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Outline 

• Overview of Tools 
• MATPOWER 
• SuperOPF Planning Tool 
• Multiperiod SuperOPF (2nd gen) 

– especially storage model 

• Simulation Environment 
• Unit Commitment SuperOPF (3rd gen) 
• Discussion of UC SuperOPF Implemenation 

Preliminary Results 
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Project Overview 
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MATOWER 

Free, open-source power system simulation 
environment with extensible OPF and interfaces to 
state-of-the-art solvers. 

– bug fixes, performance enhancements, general 
maintenance 

– used worldwide in teaching, research, consulting 
– momentum growing 
– 37,000 downloads of version 4.x 
– 12,000 of those in the last year 
– growing user support needs 
– serves as foundation for all tools in this project 

5 



MATPOWER 

Near term (few months) plans, new release including … 
• accumulated enhancements, fixes since v4.1 
• contributed code: 

– continuation power flow 
• contributed by Shrirang Abhyankar (Argonne), Alex Flueck, (IIT) 

– applications of SDP (semi-definite programming) 
relaxations to the OPF 

• contributed by Dan Molzahn (U of Wisc/Madison) 
• solver for SDP relaxation of OPF problem 
• sufficient condition for global optimality of specified OPF solution 
• sufficient conditions for insolvability of the power flow equations 
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MATPOWER 

Longer term (over next year) … 
• integrate 3rd generation SuperOPF into a new 

MATPOWER release 
• assured wide distribution 
• significant boost for other researchers 
• increased visibility and opportunities for feedback 
• LOTS of cleanup and documentation work required 

to make this work 
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SuperOPF Planning Tool 

• used extensively by R & M Project 2E: 
“Mapping Energy Futures: SuperOPF Planning 
Tool” (Bill Schulze) 

• based on 1st gen (single-period) SuperOPF 
– coupled DC OPF of multiple scenarios 
– tied together by capacities that reflect 

investment/retirement 
– additional constraints, e.g. regional build limits 
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SuperOPF Planning Tool 

• modified formulation 
– added ability to specify scenario-specific availability factors 
– improved ability to model wind and solar 

• greatly improved performance 
– via techniques to improve problem robustness enabling us 

to exploit the speed and scalability of interior point solvers 

• current problem size 
– Eastern Interconnect with 73 representative hours 
– over 7 million variables, almost 19 million constraints 

• looking toward integration of binary variables 
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Multi-period SuperOPF (2nd gen) 
• used extensively by R & M Project 2A: Evaluating Effects of Managing 

Controllable Demand & DER (Tim Mount) 
• coupled OPF scenarios (wind and outage scenarios for multi-period 

horizon) 
• linked within a period by reserve and redispatch vars/costs/constraints 
• linked through time by storage and ramping vars/costs/constraints 
• transitions from period-to-period, state-to-state governed by transition 

probability matrices 
• implications 

– not tracking individual trajectories, only bounds on a “central path” (e.g. load 
following ramp) 

– not tracking actual amounts of stored energy, only storage state bounds for 
“central path” 
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Toy System for Illustration 

• conventional gen with 
quadratic cost 

• constant deterministic load 
• 100% efficient grid-level 

storage unit 
• wind generator with 

normally distributed output, 
with 2 parameters: 
- variability 
- uncertainty 
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Uncertainty & Variability 
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Example of Tradeoff of Storage Usage 
time arbitrage vs. uncertainty mitigation 
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Worst Case Storage Constraint Problem 
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Relaxing Worst Case Storage Constraints 
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Value of Leftover Storage in Terminal States 

• 5 price model, allowing to specify a unique value for each of 
the following 5 types of contributions to the total expected 
value of leftover stored energy: 
– charging or discharging in non-terminal states 
– charging in terminal end-of-horizon base states 
– discharging in terminal end-of-horizon base states 
– charging in terminal contingency states 
– discharging in terminal contingency states 

• optional cyclic storage constraint 
– initial stored energy is a variable, constrained to equal expected final 

stored energy 

• optional target constraint for expected stored energy 
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Storage Efficiency 

• input efficiency 
• output efficiency 
• losses 
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Simulation Environment 

• multi-period SuperOPF (2nd/3rd gen) 
• two stage structure 

– stage 1 – day-ahead / hour-ahead 
• multiperiod – determines contracts for energy, 

reserve/ramping capacity and unit commitment 
• computes 24-hour plan 

– stage 2 – real-time / balancing 
• determines balancing energy, real-time prices 
• executes based on the plan and resolved uncertainties 
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Day-at-a-Time vs. Receding Horizon 
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Traditional Approach – Stage 1 runs once-per-
day, finds hourly solution for full day; stage 2 
runs intra-hour, finds single period solution 
subject to day-ahead contracts.  
 

