: 01/27/06
2. Aragonne
 Capacity: 90
 COD: 12/29/06
3. Snowflake
 Capacity: 14
 COD: 06/10/08
4. High Lonesome
 Capacity: 100
 COD: 07/16/09
5. Glendale Energy
 Capacity: 2.86
 COD: 01/13/10
6. Ajo
 Capacity: 4.5
 COD: 09/26/11
7. Prescott
 Capacity: 10
 COD: 11/29/11
8. Bagdad
 Capacity: 15
 COD: 12/30/11
9. Perrin Ranch
 Capacity: 99
 COD: 06/24/12
10. Waste Management
 Capacity: 3.2
 COD: 08/31/12
11. Saddle Mtn 1 Solar
 Capacity: 15
 COD: 12/20/12
12. Solana
 Capacity: 250
 Status: UC
 Anticipated COD: 07/23/13
13. Paloma
 Capacity: 17
 COD: 09/12/11
14. Cotton Center
 Capacity: 17
 COD: 10/24/11
15. Hyder
 Capacity: 16
 COD: 10/31/11
16. Chino Valley
 Capacity: 19
 COD: 11/25/12

Operating Plants

Generating Facility Capacity Status Anticipated COD
1. CE Turbo
 Capacity: 12
 Status: UC
 Anticipated COD: 07/23/13
2. Aragonne
 Capacity: 90
 Status: UC
 Anticipated COD: 07/23/13
3. Snowflake
 Capacity: 14
 Status: UC
 Anticipated COD: 07/23/13
4. High Lonesome
 Capacity: 100
 Status: UC
 Anticipated COD: 07/23/13
5. Glendale Energy
 Capacity: 2.86
 Status: UC
 Anticipated COD: 07/23/13
6. Ajo
 Capacity: 4.5
 Status: UC
 Anticipated COD: 07/23/13
7. Prescott
 Capacity: 10
 Status: UC
 Anticipated COD: 07/23/13
8. Bagdad
 Capacity: 15
 Status: UC
 Anticipated COD: 07/23/13
9. Perrin Ranch
 Capacity: 99
 Status: UC
 Anticipated COD: 07/23/13
10. Waste Management
 Capacity: 3.2
 Status: UC
 Anticipated COD: 07/23/13
11. Saddle Mtn 1 Solar
 Capacity: 15
 Status: UC
 Anticipated COD: 07/23/13
12. Solana
 Capacity: 250
 Status: UC
 Anticipated COD: 07/23/13
13. Paloma
 Capacity: 17
 Status: UC
 Anticipated COD: 07/23/13
14. Cotton Center
 Capacity: 17
 Status: UC
 Anticipated COD: 07/23/13
15. Hyder
 Capacity: 16
 Status: UC
 Anticipated COD: 07/23/13
16. Chino Valley
 Capacity: 19
 Status: UC
 Anticipated COD: 07/23/13
Renewable Resource Summary

Renewable Resources by Type (by end of 2014):

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>MWs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>289</td>
</tr>
<tr>
<td>Geo./Biomass/LFG</td>
<td>32</td>
</tr>
<tr>
<td>Solar PV</td>
<td>225</td>
</tr>
<tr>
<td>Solar CSP/TES</td>
<td>250</td>
</tr>
<tr>
<td>Total</td>
<td>796</td>
</tr>
</tbody>
</table>

Note – does not include Distributed Energy (DE) which is currently over 200 MWs
History of Solana

- APS Selected Solana via a competitive solicitation process
 - 2007 Renewable Resource RFP
 - Solana was not the lowest LCOE resource
 - Selected because it provided a favorable overall value proposition for our customers
 - APS entered into a 30 year PPA to purchase all of Solana’s energy production
Solana (Solar Trough with Storage)

Developer - Abengoa

Location – 10 miles west of Gila Bend, AZ

Total Generation – 250 MW ~ about 900,000 MWHs energy production per year (approximately 3% of APS overall energy requirements)

