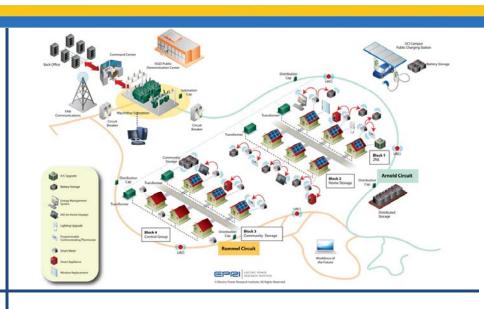
2012 Smart Grid Program Peer Review Meeting

Irvine Smart Grid Demonstration (ISGD)


Ed Kamiab Southern California Edison (SCE)

6/8/2012

ISGD

Objective

SCE's Irvine Smart Grid Demonstration (ISGD) will demonstrate an integrated, scalable Smart Grid system that includes many of the interlocking pieces of an end-to-end Smart Grid system, from the transmission and distribution systems to consumer applications such as smart appliances and plug-in electric vehicles.

Life-cycle Funding (\$K)

FY2010 - FY2015

\$39,612

Technical Scope

- 1. Energy Smart Customer Devices
- 2. Year 2020 Distribution System
- 3. Interoperability & Cyber Security
- 4. Workforce of the Future

ISGD

Needs and Challenges

	RD&D Needs	Technical Challenges
Energy Smart Customer Devices	 Impact of multiple Zero Net Energy technologies (grid and residential load) PEV load management using energy storage and distributed solar 	Identifying device vendorsIntegrating communications solutionsObtaining customer participation
Year 2020 Distribution System	 Use energy storage to manage constrained distribution circuits Advanced Volt/VAR control Self-healing distribution circuits 	 Placement of energy storage system Designing Volt/VAR control architecture Building low latency wireless comms. Lack of standard universal distribution protection settings
Interoperability & Cyber Security	 Facilitate interoperability of project components within a standards-based, secure environment 	 Integrating new and legacy systems Common Cyber Security implementation scope Application of IEC 61850 to field devices
Workforce of the Future	Identify training and educational needs for Smart Grid implementation	• N/A

Technical Approach

Energy Smart Customer Devices

- Deploy aggressive EE measures, smart appliances and on-site solar generation and energy storage systems in a group of single family homes
- Introduce DR programs for appliance-specific loads (e.g., PEV)
- Install 20 PEV charging stations (EVSE)
- Integrate EVSEs with on-site solar generation and energy storage

Year 2020 Distribution System

Distribution Constraint Management

 Deploy a large energy storage system downstream of the distribution voltage circuit breaker; demonstrate circuit load relief using the energy storage

Volt/VAR Control

- Pilot an Advanced Volt/VAR Control (AVVC) algorithm to reduce average voltage and associated energy use
- Demonstrate an Integrated Volt/VAR Control system using real-time load flow

Self-healing Circuits

- Loop two distribution circuits
- Install 4 URCIs to enable circuit segmentation

Deep Situational Awareness

 Use a large energy storage system and other DER to change distribution level load; measure these changes using phasor measurement technology

Technical Approach (continued)

Interoperability & Cyber Security

Secure Energy Network (SENet)

- Develop and demonstrate end-to-end secure communications between SCE back office, field networks, and smart energy devices in the home
- Implement robust cyber security systems and provide a unified architecture for intra- and inter-utility telecommunication

Substation Automation System (SA-3)

Conform to the IEC 61850 global standard

Workforce of the Future

 Identify training, curriculum development, and organizational impacts needed to produce the next generation utility worker

Technical Accomplishments

Energy Smart Customer Devices

2012*

- Completed the homeowner agreement process (*Jan*)
- Completed initial meter installations (Feb)
- Perform data collection and control related communications testing (Oct)
- Install solar car shade (Dec)

Year 2020 Distribution System

Distribution Constraint Management

 Complete site preparation for Large Energy Storage System (Nov)

