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Risk Limiting Dispatch (RLD)

Issues with current dispatch rules

Sub-optimal staggering of markets
Decoupled dispatch
Static reliability criteria for non-stationary imbalance statistics

RLD: Dynamically procure reserves and energy by solving
multi-stage stochastic control problem

Optimizes trade-off between forecast certainty and costs
Takes into account future recourse opportunities
Minimizes total expected reserve energy and capacity costs
Maintains risk of imbalance below a pre-specified level

Study shows reserve cost greatly reduced by:

Additional intra-day energy markets
Incorporating better probabilistic forecasts of renewables

R. Rajagopal et al., RLD for Integrating Renewable Power, IJEPES 2012

R. Rajagopal et al., RLD of wind power, IEEE Proc. of ACC 2012
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Coordination of Load and Variable Supply...

Coordinate distributed renewable power and flexible loads to
reduce distribution system losses and reserve generation

Scenario 1 - Price Differentiated Quality-of-Supply

Decompose variable renewable power into ‘slices’ according to
their variability

Each (random) ‘slice’ is priced separately

Study shows:
1 How to allocate and find equilibrium prices of power with

different variability
2 Comparison of this allocation with that achieved by ‘real-time’

pricing

Recent work: E. Bitar et al., Selling Random Wind, HICSS 2012

Initial idea: Tan et al., Interruptible power service contracts, JEDC 1993

Related work: H.P. Chao, and R.B. Wilson, 1987
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Coordination of Load and Variable Supply...

Coordinate distributed renewable power and flexible loads to
reduce distribution system losses and reserve generation

Scenario 2 - Coordinated Resource Aggregation

Tasks (Deferrable loads) must be served by specified deadline

Energy needs need to be met by renewable or (expensive) grid
power

Study shows large grid energy and capacity reductions can be
achieved through coordinated scheduling of tasks

A. Subramanian et al., Real-time Scheduling of Deferrable Electric Loads, IEEE

Proc. of ACC 2012

A. Subramanian et al., Optimal Power and Reserve Capacity Procurement

Policies with Deferrable Loads, IEEE Proc. of CDC 2012
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Proposed follow-on projects for FY2013

RLD

Extend RLD to include transmission network constraints

Quantify benefits of improved forecasts

Price-Differentiated QoS

Analyze contract mechanisms to support supply-demand
coordination

Focus on costs of communication and computation to
implement contracts

Coordinated Resource Aggregation

Quantify benefits for distribution system and grid from
coordination of distributed renewables and loads

Benefit metrics: distribution and transmission system
utilization; losses; dispatchability of bulk power
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Coordinated Resource Aggregation

Outline

1 Introduction

2 Modeling

3 Scheduling Policies
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Motivation

Increased interest in renewable energy sources

− Environmental concerns
− Energy security / Geopolitical reasons
− Nuclear power safety

Adoption of ambitious renewable energy targets

− CA: 33% energy penetration by 2020
− US: 20% wind penetration by 2030
− Denmark: 50% wind penetration by 2025
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Renewable Integration Costs

Renewable generation is:

− Intermittent
− Uncertain

Serious operational challenges for power grid

Large increases expected in reserve power requirements

Current load following reserve capacity [CA]: 2292 MW
Forecasted capacity required: 4423 MW [Helman ’10]
Other studies indicate similar increases in reserve
requirement [Loutan ’07]

Significant costs associated with integrating renewables
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The Sound-bite

“Flexible loads can absorb
variability in renewable generation”

Examples of deferrable loads:

Electric Vehicles
HVAC Systems
Thermostatically Controlled Loads (TCLs)

Direct load control: Load power profile controlled by central
authority (cluster manager)

Indirect load control: Load power profile controlled by
customers (in response to price signals)
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Goals

Focus on direct load control (DLC)

How to do it?

Algorithms for allocating available power to deferrable
loads

Is it worth it?

