DOE/OE Transmission Reliability Program

Synchrophasor Standards Development & Support

Kenneth Martin

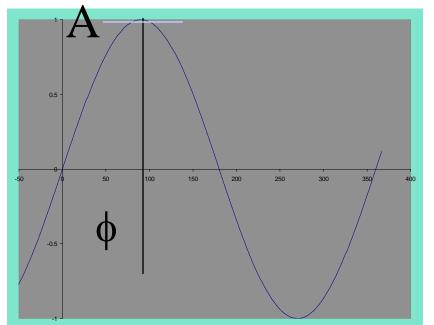
Electric Power Group

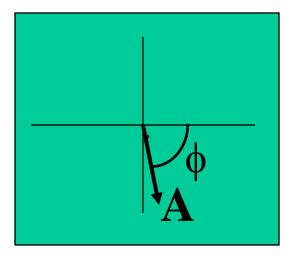
martin@electricpowergroup.com June 27-28, 2013

Washington, DC

Introduction

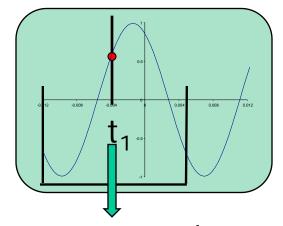
- Synchrophasor measurement systems widely deployed
- Enable a new generation of power system monitor & control capability
 - Improved power system analysis & system models
 - Wide area, high-resolution visibility
 - Basis for a new generation of controls
- Research challenge standards to enable interoperability
 - Measurement performance
 - Communications
- Research focus facilitate development, testing, and validation of standards to promote interoperability




Basic phasor concept well known

A phasor is the complex form of the AC waveform

$$\sqrt{2}$$
 A cos (2 $\pi \omega_0 t + \phi$)



Synchrophasor value estimated from waveform depends on method

- Given waveform, what is the phasor?
 - There is no phasor in waveform
 - We cannot measure an instantaneous phasor
- Observe waveform over interval
 - The instantaneous phasor value at t_1 is estimated over an interval around t_1
- Estimate depends on sampling, window, algorithm, etc.
- Standards assure common measurement

Estimate the phasor over interval: $X(t_1) = (X_m/\sqrt{2})e^{j\phi}$

Sample the given waveform:

Need for standards

97.600

95.000 92.500 90.000 88.000

215

Standards assure comparability

- Apparent response depends on:
 - Technology
 - Timetag options
 - Measurement window
- Multiple selections --- Check legend for names and units 75.000 65.000 60.000 55.000 970 971 972 973 974 975 976 977

PMU & fast analog transducers

Multiple selections --- Check legend for names and units

239

218

Time in Seconds

240

241

219

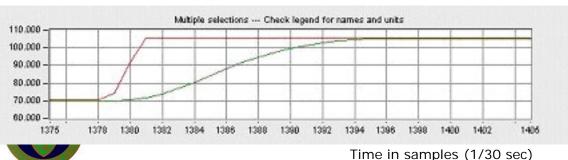
Time in samples (1/30 sec)

