Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Fuel

Brent J. Heuser Nuclear, Plasma, & Radiological Engineering University of Illinois at Urbana-Champaign

ENGINEERING AT ILLINOIS

US DOE NEUP ATF-IRP—UIUC Prime

Participants

Project Director: Brent J. Heuser/University of Illinois

Partner Institutions: University of Illinois: Brent J. Heuser, Thomasz Kozlowski,

Rizwan Uddin, James F. Stubbins, Dallas R.

Trinkle, Robert. S. Averback

University of Michigan: Thomas J. Downar, Gary S. Was

University of Florida: Yong Yang, Simon R. Phillpot

Idaho National Laboratory: Piyush Sabharwall, Michael V. Glazoff,

Jason D. Hales

University of Manchester Michael Preuss, Simon M. Pimblott, M.G.

Burke, E. Jimenex-Melero, Fabio Scenini,

Philip J. Withers

ATI Wah Chang: Melissa Martinez, Greg Vignoul

UIUC AFT-IRP Philosophical Approach

U.S. LWR assets are safe, well-maintained, and well-operated.

Zr-based cladding performs well in LWRs under normal operational conditions.

Extensive performance data base with respect to normal and transient conditions.

Regulatory approval/industry acceptance for modified Zr-based cladding path of least resistance.

Modifications of Zr-based cladding can lead to ATF without significant impact on performance under normal operational conditions.

Two Solution Pathways to Mitigate Accelerated Oxidation and H₂(g) Production

Self-healing pathway

ATI Wah Chang (intermediate stock supplier)

Zircaloy

Composition ^a (weight %) of various zirconium alloys.								
Alloys	Tin	Iron	Chromium / Nickel	Niobium				
Zircaloy-1	2.50	_	_ / _	_				
Zircaloy-2	1.50	0.12	0.10 0.05	-				
			1					
Zircaloy-3A	0.25	0.25	_ χ phases _	-				
Zircaloy-3B	0.50	0.40		-				
Zircaloy-3C	0.50	0.20	- 0.20	-				
Zircaloy-4	1.50	0.20	0.10 –	-				
ZIRLO	1.02	0.10		1.01				
M5®	_	0.05	0.015 –	1.0				
É110	_	_		0.95-1.05				
É125	_	_		2.20-2.60				
É635	1.1-1.3	0.3 - 0.4		0.95-1.05				
OPT ZIRLO	0.66	0.11		1.04				
X5A (AXIOM)	0.5	0.35	0.25	0.3				
2.2								

a Remainder zirconium.

χ phases with additives: Si, Al, Mo, Cr

Additives segregate to free surface; incorporated into oxide; lower growth kinetics; longer onset to accelerated oxide growth.

χ precipitates dissolve ~900 C

T

Stable χ precipitates at LWR operating T

Participation Interconnections

U.S. DOE NEUP/U.K. RCEP Investment

Table 5. Summary of budget allocation for IRP partners.

Partner	Year 1	Year 2	Year 3	Total
U. Illinois	\$538,764	\$543,416	\$557,768	\$1,639,945
U. Michigan	\$230,000	\$230,000	\$230,000	\$690,000
U. Florida	\$213,180	\$165,492	\$161,329	\$540,000
INL	\$150,000	\$150,000	\$150,000	\$450,000
ATI Wah Chang	\$60,000	\$60,000	\$60,000	\$180,000
U. Manchester (funded	£984,270*			
TOTALS	\$1,191,944	\$1,148,908	\$1,159,097	\$3,499,945*

Experimental Capabilities—Sample Fabrication

Sputter deposition: U. Illinois

Cladding fabrication: ATI Wah Chang

Experimental Capabilities—In-service corrosion

Autoclave capability: U. Michigan, U. Florida, U. Manchester Ion accelerator capability: U. Illinois, U. Michigan, U. Manchester

Experimental Capabilities—Off-normal oxidation

TGA: U. Illinois, U. Manchester

Experimental Capabilities—Microanalytical Characterization

Microanalytical: U. Illinois (FS-MRL), U. Michigan, U. Florida, U. Manchester AES, TOF-SIMS, XPS, FIB, X-ray based techniques, TEM, SEM, AFM,...

ANL: IVEM, APS

U.S. DOE NEUP/U.K. RCEP Investment

Table 5. Summary of budget allocation for IRP partners.

Partner	Year 1	Year 2	Year 3	Total
U. Illinois	\$538,764	\$543,416	\$557,768	\$1,639,945
U. Michigan	\$230,000	\$230,000	\$230,000	\$690,000
U. Florida	\$213,180	\$165,492	\$161,329	\$540,000
INL	\$150,000	\$150,000	\$150,000	\$450,000
ATI Wah Chang	\$60,000	\$60,000	\$60,000	\$180,000
U. Manchester (funded	£984,270*			
TOTALS	\$1,191,944	\$1,148,908	\$1,159,097	\$3,499,945*

Zr-Sn phase diagram

Zr-H and **Zr-H-O** Phase Diagrams

Zr-H phase behavior at low H concentration

G.A. McRae et al./Journal of Nuclear Materials 396 (2010) 130-143

