



# ConocoPhillips test results and data analysis

Brian J. Anderson

Associate Professor, Chemical Engineering, West Virginia University

















## **Overall Ignik Sikumi Project Goals**

- North Slope reservoir-scale field trial to evaluate CO<sub>2</sub>/CH<sub>4</sub> exchange
- Short-term test to demonstrate concepts at larger-than-lab scale
- Validate exchange mechanism results from laboratory work
  - Confirm injectivity into naturally occurring methane hydrates
  - Confirm methane release without production of water or sand
  - Obtain reaction rate data to facilitate reservoir-scale modeling
- Demonstrate stable production of natural gas hydrates by depressurization





## **Project History**

#### 2008 – 2010

- Select site and gain access
- Characterize reservoir

#### 2011

- Drill, log, complete and suspend Ignik Sikumi #1
- Design field test

#### • 2012

- Re-enter well and perforate
- Perform exchange test
- Perform depressurization test
- P & A well and remediate site
- Prepare datasets
- Begin data analysis

#### 2013

Data analysis and history matching





## July 2012 Status

#### Data Correction/Reconsolidation in Progress

- Outliers/spikes removed
- Time stamps for each source corrected
- GC data reprocessed
- Three DTS data sets obtained
  - Un-normalized and 2 types of normalization
- Created 1 and 5 min time average datasets
- Adding corrections for dead volumes/wellbore storage

#### Path Forward

- Perform material balance of test
- Injectivity analysis, using simulation
  - Infer hydrate saturation changes
- Production analysis using cell-to-cell model
  - Gas phase composition history match
- Issue final database and report
- DOE workshop





### Initial Period before any well work

Temperature linear with geothermal gradient (~1.79°F/100ft), Temperature change ~0







## Injection







## Overall Production – Gas rates, Pressure, and Temperature





**Ignik Sikumi #1 Production** 





### Flowback - Production Period #1





## Flowback - Production Period #2





## **Summary Observations**

- Successful injection of CO<sub>2</sub> mixture into hydrate reservoir
- Methane produced both above / below CH<sub>4</sub>-stability pressure
  - CO<sub>2</sub> was retained in the reservoir compared with N<sub>2</sub>
    - Indicates the possibility of CO<sub>2</sub> exchange
- Depressurization sustained below CH<sub>4</sub>-stability pressure
  - Steady increase in production rate
  - Over 850 mscf (24,000 scm) of CH<sub>4</sub> produced in total
  - Low BHP achieved (~250 psi)
- Solids production significant
- Evidence for heterogeneous injection / production



## **Database Summary**

#### Diagrams of the operations included

PI&D's + dead volumes of surface equipment and well

#### Master Variable List

- Where to go for complete info on any recorded variable
  - e.g., what instrument recorded the data, calibration, etc

#### Supporting Data Document

Where to go for notes on calculations and data corrections

#### Operation Event Log

- Where to go to see what was happening at every step of the test
- All raw data in MySQL and CSV format
- All final data available in MS SQL database format, CSV, Matlab
  - Clean, 1 min averaged, and 5 min averaged data



#### **Data Streams**

#### Composition

On-line GC (~15 min sampling int.)

#### Continuous downhole conditions

- 3 downhole pressure gauges (P&T)
- Distributed Temperature Sensing (T per ft)

#### Continuous surface conditions

- Pump rates
- Flow rates (gas, jet pump fluid)
- Line pressures and temperatures
- Separator P&T

#### Produced fluid measurements

- Collected on regular intervals
- Water prod rate
  - Tank straps (~30min int.)
- Water (~1hr int.)
  - pH, salinity, SG
- Gas (~1hr int.)
  - Gas gravity



#### **Database Folder**



## **Modeling and Simulation Efforts**

- Adiabatic CTC Model (ConocoPhillips)
  - Cell Volume (3.5 ft),  $S_H = 65\%$ ,  $P_i = 1000$  psi,  $T_i = 40.5$  F
- Solids production
- Heterogeneous production
- History-match simulations of the Ignik Sikumi field test with newly-developed Mix3HRS software
- Complex pressure, temperature, and composition history
  - CO<sub>2</sub>+N<sub>2</sub> injected into a CH<sub>4</sub> reservoir with all 3 gases produced
  - Competing thermodynamics for hydrate formation and dissociation in the reservoir







## **Hall Plot – Varying Permeability**





- Permeability adjusted over time
- ightharpoonup One possibility is  $\Delta$  hydrate sat.
- Good match obtained





## Injection matching

• The Injection flow rate and cumulative injection of  $CO_2$  and  $N_2$  into the reservoir are matched with the field data.



