

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Consortium for Advanced Residential Buildings

Multifamily Ventilation – Best Practice?

Dianne Griffiths April 29, 2013

Presentation Outline

- Basic Objectives
- Exhaust Systems
- Make-up Air Systems

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Two Primary Ventilation Objectives

- 1) Providing Fresh Air Whole-House
- 2) Removing Pollutants Local Exhaust

Our goal is to find the simplest solution that satisfies both objectives while minimizing cost and energy impacts.

Common Solution: Align local exhaust with fresh air requirements (*Ex: 25 Bath + 25 Kitchen*)

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Exhaust-Driven Fresh Air Design

- Exhaust slightly depressurizes the units
- Outside air enters through leaks, cracks, or planned inlets
- Widely used in the North

Multifamily Ventilation Best Practice

- Step 1: Understand ventilation requirements
- Step 2: Select the simplest design that can achieve both air quality and energy objectives
- Step 3: Build a tight building
- Step 4: Pay attention to installation quality
- Step 5: Check to make sure ventilation works
- Step 6: Educate users

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Exhaust: Central and Unitized

Central Exhaust

Unitized Exhaust

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Standard Central Exhaust Practice

- Roof or mushroom fans
- Vertical shaft with horizontal take-offs
- Sidewall or ceiling grilles at each floor
- Continuous operation

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Mechanical Designers' Intent

- Balancing damper → transferring responsibility to balancing contractor
- Many grilles, many floors, relatively low flow targets, plus wind and weather on balancing day = balancing is difficult

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Duct Leakage

Roof curb?

Takeoffs?

Transverse (sectional) joints?

Longitudinal (lengthwise) joints?

Register connections can be the largest set of leaks

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Best Practice

- Include performance specifications for duct tightness in construction documents
- Call out specific details to be sealed: all joints, takeoffs, connections, registers, etc., etc.

Then test for leakage:

• Good =

10 CFM50/register

Better =

5 CFM50/register

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Duct Sealing Methods

Aeroseal® aerosol duct sealant sticks to holes in ductwork and seals them

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Working elevators and power on the roof are helpful.

- Prepare a plan.
- Check weather report!

Mastic Spray

Rotating spray head applies mastic directly to leaks identified by camera -Simple concept -Very effective on straight shafts

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

In-Unit Exhaust Systems

Small fans, relatively low flow (50-100 CFM), low power consumption, easier to balance floor to floor

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

In-Unit Ventilation Quality Control

- Duct sealing
- Avoid kinks, long duct runs; use rigid duct

Exhaust System Design Parameters

Central Systems

- Constant Air Regulating (CAR) dampers to balance flows
- Airtight ductwork, including fan and grille connections
- Tightly compartmentalized units

Unitized Systems

- ENERGY STAR fans with variable speed where appropriate
- Short straight duct runs
- Tightly sealed ducts

 Tightly compartmentalized units

Consortium for Advanced Residential Buildings

Exhaust-Driven Make-up Air Strategies

Current Research Focus

Where is the make-up air coming from?

- Leaks
- Trickle vents
- Make-up air supplied to corridor
- Vent or fan within PTAC

Trickle Vents - Designed Inlets

- Intentional openings in building envelope that allow a trickle of air into buildings in response to pressure differential
- Trickle Vents often built into window frames

Trickle Vents – Installed Performance

- Flow from trickle vents measured with hot wire anemometer in a building under actual operating conditions.
- Also measured inside/outside pressure difference across exterior window.

Trickle Vent Airflow vs. Pressure Difference

AAMA = American Architectural Manufacturers Association

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Comparison of trickle vents in two buildings

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Airflow patterns in a tight unit with trickle vents

Airflow patterns with trickle vents

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

This Year's Research Plan

- 1. Evaluate performance of more systems in more buildings
 - Corridor supply systems
 - Trickle vents
 - PTAC outside air vents
- 2. Measure pressure variation within buildings and apartments over time
 - -2 weeks in winter and 2 weeks in summer

Earlier Testing

• Airflow through gaps in apartment door

Latest Test Rig

Powered Flow Hood Energy Conservatory's FlowBlaster[™]

Other Make-up Air Inlets

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Variability in Driving Forces

Typical for Winter – But what about summer, windy days, ...

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Pressure Monitoring

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Pressure Monitoring

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Best Practice Summary

- Step 1: Understand ventilation requirements
- Step 2: Select the simplest design that can achieve both air quality and energy objectives
- Step 2: Build a tight building
- Step 3: Pay attention to installation quality
- Step 4: Check to make sure ventilation works
- Step 5: Educate users

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Steven Winter Associates, Inc. Improving the Built Environment Since 1972

Consortium for Advanced Residential Buildings

Thank You

