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45OL operational life test conducted at 45°C 

75OL operational life test conducted at 75°C 

6590 life test conducted at 65°C and 90% relative humidity 

7575 life test conducted at 75°C and 75% relative humidity 

α  decay rate constant in the IES TM-28-14 model 

β reciprocal of the time when the efficiency increases by 0.63γ 

γ maximum asymptotic increase relative to the starting value 

Δuʹ  change in the u' coordinate of chromaticity  

Δuʹvʹ chromaticity shift or the total change in chromaticity coordinates 

Δvʹ change in the vʹ coordinate of chromaticity  

Φ(t)  ratio of the luminous flux at any time  

Φ0 initial luminous flux 

λc centroid wavelength 

°C  degree Celsius 

ac alternating current 

ANSI American National Standards Institute 

AST accelerated stress test 

B initialization constant or pre-exponential constant 

CCT correlated color temperature 

CIE International Commission on Illumination (Commission Internationale 
de l'Éclairage) 

CSM-3 chromaticity shift mode-3 

D2W dim-to-warm 

dc direct current 

DOE U.S. Department of Energy 

DUT device under test 

EERE Office of Energy Efficiency and Renewable Energy 

EML equivalent melanopic lux 
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hr, hrs hour, hours 

IC integrated circuit 

IES Illuminating Engineering Society 

If forward current 

K Kelvin 

l design-dependent factor for the lens as determined from a least squares fit of the 
simulation results 

L70 time required for the luminous flux to decay to 70% of the initial value 

L(t)  Change in the normalized lens transmittance [%T(t) / %T(t = 0)] at time t 

LAE lighting application efficiency 

LED light-emitting diode 

LE(t)  Luminaire efficiency at time t 

LE(t = 0)  initial luminaire efficiency 

LFM luminous flux maintenance 

lm lumen 

lm/W lumens per watt 

mA milliampere  

MESA Mission Execution and Strategic Analysis 

MP-LED mid-power LED 

MS modified spectrum, modified spectra 

NETL National Energy Technology Laboratory 

NIST National Institute of Standards and Technology 

nm nanometer 

PCB printed circuit board 

pc-LED phosphor-converted LED 

R design-dependent factor for the reflector as determined from a least squares fit of the 
simulation results  

Rf fidelity index in ANSI/IES TM-30-18 

Rg gamut index in ANSI/IES TM-30-18 

R(t) change in the normalized reflector reflectance [%R(t) / %R(t = 0)] at time t 
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RTOL room temperature operational life 

SPD spectral power distribution 

SSL solid-state lighting 

t time 

TLA temporal light artifacts 

TM technical memorandum 

u'  chromaticity coordinate in the CIE 1976 color space 

UV ultraviolet 

UV-C ultraviolet Band C 

UV-Vis-NIR ultraviolet-visible-near infrared 

V volt 

v' chromaticity coordinate in the CIE 1976 color space 

Vf forward voltage 

W watt 

W/nm watts per nanometer 
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Executive Summary 
The lighting application efficiency (LAE) framework proposed by the U.S. Department of Energy is a new 
frontier in thinking about the enormous potential of solid-state lighting (SSL) technologies. The LAE 
framework describes a method to evaluate the efficiency of light delivered to the task and consists of four 
major elements: light source efficiency, optical delivery efficiency, spectral efficiency, and intensity 
effectiveness. These four elements represent the targeted areas of improvement for research and development 
to increase energy savings in SSL devices while simultaneously providing new capabilities to the lighting 
system. This report builds on an initial report (Round 1)[1] that sampled SSL products with modified spectral 
output. The findings presented in the initial report showed that the method of spectral modification 
significantly impacted initial light source, optical delivery, and spectral efficiencies. This updated report will 
focus on the long-term changes in light source, optical delivery, and spectral efficiencies that occur during 
aging of SSL devices.  

The products studied and presented in this report have different form factors and achieve enhanced optical 
performance by different methods, but they all broadly provide modified spectral outputs using mid-power 
light-emitting diodes (MP-LEDs). The specific devices under test (DUTs) examined in this report have been 
broadly categorized as those using violet-pumped light-emitting diodes (LEDs) and those that are switchable 
between preset correlated color temperature (CCT) values. The DUTs are four different products that provide 
modified spectra (MS). Product MS-2 uses a violet LED pump, along with green and red phosphor emissions, 
to produce white light that omits blue emissions. Product MS-2 is a standard 60-watt (W) replacement A19 
lamp with 30 MP-LEDs, and its modified spectrum (i.e., blue-free lighting spectrum) is intended to reduce 
melanopic lux and promote biological benefits of blue-free light in the evening. Product MS-3 also uses a 
violet LED pump, along with blue, green, and red phosphors, to produce a spectrum that most naturally 
imitates sunlight. Product MS-3 is an LED module consisting of 21 MP-LEDs. Products MS-4 and MS-5 are 
both 6-inch downlights that use a manual switching mechanism so that users can select application-specific 
CCTs before installation. Products MS-4 and MS-5 both contain two blue LED pump primaries (warm white 
and cool white) for spectral tuning. Product MS-4 contains 12 MP-LEDs for each LED primary, and Product 
MS-5 contains 10 MP-LEDs for each LED primary. Product MS-1, which was discussed previously [1], is not 
covered in this report.  

This report summarizes the overall findings from up to 14,000 hours (hrs) of accelerated stress test (AST) on 
the violet-pump LED DUTs (i.e., Products MS-2 and MS-3) and up to 12,000 hrs of AST on the downlight 
DUTs (i.e., Products MS-4 and MS-5). An AST regiment was developed and discussed in the initial report for 
the DUTs. These same AST procedures were used in this current study and included a room temperature 
operational life (RTOL) test, an operational life test conducted at 45 degrees Celsius (°C; 45OL), an 
operational life test conducted at 75°C (75OL), a wet high-temperature operational life test performed at 65°C 
and 90% relative humidity (6590), and a wet high-temperature operational life test performed at 75°C and 75% 
relative humidity (7575). The AST procedures used for Product MS-2 were RTOL, 45OL, and 6590. The AST 
procedures used for Products MS-3, MS-4, and MS-5 were RTOL, 75OL, and 7575. During the ASTs 
described herein, separate populations of each product (three DUTs in each population for Products MS-2, 
MS-4, and MS-5; four DUTs in each population for Product MS-3) were subjected to power cycling of 1 hour 
(hr) on and 1 hr off. Photometric measurements were taken after every 1,000 hrs of AST exposure.  

The key findings from this study include the following: 

• There is a strong time dependence to source efficiency, optical delivery efficiency, and spectral 
efficiency that changes significantly with product design and use conditions. Managing these time-
dependent aging factors requires knowledge of the limitations of materials used in the lighting system. 
Accelerated stress testing can help provide that information in a reasonable time frame.  
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• High temperature tends to have the greatest impact on source efficiency, and some LED packages 
contain phosphors and other components that are more sensitivity to temperature than other packages. 
Design factors such as forward current and heat management impact the temperature stability of the 
LEDs in fielded products. 

