

Exceptional service

in the

national

interest

Nitrogen/Oxygen Battery

A Transformational Architecture for Large Scale Energy Storage

US DOE Energy Storage Systems Research Program Peer Review, Washington, DC Sept. 26-28, 2012

Frank Delnick, David Ingersoll, Karen Waldrip, Peter Feibelman

Power Sources Technology Group Sandia National Laboratories Albuquerque, NM

SAND2012-7881P

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

N₂/O₂ Battery Project Overview

- Air/Air battery.
- N₂ electrochemistry enables the redefinition of a gas (diffusion) electrode and the three phase interface.
- Operated as redox flow battery.
- Provide a very high energy density, very low cost, environmentally benign electrochemical platform for load leveling and for grid-integrated storage of energy generated by wind, solar and other sustainable but intermittent sources.
- Project requires a reversible N₂ electrode.


Anode requires the reversible electrochemical reduction/oxidation of N₂.

Sandia National Laboratories

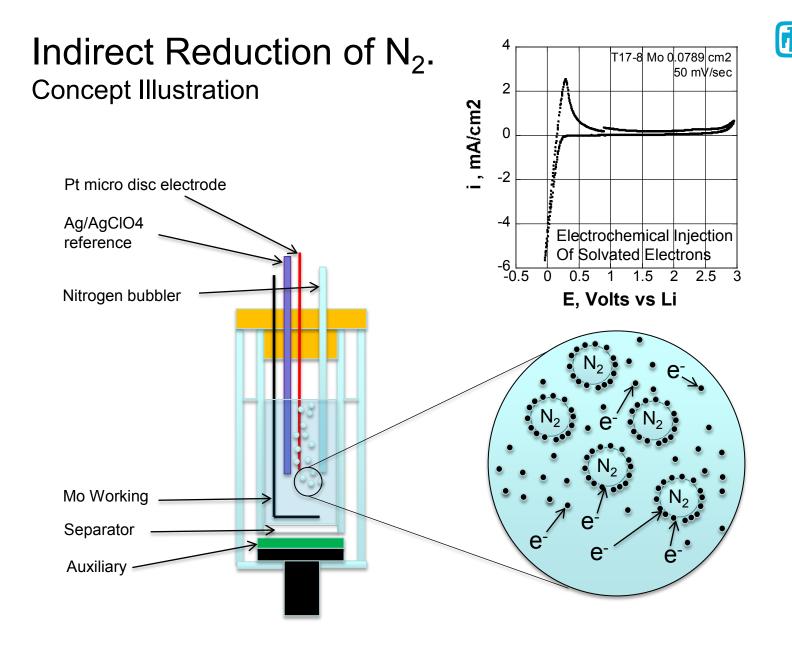
Three approaches to achieve N₂ reduction (nitrogen fixation).

1) Direct reversible reduction/oxidation of N_2 to $2N^{-3}$ in molten salt at + 400°C.

2) Mediated and catalyzed reduction of N_2 to NH_3 and subsequent utilization of the NH_3 as the anode in an NH_3 /air fuel cell.

3) Indirect reversible reduction/oxidation of N_2 to $2N^{-3}$ at ambient temperature.

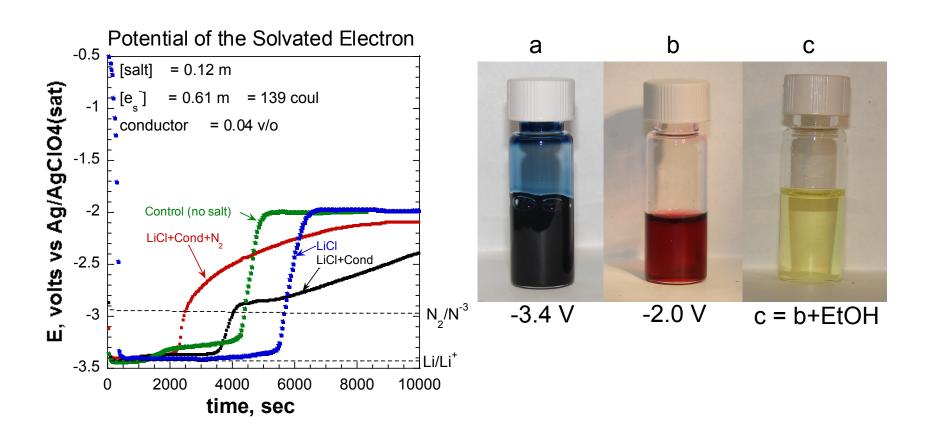
Indirect Reduction of N₂ at Ambient Temperature.


At ambient temperature N_2 is not directly reduced on any electrode in any electrolyte.

Some researchers have achieved Li mediated reduction of N_2 by the exposure of N_2 to electrodeposited Li metal.

Our approach: Reduce N_2 in a solution of solvated electrons $[e_s]$.

$$N_2 + 6e_s^- \xrightarrow{Li^+} 2Li_3N$$


Reduction does not occur at the electrode surface. Advantage: Gas diffusion electrode not required.

Sandia National Laboratories

Stabilization of the Solvated Electron $[e_s^-]$ at High Negative Potential Enables the Reduction of N_2

Summary/Conclusions

- 1) Demonstrated reversible redox for N_2/N^{-3} in LiCl-KCl at 450 C Developed procedure for large scale purification of LiCl-KCl eutectic.
- Density Functional Theory (DFT) has been used to analyze the path to NH₃ synthesis on the Arashiba *et. al.* catalyst.
 Paper submitted for publication (Peter Feibelman, <u>J. Phys. Chem</u>.).
- 3) Developed an electrolyte which stabilizes solvated electrons for the subsequent indirect reduction of N_2 .

Future Tasks

- Couple N₂/N⁻³ and O₂/O₂⁻ reactions in LiCl-KCl electrolytes to produce N₂/O₂ battery prototypes.
- Continue stabilization of solvated electrons at high negative. potential and introduce catalysts to enhance N₂ reduction.
- Identify procedures for chemical analysis of N₂ reduction products.
- Identify appropriate cation to enable the oxidation of N⁻³.

Contact Information

PI Frank M. Delnick Advance Power Sources Dept., SNL Phys. Chem. Of Materials Group, ORNL <u>fmdelni@sandia.gov</u>, delnickfm@ornl.gov

Acknowledgements

Dr. Imre Gyuk Office of Electricity and Energy Delivery US Department of Energy

Dr. Tom Wunsch Advanced Power Sources Dept., Sandia National Labs (SNL)

Synthesis and characterization of Mo catalysts and ionic liquids. Dr. Travis Anderson Advanced Power Sources Dept., SNL Harry Pratt Advanced Power Sources Dept., SNL

Discussions on electrochemical stability of electrolytes and solvated electrons.

Dr. Chengdu LiangORNLDr. Sheng DaiORNLDr. Loic BaggettoORNL