Advanced Volt/VAR Control

- Finalized algorithm specification (Mar)
- AVVC Finalized architecture (Mar)

Self-healing Distribution Circuits

- Conducted radio field test (Jan)
- Simulate protection logic using final device assembly (Aug)

Deep Situational Awareness

• Select data points to be monitored (Dec)

2013 - 2015

- Install and integrate ZNE devices (May '13)
- Install Battery Energy Storage System (BESS) (Mar '13)
- Integrate and test BESS (May '13)
- Begin M&V activities (Jul '13)
- Complete site installation of Large Energy Storage System (Sep '13)
- Begin AVVC demonstration (Jul '13)
- Begin IVVC demonstration (Jul '13)
- Install field devices (Apr '13)
- Begin data collection (Jun '13)
- Develop complete data acquisition and point monitoring system with decision making criteria (Jun '13)

^{*} Accomplishments during 2010 and 2011 consisted of finishing contract negotiations with the DOE and major project partners.

Technical Accomplishments (continued)

Interoperability & Cyber Security

2012*

Secure Energy Network (SENet)

- Completed Preliminary Design Review (May)
- Complete Critical Design Review (Sep)

Substation Automation System (SA-3)

- Complete HMI-3, SEMT and substation gateway development and testing (Jul)
- Complete system fabrication and factory acceptance testing (Nov)
- Workforce of the Future
- Develop technical training for field personnel (Dec)

2013 - 2015

- Complete acceptance testing (Jun '13)
- Integrate cyber security solution (Jun '13)
- Begin demonstration (Jun '13)
- Demonstrate SA-3 system interoperability (Feb '13)
- Commission SA-3 pilot at MacArthur substation (Jun '13)
- Begin M&V activities (Jul '13)
- Develop curriculum based on power system engineering needs (Sep '15)

^{*} Accomplishments during 2010 and 2011 consisted of finishing contract negotiations with the DOE and major project partners.

Significance and Impact

	Scalability and Adaptability Considerations	Types of Benefits
Energy Smart Customer Devices	 Utility role "behind the meter" Rate design and regulatory environment (e.g., time-of-use rates, decoupling, net energy metering) Requires advanced load control and smart metering capabilities 	Lower energy usePeak load reductionGHG reduction
Year 2020 Distribution System	 Utility-specific technology roadmap (including field communications) May require a Energy, Distribution and Operations Management System capable of looped circuit topology, secure substation gateways, and phasor measurement technology 	 Peak load reduction GHG reduction Voltage reduction Fewer and shorter outages
Interoperability & Cyber Security	 Legacy system design compatibility Optimizing IEC 61850 implementation Requires IEC 61850 based HMI, substation engineering modeling tool and gateway 	Security complianceEnables other benefitsAccelerate standards
Workforce of the Future	 Trade school and Universities with related programs Relevant to utilities with Smart Grid technologies 	Qualified utility personnel

Interactions & Collaborations

Internal Organizations

Advanced Technology

Project management

Major Projects Organization

Field level project management

Substation Engineering

Substation automation design

Tariff Programs & Services

Load management programs

Edison Material Supply / Law

Contract negotiations

Design & Engineering Services

Energy efficiency

Information Technology & Business Integration

Interoperability and cyber security

Customer Communications Organization

Homeowner support

External Organizations

General Electric

SSI, smart appliances, 4G radios, DMS and ALCS

University of California, Irvine

Simulation modeling; host site

University of Southern California - ISI

Stress test cyber security

Space-Time Insights

Advanced visualization

Electric Power Research Institute

Assistance with measurement and verification

DC Systems, Inc

IEC 61850 compatible HMI-3

GNC -

IEC 61850-based substation Engineering Modeling Tool

Subnet Solutions

IEC 6185-based substation gateway

Contact Information

Ardalan E Kamiab
Project Manager
14799 Chestnut Street
Westminster, CA 92683
(714) 379-7914
Ardalan.kamiab@sce.com