• Temperature-induced aging of lenses and other optical surfaces had a larger impact of luminous flux 
maintenance and chromaticity maintenance than LED degradation in the three products (i.e., MS-2, 
MS-4, and MS-5) with secondary optics. This finding demonstrates the importance of using heat-
resistant optical materials in some environments. 

• Humidity impacts source efficiency, optical deliver efficiency, and spectral efficiency. High 
temperature and high humidity caused significant chromaticity shifts and lumen depreciation that can 
impact product life. 

• The luminous efficacy of the violet-pump LEDs examined during this study was generally lower than 
that excepted from typical blue-pump phosphor-converted LEDs (pcLEDs). Although the violet LEDs 
were found to be stable in the AST conditions, the stability of the phosphors used in the violet-pump 
LEDs varied greatly, resulting in significant changes in luminous flux and chromaticity in some 
conditions.  

• Under specific conditions (e.g., switchable downlights in RTOL), source efficiency can actually 
increase during the first 10,000 hrs or so of operation. This finding suggests that long lifetime can be 
achieve in commercial products when the use conditions match the product design. 
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 Introduction 
Solid-state lighting (SSL) technologies using light-emitting diode (LED) light sources continue to evolve and 
provide additional benefits over more traditional light sources. Although SSL technologies offer a significant 
advantage in device efficacy over older lighting technologies, SSL devices also provide a significant step 
forward in the ease of achieving spectral modification and spectral control. Spectral modification has emerged 
as an important capability of a new generation of SSL technologies and offer the possibility of tailoring light 
sources to meet both the visual and non-visual needs of human occupants [2]. Once understood, the ability of 
SSL devices to provide spectral modification may open a new frontier in energy-efficient, task optimized, 
lighting technologies [3].  

RTI International has previously reported on the initial performance benchmarks of a group of SSL products 
with modified spectra [1], including those that achieve spectral modifications by: 

• Filtering light emissions to achieve a targeted emission spectra 

• Using violet-pump LEDs and omitting blue emitters from the phosphor mixture 

• Using violet-pump LEDs and adding red, green, and blue emitters to the phosphor mixture 

• Using multiple blue LED pump primaries and a manual switching mechanism to modify light color. 

The initial report [1] also discussed the role of spectral efficiency as part of the overall lighting application 
efficiency (LAE) that can be used to characterize the efficient delivery of light from the light source to the 
lighted task [4]. The framework for LAE proposed by the U.S. Department of Energy (DOE) consists of four 
major efficiency elements: light source efficiency, optical delivery efficiency, spectral efficiency, and intensity 
effectiveness. The initial report examined the first three elements of LAE and demonstrated that not only are 
these initial values important, but the LAE performance of an SSL device changes over time. 

It is well known that that light source efficiency of LEDs can degrade over time through various processes, 
thereby causing luminous flux decay and chromaticity shift [5]. Likewise, optical delivery efficiency can 
change over time as the materials used for lenses and reflector degrade and affect luminaire efficiency [6, 7]. 
The net result of such optical changes in SSL devices is a change in spectral emission properties of the light 
source over time, which can impact spectral efficiency. In addition, degradation in LEDs and power/control 
electronics can also impact spectral efficiency as devices age [7, 8]. 

To provide additional understanding of the effects of SSL device aging on long-term performance as evaluated 
through the LAE framework, this report builds on earlier findings [1] to provide measurements of modified-
spectrum (MS) SSL devices that have been subjected to up to 14,000 hours (hrs) of accelerated stress tests 
(ASTs). This report focused on two broad classes of MS devices, those utilizing violet LEDs as optical pumps 
and those with blue LED optical pumps that are switchable between preset correlated color temperature (CCT) 
values. Products using a filtering optic are not included in this report but were discussed previously [1]. The 
results presented here show that MS devices continue to degrade over time and that temporal-dependent 
degradation has an impact on LAE. The findings presented in this report help to consolidate thinking regarding 
the temporal nature of time-based LAE degradation and provide insights on how to minimize these effects in 
future lighting designs.  
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 Experimental Methods and Analytics  
This report builds on our initial report that detailed changes in efficiency and optical performance of SSL 
devices with modified spectral output; many of the same AST protocols and measurement methods that were 
used during the study and discussed in this report were described previously [1]. This report focuses on the 
recent experimental findings and long-term trends of the devices under test (DUTs) with modified spectral 
content.  

 Samples 
In this report, the DUTs have been categorized into two main groups: those that use phosphor-converted LEDs 
(pc-LEDs) with a violet LED pump to achieve a targeted, fixed output spectrum (Products MS-2 and MS-3) 
and those with two different pc-LED primaries (blue LED pumps) that have a lighting spectrum that can be 
manually switched between two or more possibilities (Products MS-4 and MS-5). These groups will be 
referred to as violet-pump LED products and switchable downlights, respectively, for the remainder of this 
report. Figure 2-1 shows the violet-pump LED products, and Figure 2-2 shows the switchable downlights.  

 
Figure 2-1: The violet-pump LEDs products: (A) MS-2 showing its LED module and electrical driver 

and (B) MS-3 light engine. 

 
Figure 2-2: Switchable downlight products (A) MS-4 and (B) MS-5. The products are disassembled here to show 

their electrical drivers, housings and optics (i.e., optical lenses and reflectors), and LED modules.  
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The SSL products examined in this study were first characterized in our initial report [1]. For convenience, 
initial electrical and optical properties are provided in Appendix Table 1 and Appendix Table 2 of the 
Appendix. The American National Standards Institute (ANSI)/Illuminating Engineering Society (IES) 
technical memorandum (TM)-30-18 analysis of these products when new was presented in our initial report 
[1]. Additional details about each product are provided in our initial report, and a brief summary is provided in 
this report.  

2.1.1 Violet-Pump Light-Emitting Diode Products 
Product MS-2 is a 60-watt (W) replacement A19 lamp with an LED module that consists of 30 mid-power 
light-emitting diodes (MP-LEDs; 3030 package size) mounted as a 10 serial string configuration on a metal-
core printed circuit board (PCB; Figure 2-1A). Each LED package contains two LED emitters connected in 
series. The pc-LEDs in Product MS-2 use a violet-pump LED as the excitation source, and the phosphor 
mixture contains green and red emitters. The absence of blue emissions from Product MS-2 is intended to 
reduce melanopic lux, and the emitted spectrum is specifically designed to minimize melanopsin absorption by 
the human retina [9]. As discussed in our initial report, the absence of blue emissions also distorted the color 
rendering performance of the product [1]. The driver used with Product MS-2 is encapsulated with a silicone 
thermal compound and housed in the middle of the heat sink. 