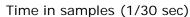
242

220

238

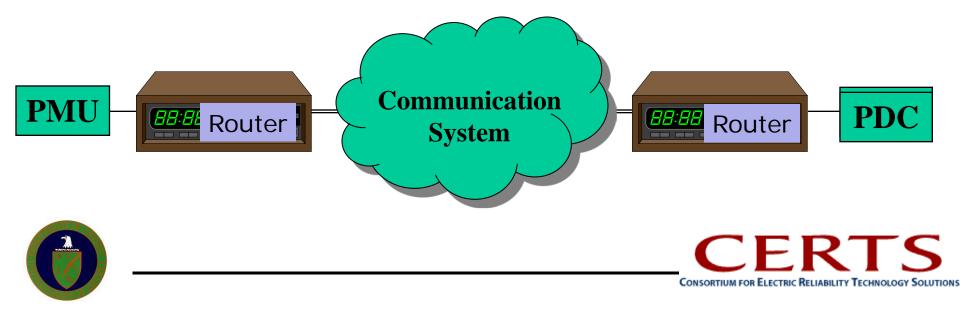
217

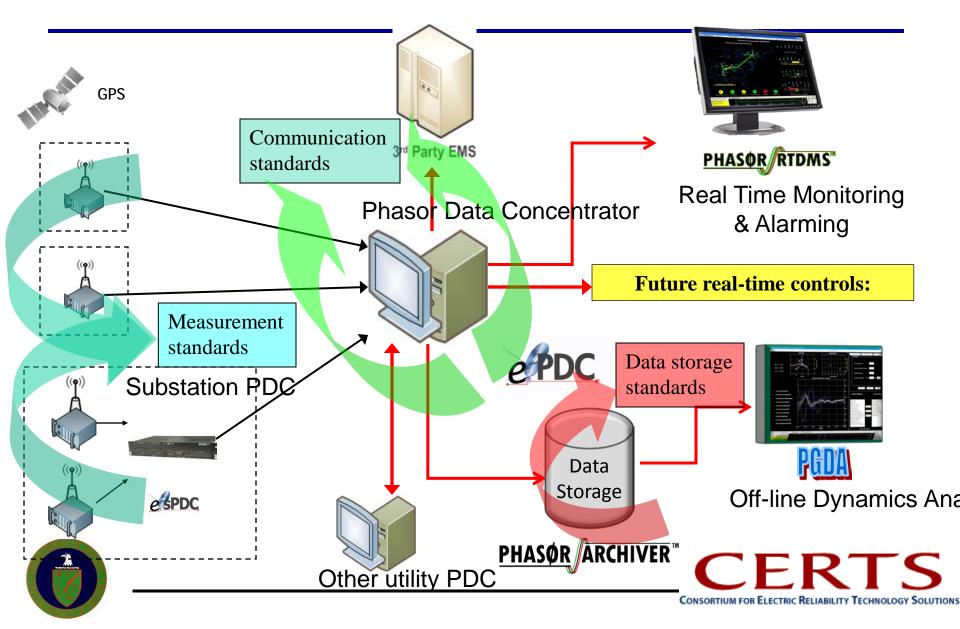

-400


-600

210

237





Synchrophasor communications

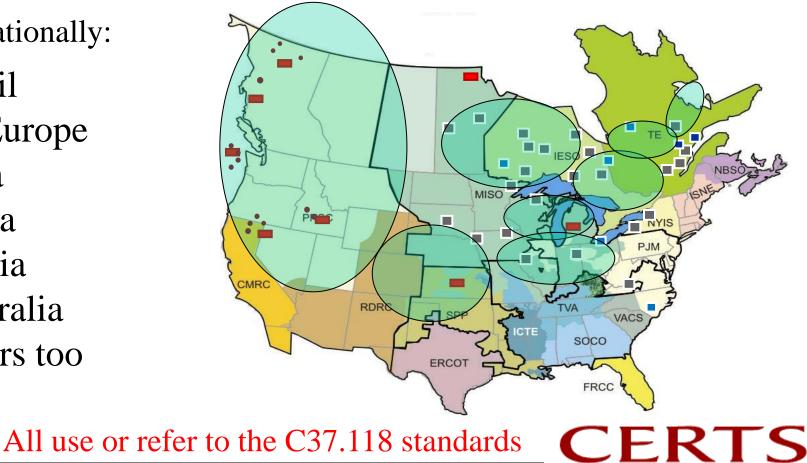
- Interface connection & protocol
- Communication system (WAN)
- Messaging and contents
- End-to-end compatibility
- Standards assure common interfaces and protocols

Standards in Measurement Systems

Research need & project objective

- Extensive development of synchrophasor systems
 - Technology requires many systems for operation
 - Measurement technology new and developing
- Project objective
 - Develop & harmonize IEEE & IEC synchrophasor standards
 - Measurements, communications, & data storage
 - Support continuing technology development
 - Assess implementation issues for standards updates
 - Guides for synchrophasor applications
 - Provide standard & guide interpretations
 - Disseminate information about standards & guides

8



Project Impacts

- SGIG Project grants \$308 million (+50% cofunding)
- About 1000 PMUs installed across N. America

Internationally:

- Brazil
- W. Europe
- India
- China
- Russia
- Australia
- Others too

CONSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTIONS

Synchrophasor Standards & Guides

C37.118.1-2011 – Measurement requirements

- Synchrophasor measurement including frequency and rate of change of frequency
- C37.118.2-2011 Synchrophasor communications
 - Extension of the original synchrophasor standard (2005)

IEC 61850-90-5 – Phasor measurement communications

- Technical Report that adds wide-area capability for phasors
- C37.242-2013 Guide for PMU utilization
 - Installation, testing, synchronization & measurement error issues
- C37.244-2013 Guide for PDC
 - Definitions and functions used in PDC units

Current status

- Communication standards done
 - C37.118.2 widely used, no problems reported
 - IEC 61850-90-5 some implementation, details under development
- Measurement standard C37.118.1 amendment
- Standard for PDC initiated in May 2013
 - Anticipate completion in 2016
- Joint IEEE-IEC standard development initiated
 - IEC wants measurement standard
 - Joint development starting with C37.118.1 facilitates compatibility
 - New standard IEC/IEEE 60255-118-1

C37.118.1 amendment

- Synchrophasor technology under development
 - Standard is defining the technology as it develops
 - C37.118.1 included the first formal definition for dynamic phasors and mathematical definitions for Frequency & rate-of-change of frequency (ROCOF) as related to synchrophasors
- Immediate issues being resolved
 - Ramp test exclusion lengthened for M class filters
 - ROCOF limits relaxed or suspended
 - Filtering for M class improved for OOB & other tests
 - Modulation types separately tested for better evaluation
 - Reference frequency estimation method improved
- Expect to complete this amendment by end of 2013

- IEEE Conformity Assessment Program (ICAP)
- ICAP Synchrophasor Conformity Assessment Steering Committee (SCASC)
 - Under development for last year
 - Officially launches June 2013
 - Development of testing & certification program for PMUs
- Test labs may use different methods & get different results
- Programs assure labs get same results
- PMUs get certification to assure users

Other accomplishments for 2012-3

- New guides and standard updates previously described
- Each IEEE Working Group completed an IEEE paper on the respective standard
- Presentations on synchrophasors & standards:
 - Tutorial at CBIP in Delhi, India
 - Overview at Phadke-Thorpe Symposium, Reston, VA
 - 2 panels & 1 tutorial for IEEE General Meeting 2013 Vancouver, BC
 - Workshop at NCEPU in Bejing, China
- Standards harmonization discussion with China synchrophasor group

Risk Factors

- The C37.118.1 standard is leading technology development
 - Requirements may exceed current technology
- Applications should dictate requirements
 - Here requirements anticipate applications
 - Not enough applications with specific requirements
- Development of divergent standards
 - C37.118 popular, 61850 widely used for other applications
- Proprietary methods outside of standards
 - Gives vendors marketing edge
 - Creates problems for users

Follow-on for 2014

- Continue information exchange
 - Presentations at meetings, workshops, conferences, etc.
 - Solicit information from projects, technical development, other standards
- Continue standards development
 - Joint IEC/IEEE measurement standard
 - PDC standard
- Develop guides for understanding standards
 - Propose a workshop for vendors on the measurement standard
- Develop links between applications & synchrophasor performance