Impact of algorithm choice on reserve requirements
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Recent Works

Coordination of flexible loads and renewables

A. Papasiviliou, and S. Oren, Supplying renewable energy to
deferrable loads: Algorithms and economic analysis, PESGM
2010

M. Ilic, L. Xie, and J.Y. Joo, Efficient coordination of wind
power and price-responsive demand, IEEE TPS, 2011

Electric vehicle charging protocols

S. Chen, T. He, and L. Tong, Optimal Deadline Scheduling
with Commitment, Allerton, 2011

L. Gan, U. Topku, and S. Low, Stochastic Distributed
Protocol for Electric Vehicle Charging with Discrete Charging
Rate, PESGM 2012

M. Galus, R. la Fauci, and G. Andersson, Investigating PHEV
wind balancing capabilities using heuristics and model
predictive control, PESGM 2010
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Tasks

Model deferrable loads as tasks

Tasks are pre-emptive: can interrupt and resume servicing

Task Ti parametrized by ([ai , di ] ,Ei ,mi )

− ai : arrival time (beginning of service interval)
− di : task deadline (end of service interval)
− Ei : energy requirement over service interval
− mi : maximum power transfer rate

Deferrable load announces these parameters to cluster
manager upon arrival

Admissible power profiles p(t) for task Ti must satisfy:∫ di

ai

p(t)dt = Ei , 0 ≤ p(t) ≤ mi
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Task properties

Energy state of task Ti at time t

(Remaining energy requirement for task Ti at time t)

ei (t) = Ei −
∫ t

ai

p(τ)dτ

Task Ti is active at time t:

ai ≤ t ≤ di , and ei (t) > 0

At : Set of all active tasks at time t

Current'(me' Time'
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Available Generation

Available generation p(t) split into:

Renewables: w(t)

− Free but uncertain

Grid: g(t)

− Load-following reserves, etc...
− Costly but certain (assuming no transmission outages)

Distribu(on+
Network+

Power+Grid+

Renewables+

Deferrable+
Loads+

Tradi(onal+
Loads+

w(t)

g(t)

Distribu(on+Level+
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Distribution Network

A B C

...

L

Assume radial distribution networks

Distribution network limits can be
modeled as linear constraints

For sample network shown, limits on line
L can be expressed as:

pA(t) + pB(t) + pC (t) ≤ L̄, ∀t

Ignore such constraints for now
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Cost Metric

Cost of generation is:∫ T

0
|g(t)|dt + αmax

t
|g(t)|

First term penalizes total grid generation (Grid Energy)

Second term penalizes maximum instantaneous grid
generation dispatched (Grid Capacity)

Prevents sudden spikes in amount of reserve dispatched
Reduces need for standby generation
Reduces capacity requirements at distribution substation
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Information State

T = {Ti}Mi=1: Collection of M tasks.

g(t): Available power (generation) profile to serve T
It : Information state at time t:

− Task parameters (Ei ,mi , [ai , di ]) for all active tasks
− Energy states ei (t) for all active tasks
− Past values of available power profile: g(τ), τ ≤ t
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Task Scheduling Policy

Task scheduling policy σ:

Algorithm that allocates available power profile g(t) to tasks

For collection of tasks T,

σ(g , t) = (p1(t), p2(t), . . . , pm(t))

pi (t): power allocated to task i at time t
M∑
i=1

pi (t) ≤ g(t)

σ is causal if allocations at time t depend only on information
state It
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Scheduling Policy

g(t) is feasible if there exists some [possibly non-causal]
scheduling policy σ that completes all tasks:

ei (di ) = 0 for all tasks Ti

σ is optimal if allocations under σ complete all tasks for any
feasible power profile g(t)

Ideally, we want causal, optimal policies

Theorem

There exist no causal, optimal policies!
Proof: Counterexample
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Earliest Deadline First (EDF)

Available generation assigned to tasks with most imminent
deadlines

Proven optimal for single processor time allocation [Liu (’73)],
[Dertouzos (’74)]

Single Processor Time Allocation versus resource scheduling:

Resource Scheduling Processor Time Allocation

Available generation is variable. Processor capacity is fixed.
Rate constraints limit power delivery. No rate constraints.
Multiple tasks served concurrently. Single task served at a time.