Product MS-3 is an LED module that contains 21 MP-LEDs (3030 package size). The MP-LEDs are arranged 
as three parallel strings of seven serially connected LEDs and a resistor. Product MS-3 uses a violet-pump 
LED and has phosphor emissions with major peaks in the blue, green, and red spectral regions to mimic 
natural sunlight (with a CCT value of 5,000 K). This produces much better color rendering properties than 
violet-pump LED Product MS-2 as shown in Appendix Table 1. For Product MS-3, two LED modules (i.e., 
DUTs) were mounted on the same heat sink and operated in series as shown in Figure 2-1B to make a light 
engine. During AST, power was supplied to the light engine by one LED driver that was placed outside the test 
chamber, delivering 25 volts (V) and 450 milliampere (mA) to the light engine. Because Product MS-3 was 
operated by a remote driver that was only used during testing, driver efficiency numbers will change with 
product configuration; therefore, the numbers are not reported here. 

Another benefit of violet-pumped LEDs is that they have some capability for disinfecting exposed surfaces and 
air, albeit at much lower rates than ultraviolet Band C (UV-C) LEDs [10]. The disinfection potential of these 
violet-pumped sources was not examined in this study. 

2.1.2 Switchable Downlight Products 
Products MS-4 (Figure 2-2A) and MS-5 (Figure 2-2B) are 6-inch downlights with an integrated driver 
contained in an aluminum housing. Both products contain two sets LED primaries: one with a warm white 
CCT value and the other with a cool white CCT value. Both products have an LED driver that contains a 
resistor bank that is manually set during installation with an exterior switch. The switch setting determines the 
current distribution between the LED primaries and sets the color of the light emissions. Up to five different 
CCT values (i.e., 2,700 K; 3,000 K; 3,500 K; 4,000 K; and 5,000 K) can be accessed by changing the switch 
setting. For Product MS-4, the total current applied to the device was approximately 215 mA. The current 
distribution corresponding to the different CCT settings in presented in Table 2-1. 

Table 2-1: Current distribution in the LED primaries at the different CCT setting of Product MS-4. 

CCT Setting Warm White Primary Current Cool White Primary Current 
2,700 K 211 mA 4 mA 
3,000 K 168 mA 40 mA 
3,500 K 115 mA 88 mA 
4,000 K 66 mA 137 mA 
5,000 K 3 mA 205 mA 
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For Product MS-5, the total current applied to the LEDs was 169 mA, and all of the current was applied to 
only one LED primary at the 2,700 K and 5,000 K settings. At the intermediate CCT settings, the current was 
distributed between the two LED primaries.  

During AST, separate populations of lamps were used to represent the 2,700 K and 5,000 K settings, and the 
lamps were always set to only one CCT value during AST. For Products MS-4 and MS-5, the use of two 
different LED primaries to achieve the different CCT settings created a situation in which one LED primary 
was the dominant contributor and the other LED primary was a minor contributor to the light spectrum. The 
light emissions from Products MS-4 and MS-5 provided good color rendering as shown in Appendix Table 1. 
Full spectral power distributions (SPDs) and TM-30-18 analyses for Products MS-4 and MS-5 are provided in 
our initial report [1]. 

For Product MS-4, there are 12 serially connected MP-LEDs (2535 package size) for each pc-LED primary, 
and the pc-LEDs are mounted on a metal-core PCB with a single LED in each package. For Product MS-5, 
each pc-LED primary has 10 serially connected MP-LEDs (3030 package size), with two LEDs per package, 
mounted on a metal-core PCB. The maximum power delivered to each pc-LED primary is provided in 
Appendix Table 2.  

 Stress Testing Methods 
For this study, Products MS-2, MS-4, and MS-5 were purchased either from online sources or local big box 
retailers and used as received. The DUTs of Product MS-2 were mounted in porcelain lamp holders and 
operated from alternating current (ac) mains in an upright configuration. In contrast, Products MS-4 and MS-5 
were connected directly to ac mains, and operation was varied between upward facing and downward facing 
configurations. The LED packages of Product MS-3 were acquired from the manufacturer and built into light 
engines at RTI International’s facility in Research Triangle Park, NC. The LED packages of Product MS-3 are 
shown in Figure 2-1B and described in Section 2.1.1 of this report. The LED modules were connected in 
series to a driver that was placed outside the test chamber.  

The samples of Products MS-2, MS-4, and MS-5 were separated into three populations, each consisting of 
three DUTs. For the light engine (Product MS-3), three test populations consisting of two light engines 
containing two LED modules each were tested. The test populations of Product MS-2 were tested in three 
possible conditions: room temperature operational life (RTOL), an operational life test at an elevated ambient 
temperature of 45 degrees Celsius (°C; 45OL), and an elevated ambient temperature of 65°C and relative 
humidity of 90% (6590). For Products MS-3, MS-4, and MS-5, each population was tested in one of three 
possible conditions: RTOL, an operational life test at an elevated ambient temperature of 75°C (75OL), or an 
elevated ambient temperature of 75°C and relative humidity of 75% (7575). Either a temperature oven or a 
temperature-humidity environmental chamber was used for these tests. Humidity was not explicitly controlled 
during RTOL, 45OL, or 75OL, and the ambient humidity was determined by the air handling system of the 
building. All DUTs were power cycled for 1 hour (hr) on and 1 hr off. Testing protocols and test durations that 
were used in our earlier report and also used in this report are provided in Table 2-2. No new data were added 
in this report for ASTs during which all the DUTs were reported as failures in our earlier report [1]. 

Table 2-2. Comparison of the testing procedures and test duration reported in 
previous studies and in this report. 

Product AST DOE Report 1[2] This Report 

MS-1 
RTOL 8,000 hrs Not applicable 
45OL 8,000 hrs Not applicable 
6590 6,000 hrs Not applicable 

MS-2 RTOL 8,000 hrs 14,000 hrs 
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45OL 8,000 hrs 14,000 hrs 
6590 6,000 hrs 6,000 hrs 

MS-3 
RTOL 5,000 hrs 10,000 hrs 
75OL 5,000 hrs 10,000 hrs 
7575 4,000 hrs 7,000 hrs 

MS-4 
RTOL 7,000 hrs 12,000 hrs 
75OL 7,000 hrs 12,000 hrs 
7575 4,000 hrs 4,000 hrs 

MS-5 
RTOL 6,000 hrs 11,000 hrs 
75OL 6,000 hrs 11,000 hrs 
7575 5,000 hrs 4,000 hrs 

 

The lamp manufacturers of Products MS-2, MS-4, and MS-5 rated their products as appropriate for use in 
damp locations. The maximum temperature reached by the DUTs remained well within manufacturer 
specifications (Product MS-2) or within expectations for the product type when a maximum temperature was 
not specified by the manufacturer (Products MS-4 and MS-5 reached maximum temperatures of 86°C and 
80°C, respectively). During our testing, the temperature of the LED light engine peaked at 87°C, which is 
slightly above the manufacturer’s specification of ambient temperature of 85°C. The forward current (If) stayed 
within manufacturer’s specifications (If < 150 mA) at RTOL test conditions, but If was slightly above the 
derated manufacturer’s specifications for ambient temperatures during 75OL and 7575.  

