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Overview 

• Objective 
• Proposed directions 

– Probabilistic constraints 
– Algorithms 

• Challenges  
• Conclusions 

 
 

 



What is “Advanced”? 

• SCUC is a multi-stage and bi-level optimization 
problem  
– Level 1: Binary unit on/off decisions 
– Level 2: OPF/ED submodel for security 

• Many variations on this structure to balance 
details and computational tractability 

• Stochastic formulations have mainly been 
scenario-based with dc power flow 
 

  



Objective 

• Investigation of a formulations for SCUC that 
will be  
Flexible: able to include supply and demand side 

resources in a realistic way, integrate with other 
tools 
Robust: provide optimal (or ε-optimal) solutions  
Scalable: applicable to reasonably-sized systems in 

practical computation time 
• Combination of formulation and algorithm 

implementation 
 

 



Scenario-based optimization 

• Most stochastic simulation is based on replication 
of deterministic models across scenarios 

• Challenge of scenarios is probability selection 
– very low probability events are important 
– requires the weight of these events be reasonable to 

ensure their impact on the OF 
• Rough representation of uncertainty with exact 

solutions versus detailed representation and 
approximate methods 

• Constraints are pre-determined and must always 
hold 



Probabilistic Constraints  

• We propose to investigate probabilistic 
(chance) constraint formulation 

• Ease the requirement of perfect holding of 
constraints for low probability events 

• Probabilistic constraints contain random 
variables and must be met with some (large) 
probability 
 



Probabilistic Constraints 

• require that constraints that are random when 
the decision is made, should hold with high 
probability when the random variables are 
realized (Prèkopa, 1995) 

• These are often managed as penalty terms in 
the objective function 



Probabilistic Constraints vs Penalties 

• Penalty is defined by the expectation that the 
constraint is unsatisfied 
– expectation is a long term average which is not reality 

for short-term planning 
• Cost of violation of the constraint is frequently 

unknown 
– VOLL is usually used in power system applications 

• Reliability of the system is not enforced 
specifically, but uses cost as a proxy 
– in wide-spread blackouts, for example, this may not 

suffice 
 
 



Comparing Traditional to Probabilistic 

• Two-stage stochastic program with recourse: 
 
 
 
 

• where        is the cost of the first stage problem and                  
   is the cost of the second stage (sub-problem) 

• randomness in constraints are usually incorporated 
in the OF with penalty terms 

 



Chance-constrained formulation 

• randomness remains in the constraints and is 
required to be met with some (high) 
probability  
 
 
 

• A similar two-stage dc formulation with 
chance-constraints has been proposed with 
wind uncertainty in (Wang et al, 2012) 



Challenges of Chance Constraints 

• Most existing implementations are for linear 
problems 

• Estimating the underlying distribution for the 
constraints 

• Evaluating the distribution at each iteration is 
expensive -> scaling issues 
 



Solution Approaches 
1. P-efficient points methods (Dencheva & Martinez, 

2013) 
side-step the expense of evaluating distributions through use of p-level 
efficient points  

2. Regularization methods/bundle methods (Oliveira et al, 
2011) 

scale-up using inexact bundle methods that have reliable convergence if 
the distribution of  r.v. is finite 

3. Sample Average Approximation (Wang, 2012) 
Using finite representation of probabilistic constraint/scenarios 

4. Stochastic Dual Dynamic Programming (Philpott & 
Guan, 2008) 



p-efficient points 

integration of multi-dimensional distribution of 
random variables with each iteration can be 
reduced with p-efficient points of the distribution.  
• Optimality for log-concave distributions* 

• Provide upper and lower bound for arbitrary 
distributions 

• Can use inexact information through Sample 
average approximation methods (SAA) or Bundle 
methods 

Presenter
Presentation Notes
*log-concavity holds if the random rhs variables are normal and independent (and other cases too, but this should be sufficient)



Sample Average Approximation 

• SAA uses the empirical representative of distribution  
• Essentially conduct monte carlo sampling of the 

underlying distribution (scenarios) of the second stage 
problem  

• use as a representative of the true distribution when 
evaluating objective function  

• convenient since distribution of many uncertainties 
(wind, for example) may be best represented 
empirically 

• Wang (2012) estimate of bounds for both chance 
constraint and two-stage problem 
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Presentation Notes
Check convergence properties similar to Wang (2012). UL bounds on the probability constraint and on second stage decisions



Bundle Methods 

• Second stage optimization is completed using 
a subset of scenarios and “bundles” of 
function evaluations to represent the excluded 
scenarios 

• Typically a “proximity” measure to bundle un-
optimized scenarios (inexact bundle methods) 

• Accelerates the evaluation of the second stage 
objective function (Oliveira et al, 2011) 
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Stochastic Dual Dynamic Programming 

• Decomposition method for multi-stage stochastic 
models 

• Forward step: node sampling instead of solving all the 
nodes 

• Backward step: solution of all the nodes of the 
recombining tree. It approximates the recourse 
function for the sampled values obtained in the 
forward step 

• Stochastic convergence: lower bound (deterministic), 
upper bound (stochastic). (Philpott & Guan, 2008) 

• Advantage: numerical complexity linear with number 
of scenarios 
 



Non-standard Resources 
• Responsive demand is an important resource, but is 

typically incorporated as   
– lower cost load shedding (emergency resources) 
– demand elasticity (price-responsive) 

• Responsive demand  
– exists at various time scales 
– is not deterministic 

• We would like to incorporate these into the UC 
decision framework, but will increase dimensionality 

• Flexible methods like SAA/inexact bundle, if scaled 
well, could incorporate DR 

 
 

 



Conclusions 

• A number of promising approaches to explore 
– Smaller test cases will be evaluated this year, to 

filter the approach to most promising 
• Convergence 
• Scalability 

– Investigate methods for reduction of scenario sets 
and approximation of excluded scenarios 
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