Can be shown to be optimal for resource scheduling with no
rate constraints.
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Least Laxity First (LLF)

Available generation assigned to active tasks with least
scheduling flexibility (laxity)

Laxity: φi (t) =
(di − t) − ei (t)/mi

[time remaining] − [time required]

where

t : current time

di : deadline for task Ti

ei (t) : remaining energy required to satisfy task Ti

mi : rate constraint for task Ti

Laxity is negative ⇒ task can not be satisfied

Useful heuristic for allocating grid generation [‘Lax0’]:

Allocate grid generation to tasks with laxities close to 0.
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Receding Horizon Control (RHC)

Can obtain scheduling policies by solving successive
optimization problems

Basic Idea:

At time t, compute allocations for all active tasks over some
time horizon
Apply allocation at time t
Repeat process at next time-step t + ∆t with updated
information

Can incorporate generation forecasts and updated task
information

Use of RHC is not new to power systems

Our contribution: Cost function
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RHC Problem Formulation

Variables:

N : # of ∆t time-steps in horizon.

M : # of active tasks

W : Wij is power delivered from renewables to task i at time t + j∆t

G : Gij is power delivered from grid to task i at time t + j∆t

ŵ : renewable generation forecast over time horizon
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RHC Constraints

Renewable generation forecasts:

W T1 ≤ ŵ = [ŵ1ŵ2 . . . ŵN ]T

Task requirements - Energy:

(W + G ) 1 = E = [E1E2 . . .EM ]T

Task requirements - Power:

∀k ,Wi ,k + Gi ,k

{
= 0 ∀i : t + k∆t > di
∈ [0,mi∆t] ∀i : t + k∆t ≤ di
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RHC Cost Function

We propose the following cost function:

α1‖1TG‖1 + α2‖1TG‖∞ +
∑
i∈At

N∑
k=1

(N − φi (k))2

where:

φi (k) = di − (t + k∆t)− ei (k)
mi

ei (k) = Ei −
∑k

k ′=1Wi ,k ′ + Gi ,k ′

First term penalizes grid energy

Second term penalized grid capacity

Third term incentivizes earlier allocations of renewable
generation
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Test Case Description

Quantify reduction in reserve energy costs by scheduling flexible
loads

Wind energy serves 100 electric vehicles over 12 hours

Allocation decisions made every 5 minutes

Task parameters chosen randomly based on EV charging specs

Constant maximum charging rate for all tasks

Wind data from Bonneville Power Administration

Generation forecasts for RHC created by adding Gaussian
noise to wind power profiles

Variance of added noise increases with forecast horizon
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Algorithms compared

1 No coordinated scheduling

2 EDF for scheduling renewables, ‘Lax0’ for grid generation

3 LLF for scheduling renewables, ‘Lax0’ for grid generation

4 RHC for scheduling renewables and grid generation
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No coordination and EDF
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Under EDF, load profile is closer to generation profile

Value of load scheduling immediately apparent
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LLF and RHC

LLF
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Reserve procurement occurs towards the end of intervals

Under LLF, laxities for all tasks are equal when reserves are
called: explains ‘spike’ when reserves first called
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Grid Energy Requirement

Average percentage increases in following metrics over 100
test cases.

EDF LLF RHC

Renewable energy used 24.87 26.94 27.16

Grid energy required -55.78 -62.79 -63.02

Grid capacity required -12.81 70.90 -66.99

Coordinated resource scheduling under any policy reduces
reserve energy dispatched by at least 50%

The reserve capacity requirement is less for both EDF and
RHC
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Grid Capacity Requirement

Average percentage increases in following metrics over 100
test cases.

EDF LLF RHC

Renewable energy used 24.87 26.94 27.16

Grid energy required -55.78 -62.79 -63.02

Grid capacity required -12.81 70.90 -66.99

Coordinated resource scheduling under any policy reduces
reserve energy dispatched by at least 50%

The reserve capacity requirement is less for both EDF and
RHC



o

Summary of Research Introduction Modeling Scheduling Policies Simulations Conclusion

Conclusions and Future Work (FY2013)

Conclusions

Proposed RHC approach aimed at reduced generation costs

Compared performance of 3 load scheduling algorithms

Realized upto 60% cost reductions in simulations using RHC

Future Work

Quantify benefits for grid from coordination of distributed
renewables and loads

Distribution and transmission system usage
Bulk power dispatches

Pricing mechanisms to induce consumer participation in
deferrable load aggregation schemes
[E. Bitar and S.Low, Pricing of Deferrable Electric Power Service, IEEE

Proc. of CDC 2012]
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