 Measurement Methods 
2.3.1 Luminous Flux 
The SPD, luminous flux, and chromaticity measurements of all samples were measured at room temperature in 
a calibrated 65-inch integrating sphere. Products MS-2 and MS-3 were mounted in the center of the sphere (4π 
geometry), and Products MS-4 and MS-5 were mounted on the exterior of the sphere facing inward (2π 
geometry).* Regular calibrations of the integrating sphere were performed by using a calibrated spectral flux 
standard (for 4π configuration) or a forward flux standard (for 2π configuration) that was traceable to standards 
from the National Institute of Standards and Technology (NIST). Background corrections were applied prior to 
calibration. Self-absorption corrections were made for all samples by using an auxiliary lamp mounted inside 
the sphere, which is in accordance with procedures in the joint ANSI and IES standard ANSI/IES LM-79-19 
[11]. When in the 4π configuration, the center post was used to supply line ac to Product MS-2 and direct 
current (dc) from an external driver to Product MS-3 during photometric testing. Products MS-4 and MS-5 
were mounted on an exterior port on the integrating sphere and powered by line ac.  

2.3.2 Lens Transmittance 
Diffuse transmittance of flat lenses was measured with a Cary 5000 ultraviolet-visible-near infrared (UV-Vis-
NIR) spectrometer. The spectrometer was equipped with a monochromator and a diffuse transmittance and 
reflectance accessory. The lens was mounted on the incident port of the diffuse transmittance and reflectance 
accessory, and the transmittance spectrum was recorded. The instrument was calibrated for 100% 
transmittance by using no sample on the incident port and for 0% transmittance by blocking the 
monochromatic lighting from reaching the incident port.   

 

* Because Products MS-4 and MS-5 were measured in the 2π configuration, they were placed in an open port on the exterior 
surface of the sphere and the surface area of the sphere accounted for by the port opening was only 0.2% of the total surface area 
of the sphere. 
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 Results and Discussion 
 Violet-Pump Light-Emitting Diode Products 

This section of the report provides updated data for Products MS-2 and MS-3. All data shown are the average 
of the population of DUTs at each AST environment (three DUTs for Product MS-2 and four DUTs for 
Product MS-3). Over the course of testing, five abrupt failures were observed for Product MS-2 and eight 
parametric failures were observed for Product MS-3. In this report, “parametric failures” are defined as 
samples that exhibited a luminous flux maintenance (LFM) value below 0.70 or exhibited a chromaticity shift 
of Δu'v' ≥ 0.007. The test population (and data averaging) excluded lamps that failed abruptly or parametrically 
by the LFM parametric failure criteria from the failure time forward but did not exclude lamps that failed 
parametrically because of excess chromaticity shift, unless otherwise noted. 

3.1.1 Luminous Flux Maintenance for Products MS-2 and MS-3 
After each 1,000 hrs of exposure to the AST environments, the LFM values for Products MS-2 and MS-3 were 
measured according to IES LM-84-14 [12] (Figure 3-1 and Figure 3-2) and analyzed by using IES TM-28-14 
[13]. IES TM-28-14 is the established method for modeling and projecting the long-term LFM of LED lamps 
and luminaires [13]. TM-28-14 uses a single-exponential decay to describe the change in the luminous flux at 
any time (Φ(t)) compared with the initial luminous flux (Φ0) and can be expressed as shown in Equation 3-1 
as follows: 

 Φ(t) / Φ0 = Be-αt (Eq. 3-1) 

Where 
B = Pre-exponential factor 
α = Decay rate constant. 
t = time  

Comparisons of the α values of data derived from the measurements described in this report provide some 
relative measures of the light source decay. Higher values of α indicate more rapid LFM decay, whereas lower 
values of α indicate slower LFM decay. 

For Product MS-2, the average population of RTOL DUTs experienced a slightly lower LFM compared with 
the 45OL test population. This result may be attributed to the intermittent failure of two RTOL DUTs. 
Between 9,000 and 10,000 hrs of RTOL exposure, two DUTs (613 and 614) started experiencing intermittent 
failure. One of these two intermittent DUTs exhibited abrupt failure by 11,000 hrs; the other failed abruptly by 
12,000 hrs. Several thousand hours before abrupt failure, the LFM value of these DUTs began a slow decrease 
with an LFM decline of approximately 5% shortly before failure. In contrast, the RTOL DUT that did not 
exhibit abrupt failure maintained a consistent LFM value throughout. As a result, the RTOL data at 11,000 hrs 
was the average of two DUTs and from 12,000 hrs onward, the LFM data only reflect one DUT. Removing 
these two DUTs from the average gives rise to the sharp increase in average LFM observed at 12,000 hrs. For 
the IES TM-28-14 analysis, only the data from 5,000 hrs through 10,000 hrs were used for the RTOL 
condition to ensure that three DUTs were part of the model. The intermittency of the failed DUTs may suggest 
a manufacturing or material flaw. 

More consistent behavior was observed for the DUTs in 45OL and 6590. The DUTs operated at 45OL 
experienced a gradual decrease in LFM through 13,000 hrs with no failures. For the 6590 population, one DUT 
failed abruptly between 5,000 and 6,000 hrs as previously reported [1], and the remaining two DUTs were 
removed from testing after 6,000 hours because of space limitations in the environmental chamber. The more 
aggressive conditions of the 6590 AST relative to 45OL led to almost a 20 times increase in α values. 
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Figure 3-1: LFM of Product MS-2 during RTOL, 45OL, and 6590 according to IES LM-84-14. The dashed lines 

and least square fit parameters correspond to IES TM-28-14 models calculated as described in the text. 

The LFM of Product MS-3 showed substantial differences between the RTOL, 75OL, and 7575 test 
populations (Figure 3-2). The RTOL DUTs experienced a gradual decrease in LFM over the entire test 
duration (10,000 hrs). The 75OL DUTs experienced two regions of luminous flux decay: an initial period of 
fast decay until 5,000 hrs, and then slower decay from 5,000 through 10,000 hrs. This finding may suggest that 
multiple mechanisms that lower emissions are at work in the Product MS-3 DUTs. The first mechanism is 
greatly accelerated by temperature, whereas the long-term mechanism is less impacted by temperature. The 
IES-28-14 model for this test condition only covers the long-term mechanism because it extends from 5,000 
hrs to 10,000 hrs. At the most aggressive AST environment (7575), the LFM of all three DUTs fell below 0.70 
by 7,000 hrs. The α value for the 7575 test condition was approximately 5.3 times greater than the α value for 
75OL, suggesting that humidity also impacts the LFM decline.  



Changes in SSL Device Efficiency and Optical Performance With Aging: Final Report  

8 

  
Figure 3-2: LFM for Product MS-3 during RTOL, 75OL, and 7575 according to IES LM-84-14. The dashed lines 

and least square fit parameters correspond to IES TM-28-14 models calculated as described in the text. 