## **Post-Injection Period**





## **Post-Injection Period**





## **Production**





## More CH<sub>4</sub> produced than Equilibrium Model predicts.



 $S_{hi} = 65 \%$  $T_i = 40.5 \text{ F}$ 

## **% Recovered based on Injected Amounts**





## **Observations: Field versus Model**

- Not enough CH<sub>4</sub> from model
- Not enough water from model
- Temperature increase too high in model
- Recovery of N<sub>2</sub> to CO<sub>2</sub> reversed in model
- Examining potential mechanisms of gas production
  - 1. Dissociation in place w/o permeability enhancement
  - Dissociation in place w/sand migration + permeability enhancement
  - 3. Production of solid hydrate (< 200 µm) and subsequent dissociation in wellbore above the jetpump when contacted with warm power fluid





## **Sand Production**





Mechanism 2 – Experience at Mallik



Figure 17 Schemata of reservoir performances through 2007 and 2008 tests inferred from history matching simulation From: Kurihara, et al., Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17-21, 2011



### **Mechanism 2**



Figure 11 Concept expressing overall grid block permeability as a function of MH saturation with growth of high permeability conduits

$$k^* = xk_{hp}(1 - S_h)^2 + (1 - x)k_o(1 - S_h)^N$$

$$k_{eg} = k^*k_{rg}$$

$$k_{ew} = k^*k_{rw},$$

From: Kurihara, et al., Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17-21, 2011



## Mechanism 3: Solid CH<sub>4</sub> – Hydrate produced?

- $\triangleright$  Largest source of  $CH_4$  & water =  $CH_4$  Hydrate
- > Solids (sand) were produced



**Native State** 



**Exchange** 



Depressurization





# Mechanism 3: CTC Model Solids Recombination – CH<sub>4</sub> Match





## Mechanism 3: CTC Model Solids Recombination – Recovery





### **Mechanism 3**

#### Method

- Use EXPRO water rate and %Sed measurements
- Scale sediment rates to match observed cumulative sand production

#### Worst-case Assumptions

- All sand produced had associated CH<sub>4</sub> hydrate that was produced
- $S_H$  values from CMR log
- Gives upper limit to CH<sub>4</sub> from solids



## Field trial likely a combination of mechanisms

#### Mechanism 2

 Dissociation in place w/sand migration + permeability enhancement

#### Mechanism 3

 Production of solid hydrate (< 200 μm) and subsequent dissociation in wellbore above the jetpump when contacted with warm power fluid

### Reservoir heterogeneity







## **Tracer ... Argument for Heterogeneity?**





## **Heterogeneous Injection / Production**





## **Heterogeneous Injection**





## Flowback - Production Period #1





### **Production Period #1**







#### **Production Simulations**

#### **Production**

- Production phase is modeled by maintaining fixed-state boundary as aqueous phase at the bottom-hole pressure.
- Still attempting to match sand production and each gas rate (with recovery factors)







#### **Tentative Conclusions**

- Demonstrated injection of CO<sub>2</sub> mixture into water filled hydrate reservoir
  - Possibly some injection out-of-zone
- Confirmed mixture / CH<sub>4</sub>-Hydrate Exchange
  - CH4 produced above CH4-hydrate stability pressure
  - Produced CO<sub>2</sub>: N<sub>2</sub> ratios altered from injectant value
  - Injectivity decline consistent w hydrate exchange
- Low BHP are achievable during depressurization
  - Icing not observed @ 250 psi BHP
- Heterogeneous injection / production observed (DTS)
- Temperature record consistent w hydrate association / dissociation during injection / production cycles





## **Going Forward**

- Datasets and ConocoPhillips project reports can be downloaded from the NETL website.
  - http://www.netl.doe.gov/technologies/oilgas/FutureSupply/MethaneHydrates/rdprogram/ANSWell/co2 ch4exchange.html
  - google "ignik sikumi" or see the announcement in the latest
     Fire in the Ice
- Organizing a problem for the Code Comparison Project on the Ignik Sikumi Results
- DOE has previously facilitated creation of Special Volumes in peer-reviewed journals to consolidate reporting





## Backup Slides – do not print

## CPAI - Ignik Sikumi #1 and PBU L-pad





### **Wellbore Construction**





## Flowback - Production Period #1





## **Ternary Hydrate Modeling**

- The phase equilibrium data for a three-component (CH<sub>4</sub>-CO<sub>2</sub>-N<sub>2</sub>) gas hydrate are incorporated using tri-linear interpolation, where in the code can interpolate data from a table containing stability pressure, temperature and composition of the hydrate phase
  - Based on predictions using our statistical mechanics model that has been validated against experimental data for 1-, 2-, and 3-component gas mixtures with low error
  - Two data files are incorporated into

$$T_{eq} = f(P, y_1, y_2)$$
 and  $P_{eq} = f(T, y_1, y_2)$ 

where T is temperature (C), P is pressure (MPa),  $y_1$  is  $CH_4$  composition in gas phase and  $y_2$  is  $CO_2$  composition in gas phase ( $y_{N_2}$  is not independent)

- Two new primary variables for each phase state and two governing equations are added for the binary (CO<sub>2</sub>) and ternary (N<sub>2</sub>) gases
- Gas-Hydrate (GsH) system was added to consider the possibility of converting all available free water to form hydrate with injected gas



Prediction of stability pressure for the  $\mathrm{CH_4\text{-}CO_2}$  mixed hydrate system