Receding Horizon Approach – Stage 1 runs 
hourly, finds solution for first hour with hourly full-
day look-ahead; stage 2 runs intra-hour, finds 
single period solution subject to hour-ahead 
contracts.  



Stage 1 Requires Input Scenarios 
• Uncertainty characteristics must reflect increased accuracy of shorter 

term forecasts 
• Previous approach 

– generate simulated forecast for entire wind/load data sets 
– select forecasts “similar” to planning day 
– cluster to generate scenarios for each hour and transition probabilities 
– Issues 
– not enough “similar” days 
– even “similar” days don't have shared starting point (current operating state) 
– resulting scenarios do not adequately cover tails 

• New approach 
– estimate models for temperature, load and wind 
– use model to generate many potential realizations of planning day based on common 

history 
– cluster to generate scenarios for each hour and transition probabilities 

• with new techniques for incorporating outliers and scenarios with specific behaviors 
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Input Data File Standards 

73 



Unit Commitment SuperOPF (3rd gen) 

Same as 2nd gen Multi-period SuperOPF, with 
addition of … 

• integer unit commitment decisions 
• startup/shutdown costs 
• minimum up/down times 
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Implementation is Flexible 

Can be used to solve DC versions of: 
– standard deterministic OPF 
– single period secure, stochastic OPF (1st gen SuperOPF) 
– multiperiod deterministic OPF (with ramping, storage) 
– multiperiod secure, stochastic OPF (2nd gen SuperOPF) 
– deterministic UC w/economic dispatch 
– deterministic UC w/OPF constraints 
– secure, stochastic UC with individual trajectories 
– secure, stochastic UC with full transition probabilities 

Plan to integrate into upcoming version of MATPOWER 
for wide distribution. 
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Discussion of UC SuperOPF 
Implementation and Preliminary 

Results 

Carlos E. Murillo-Sánchez 
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Traditional MIP UC formulation 



• In practice, only u variables need to be 
defined as binary. 

• A u  variable shuts down all injections related 
to a given generator in a given time slice (all 
scenarios, all contingencies and base cases). 

• On input, a unit can have “available for 
commitment decision”, “forced on” or “forced 
off” status. 

• However, a number of issues must be 
addressed for incorporation into the SuperOPF 
framework.  



The lighter issues 

• Several changes introduced in the code so that 
all required injections are represented. 

• Forced-off injections trigger superfluous 
contingencies filters and pruning occurs. 



The issue of structure 
• The SuperOPF tree can be thought of as a probability tree 

with recombination of scenarios in the central path. 
• A contingency might be defined in which one of the 

generators available for the commitment decision goes 
offline. 

• If u=0, that contingency is superfluous and the base case in 
the corresponding scenario should assimilate that 
contingency’s probability. 

• Indeed, u=0 or u=1 changes the structure of the 
probability tree and the corresponding probability weights 
in the cost function! 

• Can adopt a cost formulation that switches on or off certain 
cost segments (for linear or piecewise linear costs), but it is 
messy and introduces u‘s in the cost in a complicated 
manner (otherwise each u simply triggers the fixed part of 
the corresponding operation cost into the objective) . 



A simplification 
• Ignore the issue of structural change in 

probability tree; ok if probabilities of injection 
outages are small. 

• Then, if u=0, the contingency for which the 
generator in question is ousted generates a 
power flow that is identical to that of the base 
case, so no reserve requirements will be set by 
the superfluous contingency flow.   

• If u=1 all is fine. 
• The relative weighting of the base case can be a 

little bit off if u=0 because of this simplification. 



Looking out to other formulations 

• There are tighter UC MIP formulations, but the better 
ones are aimed at network-less power balance and 
fixed reserve formulations. 

• The binary variables enter the simple power balance 
constraints: injections split in fixed u-weighted  Pmin 
plus a variable (Pg-Pmin) with zero lower bound. 

• In a formulation with an explicit DC network flow (such 
as the single-QP version of the multi-period SuperOPF), 
the binary variables would enter into a staggering 
amount of network constraints, complicating the cuts. 

• Not included yet:  prescribed startup curves. 



Status 

• Testing currently under way with 30 bus and 118 
bus systems. 

• A systematic exploration of parameter fine-tuning 
for CPLEX, Gurobi, is underway, and is necessary. 

• Preliminary results in concordance with 
expectations given experience with continuous 
multi-period SuperOPF. 

• Still not tested (but coded):  Decomposition-
based AC version.  Each central problem much 
simpler than the corresponding MPSOPF with DC 
network. 
 



Example: 30 bus 

• Gens 1 & 2: large coal 
• Gens 3 & 4: peakers 
• Gens 5 & 6: medium coal 
• Gen 7: storage (small) 
• Gens 8  & 9: large wind 
• Wind uncertainty increased from zero to actual 

forecast uncertainty; four wind scenarios (NREL) 
• Contingencies: generator outages 





















Questions 
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