Care should be exercised when comparing the results of Product MS-2 with Product MS-3. First, Product MS-
2 was subjected to less aggressive ASTs to try to prolong electrical component life. Second, although both 
products have violet-pump LEDs, Product MS-2 is a lamp with optics and an integrated power supply, whereas 
Product MS-3 is solely an LED module. Therefore, the LFM of Product MS-2 is subject to changes in 
electrical components, optics, the LED module, and the LED packages, whereas Product MS-3 is subject to 
changes in only the LED module and LED packages. As previously reported and shown in Appendix Table 2, 
the forward current of the LEDs was 58 mA for Product MS-2 and 150 mA for Product MS-3. Finally, the 
manufacturer’s recommended maximum currents for the LEDs used in Product MS-2 and MS-3 are 165 mA 
and 150 mA, respectively. The LEDs in Product MS-2 were only operated at 35% of their rated maximum 
value, whereas those for Product MS-3 were operated at 100% of the rate maximum value. As a result, the 
higher degradation levels observed for Product MS-3 can be attributed, at least in part, to the higher driver 
currents and the more aggressive test conditions. 

3.1.2 Luminous Efficacy Maintenance for Products MS-2 and MS-3 
The use of the violet-pump LED and omission of blue emissions led to lower initial luminous efficacy for 
Product MS-2 relative to a standard LED product with a CCT of approximately 2,600 K [8]. As AST 
progressed, the luminous efficacy of Product MS-2 continued to be dominated by the change in luminous flux 
because change in power consumption was negligible (see Figure 3-3). As such, the luminous efficacy for 
Product MS-2 is a function of the AST exposure times. For example, the most aggressive test condition (6590) 
had a rate of luminous efficacy exponential decline (1.3 × 10-5) was similar to the α value for LFM (1.5 × 10-5) 
determined by IES TM-28-14. Because of the abrupt failure of two DUTs in the RTOL test (failure times of 
11,000 hrs and 12,000 hrs), the luminous efficacy was only modeled through 10,000 hrs for the RTOL 
population. The rate of exponential decline for the luminous efficacy of the RTOL population was larger than 
the rate of luminous efficacy decline for the 45OL population. The behavior further supports that luminous 
efficacy maintenance was dominated by luminous flux.  
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Figure 3-3: Luminous efficacy of Product MS-2 during RTOL, 45OL, and 6590 and least square models and fit 

parameters for an exponential decay model for each test condition.  

For Product MS-3, the luminous efficacy value also decreased in an exponential manner over the course of 
AST as shown in Figure 3-4. The rates of decline were similar to the α values determined from the LFM 
models (Figure 3-2). Because Product MS-3 is a light engine and the electrical drivers were operated outside 
the test chamber, the change in luminous efficacy only reflects the change in the LED modules. The solder 
mask on the LED modules did darken, but the large area of the integrating sphere relative to the LED module 
makes any loss from solder mask darkening negligible [14]. By the end of test, there were no signs of 
discoloration on the LEDs. 

  
Figure 3-4: Luminous efficacy of Product MS-3 during RTOL, 75OL, and 7575 and least square models 

exponential decay model and model parameters for each test condition. 
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3.1.3 Chromaticity Maintenance for Products MS-2 and MS-3 
For all products that are tested, we maintained a control lamp that did not undergo AST but was measured 
every time that product was tested. In almost every case, the control lamp maintained steady LFM and 
chromaticity values. However, as mentioned in our initial report [1], the control lamp for Product MS-2 
experienced a significant chromaticity shift in the direction of the violet emitter. The control lamp for Product 
MS-2 was only operated during photometric testing and always stored at room temperature in its original 
packaging when it was not operated. From May 2019 to January 2021, the control lamp for Product MS-2 was 
photometrically tested 21 times. During this time, the luminous flux averaged 579 ± 4 lumens (lm), but the 
chromaticity changed significantly (Δu'v' = 0.0044), and most of the chromaticity shift was in the -∆v' direction 
(i.e., toward the violet emitter). This shift was because of a relative increase in the strength of violet emissions 
at the expense of green and red emissions. A similar shift occurred in the control sample and those used during 
RTOL and 45OL. A different chromaticity shift behavior was observed for the DUTs in the 6590 environment 
because of the more aggressive nature of this test. Chromaticity results reported here are corrected for the shift 
in the control in order to separate general drift in the chromaticity of the product from that caused by the AST 
conditions. 

Our initial results showed minimal chromaticity changes for the Product MS-2 DUTs during RTOL and 45OL 
after correcting for the shift of the control. In contrast, there were substantially significant changes in 
chromaticity for the 6590 test populations, and the magnitude of the chromaticity shift (Δu'v') was 
approximately 0.0055 in the yellow-red direction for the 6590 population. This behavior has been categorized 
as a chromaticity shift mode-3 (CSM-3). As testing continued through 14,000 hrs, very little change was 
observed for the chromaticity coordinates of the RTOL and 45OL test populations as shown in Figure 3-5. 
The chromaticity shift behavior observed for the MS-2 products suggests a significant change in the 
chromaticity shift mechanism between the 45OL and 6590 test environments.  

  
Figure 3-5: Chromaticity shift of Product MS-2 during RTOL, 45OL, and 6590. 

Because Product MS-3 does not have any optical lenses or reflectors and the electrical drivers were kept 
outside the test chamber, any observed chromaticity shift reflects a change in the LED module or LED 
package. In our initial report, which included chromaticity shifts through 5,000 hrs (RTOL and 75OL) and 
4,000 hrs (7575), chromaticity shift was minimal (Δu'v' < 0.001) for RTOL and significant for 75OL (Δu'v' 
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approximately 0.005), and the average 7575 test population underwent parametric failure by 2,000 hrs [1]. The 
previously reported chromaticity shift trends continued during further testing for Product MS-3 DUTs as 
shown in Figure 3-6. Through 10,000 hrs, the chromaticity shift for the RTOL DUTs remained minimal (Δu'v' 
< 0.001). For the 75OL tests, the direction of chromaticity shift continued mainly along the -Δv' axis, though 
there was some slight shifting toward the -Δu' axis, which suggests that the chromaticity point is shifting 
mainly toward the violet LED emitter. The slight shift along the -Δu' axis suggests that the relative emissions 
from the green and red phosphors are changing and that the green phosphor has a greater long-term stability 
than the red phosphor in the 75OL conditions. The greater stability of the green phosphor was supported by the 
temporal SPDs of a representative 75OL DUT shown in Figure 3-7. The red emitter initially had higher flux, 
but by 10,000 hrs, its emission was slightly lower than that of the green emitter. Furthermore, between 5,000 
hrs (our initial report) and 10,000 hrs, the intensities of the blue and violet emitters remained almost the same, 
but both red and green emitters had lower intensity. These data explain the predominant chromaticity shift in 
the violet/blue direction. The magnitude of the chromaticity shift in 75OL (Δu'v' = 0.0075) led to parametric 
failure of all four DUTs by 10,000 hrs (one DUT failed at 7,000 hrs, two failed at 9,000 hrs, and the last DUT 
failed at 10,000 hrs). As previously mentioned at the beginning of this section of the report, parametric 
chromaticity shift failures were not excluded from data averaging.  