Size – 3 square miles

Construction – Scheduled completion date of Summer, 2013

Thermal Energy Storage – Includes 6 hours of thermal energy storage
Environmental Benefits

- Zero Emissions
 - 475,000 tons annually of carbon dioxide
 - 520 tons annually of sulfur dioxide
 - 1,065 tons annually of nitrogen oxides
- Equivalent to taking half the cars off US 60 every day
- 75% Less water than current agricultural use
Value of CSP

Diversification in Several Dimensions
- Technology (PV, CSP w/storage, wind, biomass, geothermal)
- Balanced resource portfolio mix
- Ownership vs. PPA
- Capability to integrate smaller scale projects
- Geographic diversity

What Provides the Best Value for our Customers?
- Cost
- Energy production pattern
- Capacity value (contribution to meeting peak load)
- Impact on system regulation
- Solar PV and diminishing returns
Value of Solar PV Declines as Deployment Levels Increase

Expected Penetration in 2025
APS Solar Production on Peak Day 2012

Illustration of declining capacity value

Actual solar production and load data

Six operating solar plants
 • Five plants SAT
 • One plant fixed position, south facing

Peak day, August 8, 2012

<table>
<thead>
<tr>
<th>Facility</th>
<th>Peak</th>
<th>Coincident</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Prescott</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>2) Bagdad</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>3) Ajo</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>AZ Sun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Cotton Center</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>5) Paloma</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>6) Hyder I</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>78</td>
<td>60</td>
</tr>
</tbody>
</table>
Solar Output on APS System Peak Day
(August 8, 2012)
APS System Load Profile With 78 MW Solar PV

- Solar Output
- APS System Load

APS System Load Profile with 78 MW Solar PV showing load and solar output over 24 hours.
APS System Load Profile With 200 MW Solar PV

- Solar Output
- APS System Load
- Solar System Load with 200 MW Solar

Graph shows the APS System Load with and without 200 MW Solar PV output.
APS System Load Profile With 500 MW Solar PV
APS System Load Profile With 1,500 MW Solar PV

- Solar Output
- APS System Load
- APS System Load with 1500 MW Solar
- at 78 MW Solar
- at 200 MW Solar
- at 500 MW Solar
- at 800 MW Solar
- 550 MW
Solar PV Deployment Impacts System Ops

- Higher penetration of solar creates two daily peaks for gas units
 - Multiple gas unit starts per day
- Natural gas units will need to quickly ramp up and down to respond to peaks
Challenges for APS

 Integrating Solana into our System Operations

- Solana is a unique resource
- APS has not had energy storage
- Adds complexity to our optimization decisions
- Operators will need to become familiar with all aspects of Solana to optimize the dispatch
 - Technical aspects of Solana operations
 - Impact of weather variations
 - Contractual terms
- Good communications are critical

 Integration of Variable Energy Resources (VERs)

- Good diversity of resource type so far (mix of wind, solar PV, solar CSP, etc.)
- Has been manageable
- Investigating additional tools like EIM, intra-hour markets, ACE diversity
- Need to improve solar forecasting (utility-scale and behind-the-meter)
APS Resource Outlook

- **Renewable resource needs**
 - Have/will satisfy near-term targets
 - Will not require additional renewable resources (to meet state standard) for several years

- **Major uncertainties in our resource outlook**
 - Coal units may require significant upgrades for environmental compliance
 - Customer contingent resources dependent upon customer willingness to participate
 - EE standard of 20% by 2020
 - DE is 30% of our renewable requirement
Benefits of Solar CSP with TES

- **Solana – Meeting our Customer’s Energy Needs**
 - Full capacity contribution during peak load times
 - Note – no natural gas co-firing
 - Dispatchability to help meet dual-peaks in winter months
 - A stable and dependable source of utility electric generation

- **Solar CSP Deployment – Keys to Success**
 - Stakeholders must appreciate the value proposition of CSP
 - CSP (and competing renewable technologies) must be valued correctly in terms of:
 - Capacity contribution
 - Flexibility
 - Intermittency
 - Lowest LCOE does not necessarily lead to lowest overall cost to customers
Thank You