 

  
Figure 3-6: Chromaticity shift diagram for Product MS-3 in RTOL, 75OL, and 7575. 
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Figure 3-7: SPDs for Product MS-3 operated during 75OL for various times. 

For the 7575 DUTs, all DUTs underwent parametric chromaticity shift failure by 3,000 hrs. At 3,000 hrs, the 
LFM for the 7575 Product MS-3 DUTs was approximately 0.83. The 7575 DUTs were put back into test to 
study long-term chromaticity shift trends until all four DUTs had an LFM below 0.70, which occurred at 7,000 
hrs. At 7,000 hrs, the chromaticity shift was large and continued in the predominantly -Δv' direction (toward 
the violet emitter), but with a more significant change in the -Δu' direction than during 75OL. The magnitudes 
of these changes were greatly accelerated compared with those during 75OL, and the total chromaticity shift 
(Δu'v') was 0.019. Temporal SPDs from a representative 7575 DUT showed a sharp drop in phosphor 
emissions (Figure 3-8) relative to the violet LED. A closer examination of the green and orange-red emitters 
showed that the green emission maximum goes from equal intensity to clearly larger intensity than the orange-
red peak maximum, consistent with a change in the green to orange-red emissions ratio.  
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Figure 3-8: SPDs for Product MS-3 operated during 7575 at various times. 

3.1.4 Failure Analysis and Post-mortem Examination for Products MS-2 and MS-3 
By the end of the testing period discussed in this report, a total of three DUTs failed for Product MS-2 (two 
DUTs during RTOL and one DUT during 6590) and eight DUTs failed for Product MS-3 (four DUTs during 
75OL and four DUTs during 7575). A list of the failed DUTs and their failure descriptions for Products MS-2 
and MS-3 is provided in Table 3-1.  

For Product MS-2, we previously reported that one of the 6590 DUTs began exhibiting excess temporal light 
artifacts (TLA) at approximately 5,225 hrs so it was classified as a failure [1]. A disassembly of the failed 
DUT showed discoloration of the solder mask on the LED module, yellowing of the globe, and two non-
functioning LEDs. The failed LEDs were hypothesized to be tied to the occurrence of TLA, but the source of 
the TLA was traced to a solder joint failure on a through-hole connected to the flyback transformer in the 
driver. All lamps subjected to 45OL testing survived 14,000 hrs without experiencing either an abrupt lights-
out failure or a parametric failure. However, during RTOL, two out of the three DUTs started experiencing 
intermittent failures between 9,000 and 10,000 hrs, with both DUTs experiencing abrupt failures by 12,000 hrs 
(Table 3-1). The power characteristics of the two failed RTOL DUTs are provided in Table 3-2. After failure, 
there was no light emission from DUT 613, but the DUT was still pulling power from the ac mains line, albeit 
the power was minimal, and the electrical driver was not providing any voltage or current to the LED module. 
This failure was eventually traced to two film capacitors in the electromagnetic interference filter. When DUT 
614 was removed from testing, it would not produce light. However, when DUT 614 underwent failure 
analysis, it turned on after the globe was removed and did not shut back off for the remainder of multiple 
analysis steps. The electrical characteristics for DUT 614 after 14,000 hrs were similar to its initial electrical 
characteristics, and an assignment of the cause of failure could not be made.  
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Table 3-1. Failure Descriptions for Products MS-2 and MS-3. 

Product DUT AST Failure Type Time to Failure 
(hr) 

MS-2 613 RTOL Abrupt—filter capacitors 11,000 
MS-2 614 RTOL Abrupt—cause not found 12,000 

MS-2 619 6590 Parametric (LFM < 0.70, excessive TLA)—
solder joint failure 6,000 

MS-3 703 75OL Parametric (chromaticity shift) 7,000 
MS-3 704 75OL Parametric (chromaticity shift) 10,000 
MS-3 705 75OL Parametric (chromaticity shift)  9,000 

MS-3 706 75OL Parametric (chromaticity shift)  9,000 

MS-3 707 7575 
Parametric (chromaticity shift) 

Parametric (LFM < 0.70) 
2,000 
5,000 

MS-3 708 7575 
Parametric (chromaticity shift) 

Parametric (LFM < 0.70) 
2,000 
5,000 

MS-3 709 7575 
Parametric (chromaticity shift) 

Parametric (LFM < 0.70) 
3,000 
7,000 

MS-3 710 7575 
Parametric (chromaticity shift) 

Parametric (LFM < 0.70) 
2,000 
7,000 

 

Table 3-2. Electrical Properties for the Failed RTOL Product MS-2 DUTs.  

DUT Power Factor Current 
(mA) 

ac Power (W) dc Voltage (V) Volt Amperes 
(W) 

613 0.47 0.6 0.035 0 0.068 
614 0.89 118 12.95 63.7 14.4 

 

Product MS-3 experienced high reliability through 10,000 hrs during the RTOL test (the LFM was 
approximately 0.97 and Δu'v' < 0.001). However, parametric failures were observed at the aggressive testing 
conditions of 75OL and 7575 (Table 3-1). The maximum forward current for the Product MS-3 LEDs is rated 
at 150 mA but above an ambient temperature of 65°C, the maximum forward current is derated to slightly 
greater than 100 mA until the ambient temperature reaches 85°C, which is the maximum ambient temperature 
for operation (see Figure 3-9). At an ambient temperature of 75°C, the maximum forward current is limited to 
approximately 130 mA. During our testing, the current supplied to all DUTs was 150 mA, regardless of 
ambient temperature, in an effort to maximally stress the DUTs. As noted in Section 2.1.1 of this report, the 
maximum ambient temperature of the 7575 DUTs peaked at 87°C, which is above the manufacturer’s rating of 
85°C. All DUTs in the 75OL and 7575 tests underwent parametric failure by chromaticity shift at the end of 
test in these extreme conditions. The chromaticity shifted in the violet and blue direction by an unacceptable 
magnitude (Δu'v' > 0.007) by 2,000 to 3,000 hrs during 7575 and by 7,000 to 10,000 hrs during 75OL. These 
results suggest greater stability of the violet LED and blue phosphor relative to the red and green phosphors 
used in this product at high temperature and also show that the degradation pathways are promoted by 
temperature and moisture. Even under the harsh conditions of 75OL and 7575, the LFM remained acceptable 
through 10,000 hrs for the 75OL DUTs and at least through 5,000 hrs for all 7575 DUTs. By 7,000 hrs, all 
DUTs in the 7575 test experienced parametric failures for the LFM below 0.70.  



Changes in SSL Device Efficiency and Optical Performance With Aging: Final Report  

15 

  
Figure 3-9: Maximum forward current as a function of ambient temperature for LEDs used in Product MS-3.  

 Switchable Downlight Products 
This section of the report provides updated data for Products MS-4 and MS-5. All data shown are the average 
of the population of DUTs at each AST environment (three DUTs for each test). Over the course of testing, 
three abrupt failures were observed in 7575 for each product, and no parametric failures were observed. Failure 
analysis of the abrupt failures in 7575 has been discussed previously in our initial report [1]. 

3.2.1 Luminous Flux Maintenance for Product MS-4 
The switchable downlight products have two LED primaries that combine to produce CCT values between 
2,700 K and 5,000 K, depending on the setting of a switch (see Table 2-1). During AST, the CCT setting 
determined which LED primary was dominant and which was a minor contributor to the total light flux. 
Photometric testing was performed on the CCT setting used during the ASTs after every 1,000 hrs of exposure 
to the RTOL, 75OL, and 7575 environments by using the procedures described in IES LM-84-14 [12]. The 
complete test results are presented in Figure 3-10a for the 2,700 K setting and Figure 3-10b for the 5,000 K 
setting. The results were modeled by using IES TM-28-14, and the findings of this analysis are presented in 
Figure 3-11a for the 2,700 K setting and Figure 3-11b for the 5,000 K setting. Ambient temperature had a 
significant impact on the decay rate constant (α ) and the value increased by 14.6 times between RTOL and 
75OL for the 2,700 K setting. A similar increase of 13.3 times was measured for the 5,000 K setting. When 
comparing the α values of 75OL and 7575, the addition of humidity was observed to increase the rate of 
luminous flux decay by 2.3 times for the 2,700 K setting and 1.6 times for the 5,000 K setting.  
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Figure 3-10: The LFM of the Product MS-4 test populations operated with (A) 2,700 K setting during AST or (B) 

5,000 K setting during AST. Testing was performed following RTOL, 75OL, or 7575 environments. 

 

  
Figure 3-11: LM-28-14 models of the LFM for Product MS-4 test populations operated with (A) the 2,700 K 

setting during AST or (B) the 5,000 K setting during AST. Testing was performed in either RTOL, 75OL, or 7575 
environments. 

Based on the values determined during the TM-28-14 analysis, the L70 value for the 2,700 K primary operated 
in the 75°C ambient environment was projected to be 25,100 hrs, whereas the L70 value for the 5,000 K 
primary operated in the 75°C ambient environment was projected to be 23,100 hrs.  

In performing these tests, the DUTs were divided into two groups of three samples for each AST. Group 1 
DUTs were placed in the 2,700 K setting during the AST, and the 5,000 K setting was not used during AST. 
Group 2 DUTs were placed in the 5,000 K setting during AST, and the 2,700 K LED primary was not used 
during these tests. After every 3,000 hrs of testing, photometric measurements were taken on the unused CCT 
setting. Afterwards, the CCT control switch on the downlight was returned to the original setting prior to the 
next AST cycle.  

The photometric properties for the unused CCT settings were measured periodically (see Figure 3-12), and the 
LFM data demonstrate that light emissions from the minor LED primary degraded at a significant rate during 
75OL and 7575 even though the LEDs were hardly used during the AST. After 12,000 hrs of 75OL, the LFM 
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values of the unused CCT settings were 0.89 (2,700 K setting) and 0.87 (5,000 K setting), respectively. These 
values were slightly larger than those measured for the active settings after 12,000 hrs of 75OL, which are 0.84 
(2,700 K setting) and 0.85 (5,000 K setting). Because the LEDs for the unused CCT setting experience 
minimal electrical current during AST, they would not be expected to degrade during AST. However, the 
findings shown in Figure 3-12 suggests that factors other than light source efficiency degradation is 
contributing to the observed rapid LFM decline.  

 
Figure 3-12: The LFM of the Product MS-4 test populations operated with (A) 2,700 K setting on during 

photometric testing but not used during AST or (B) 5,000 K setting on during photometric testing but not used 
during AST. Testing was performed following RTOL, 75OL, or 7575 environments. 

For samples in the RTOL environment for 12,000 hrs, the LFM of the unused CCT setting was measured as 
1.01 for both the 2,700 K and 5,000 K settings. For the active CCT settings under these conditions, the LFM of 
the 2,700 K setting was 0.96, and the LFM of the 5,000 K setting was 0.98, demonstrating only a minor 
amount of light source degradation in this condition.  

3.2.2 Luminous Efficacy for Product MS-4 
The luminous efficacies for Product MS-4 DUTs when the 2,700 K and 5,000 K settings were used during 
AST are shown in Figure 3-13a and Figure 3-13b, respectively. During RTOL, luminous efficacy initially 
increased with use during RTOL because of a small (3% to 4%) drop in power consumption that occurred 
during the first 1,000 hrs of operation. As a result, the luminous efficacy for both CCT settings was higher 
after 12,000 hrs of use than the initial luminous efficacy, and this value reaches a limiting value after 
approximately 3,000 hrs to 6,000 hrs of use. For the 75OL DUTs, there was also a small initial increase in 
luminous efficacy for both CCT settings, followed by a slow decrease. For DUTs in the 7575 environment, the 
luminous efficacy initially increased slightly or remained constant, but then decreased rapidly after 500 hrs of 
exposure because of the loss of luminous flux.  
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Figure 3-13: The temporal change in luminous efficacy for Product MS-4: (A) for samples with the 2,700 K 

setting in use during AST and (B) for samples with the 5,000 K setting in use during AST. Testing was 
performed in the RTOL, 75OL, and 7575 environments. 

We previously reported [15] that such behavior in LEDs can be modeled by using an efficiency function 
formed as the product of a bounded exponential equation γ(1 – e-βt)e-αt and an exponential decay equation (Be-

αt) [3, 15]. The combined function is shown in Equation 3-2 as follows: 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑒𝑒−𝛼𝛼𝑡𝑡�𝐵𝐵 +  𝛾𝛾�1 −  𝑒𝑒−𝛽𝛽𝛽𝛽�� (Eq. 3-2) 

Where 

α = Decay rate constant 

B = Initialization constant 

γ = Maximum asymptotic increase relative to the starting value 

β = Reciprocal of the time when the efficiency increases by 0.63γ 

t = Time. 

When t is very large, Equation 3-2 reduces to an exponential decay function used for luminous efficacy 
models in Section 3.1.2. At small values of t (relative to total lifetime), the bounded exponential term (1 – e-βt) 
is non-zero, and Equation 2 can also be used to model the initial increase in luminous efficacy. The estimated 
luminous efficacy was estimated by using Equation 3-2 and changing α, B, γ, and β. This value was compared 
with the measure luminous efficacy and the estimated value recalculated until the (error)2 value was 
minimized. The best-fit parameters for each CCT setting exposed to the RTOL, 75OL, and 7575 environments 
are presented in Table 3-3. For RTOL DUTs in which the 5,000 K setting was used during AST, the 
exponential decay part of the model could not be calculated because there was no reduction in luminous 
efficacy during the 12,000-hr test period. However, all parameters could be calculated for both CCT settings 
during 75OL and 7575 and for the 2,700 K setting during RTOL. 
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Table 3-3: Parametric Fits for the Luminous Efficacy Model of the LED Primaries in Product MS-4. 

Parameters 
2,700 K Setting in AST 5,000 K Setting in AST 

RTOL 75OL 7575 RTOL 75OL 7575 
α 1.1 × 10-6 3.4 × 10-5 6.0 × 10-5 Not applicable 2.2 × 10-5 5.5 × 10-5 
B 85.8 86.5 85.9 91.1 91.9 95.0 
γ 2.4 76.0 20.8 2.5 16.6 26.2 
β < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
Error2 3.21 1.64 0.65 2.68 3.21 3.01 

 

3.2.3 Chromaticity Maintenance for Product MS-4 
The chromaticity of Product MS-4 DUTs when the 2,700 K and 5,000 K settings were used during AST 
shifted in the generally yellow-red direction as shown in Figure 3-14. This shift follows CSM-3 behavior. The 
temporal changes in chromaticity shift are presented in Appendix Figure 1 for DUTs in which the 2,700 
setting was used during AST and in Appendix Figure 2 for DUTs when the 5,000 K setting was used in AST. 
For both settings, the chromaticity shift was in the generally yellow-red direction (i.e., the change was larger 
along the +Δv' axis than along the +Δu' axis). After 12,000 hrs of exposure, the Δv' values for both LED 
primaries were similar (Δv' approximately +0.0035), but the shift in Δu' was slightly larger for the 2,700 LED 
primary. The shifts for RTOL, 75OL, and to a point 7575 are in the same general direction, suggesting that the 
same chromaticity shift mechanism was active in all three test environments. For DUTs set to 2,700 K in 7575, 
there was an indication of a chromaticity shift in the green direction (i.e., Δu' begins to decrease) after 
approximately 2,000 hrs of exposure. This behavior has been attributed to photo-oxidation of the phosphor 
[16].  

 

  
Figure 3-14: The chromaticity shift for Product MS-4: (A) for the 2,700 K setting that was used during AST and 
(B) for the 5,000 K setting that was used during AST. Chromaticity was measured after exposure to the RTOL, 

75OL, and 7575 environments. 
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3.2.4 Lens Transmittance Changes for Product MS-4 
The changes in the LFM of the LEDs that were minor contributors to the light emitted during AST 
demonstrate that aging of the SSL devices impacts more than the LEDs—it also impacts the optical system. 
Aging of the optical system has been shown to reduce lens transmittance and the reflectance of surfaces used 
to shape the light beam [6, 7]. The net result of these aging processes was an increase in light absorption inside 
the SSL device and a reduction in luminaire efficiency†, which produced a drop in luminous flux. In 
downlights, degradation of both lenses and reflective surfaces has been shown to contribute to these changes, 
but the impact of lens dominates for devices with an optical cavity less than 3 inches in height [7]. For Product 
MS-4, the optical cavity is only 1-inch deep, so it is expected that degradation of these lenses would account 
for the drop in the LFM from the inactive primary. 

Measurements of the transmittance of the Product MS-4 lenses from samples in the various AST environments 
confirm greater degradation in the lens samples from the 7575 and 75OL environments than from the RTOL 
environment (see Figure 3-15). The net result was a significant attenuation of light emitted from the LED 
module at the base of the optical cavity. This attenuation affected the entire LED board, including both the 
LEDs that are operated at high currents during AST (see Figure 3-11) and those that are operated at minimal 
currents (see Figure 3-12).  

 

Figure 3-15: Spectral transmittance measurements for Product MS-4 lenses subjected to the various AST 
environments. 

3.2.5 Luminous Flux Maintenance for Product MS-5 
The LFM measurements of Product MS-5 were collected on the active CCT setting after every 1,000 hrs of 
exposure to RTOL, 75OL, and 7575 environments by using the procedures described in IES LM-84-14 [12]. 
The complete test results are provided in Figure 3-16a for the 2,700 setting and Figure 3-16b for the 5,000 K 
setting. The results were analyzed by using IES TM-28-14 to determine the LFM, and the findings are shown 
in Figure 3-17a for the 2,700 K setting and Figure 3-17b for the 5,000 K setting. A very slow change in LFM 

 

† “Luminaire efficiency” is the luminous flux emitted by a luminaire divided by the luminous flux 
emitted by the sources. 
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(α = 4.2 × 10-7) was measured for the 2,700 K setting after 12,000 hrs of RTOL, and a larger decline in LFM 
(α = 4.0 × 10-6) was measured for the 5,000 K setting during the same test. Temperature accelerated the 
decrease in the LFM with α values increasing to 1.0 × 10-5 for the 2,700 K setting and 1.9 × 10-5 for the 5,000 
K setting. The addition of humidity further accelerated the decline in the LFM, and the ratio of α values for 
7575 to 75OL was approximately 2.7 for both LED primaries.  

 

 
Figure 3-16: The LFM of the Product MS-5 test populations operated with (A) the 2,700 K setting that was used 
during AST or (B) the 5,000 K setting that was used during AST. Testing was performed following RTOL, 75OL, 

or 7575 environments. 

 

 
Figure 3-17: The TM-28-14 models of the LFM for Product MS-5 test populations operated with (A) the 2,700 K 
setting that was used during AST or (B) the 5,000 K setting that was used during AST. Testing was performed 

in either RTOL, 75OL, or 7575 environments. 

Based on the values determined during the TM-28-14 analysis for the MS-5 DUTs, the L70 value for the 2,700 
K setting in the 75°C ambient environment was projected to be 36,700 hrs, and the L70 value for the 5,000 K 
setting in the 75°C ambient environment was projected to be 19,800 hrs.  

The photometric properties for the CCT setting that was not used during AST was still measured periodically, 
and the LFM data, which are provided in Figure 3-18, demonstrate that light emissions from the LEDs not 
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used during AST still degraded at a significant rate during 75OL and 7575. After 11,000 hrs of 75OL, the LFM 
for the unused CCT settings were 0.77 for the 2,700 K setting and 0.78 for the 5,000 K setting. Even though 
the LEDs used to produce these CCT values were inactive during 75OL, the LFM values were smaller than 
those measured for the active LEDs after 11,000 hrs of 75OL, which are 0.91 for the 2,700 K setting and 0.84 
for the 5,000 K setting. Since the LEDs of the CCT setting that was not used during AST, this degradation 
cannot be attributed to the degradation caused by electrical current flowing through the LEDs during AST. 
Instead, other factors likely associated with the optical systems of the downlights, are primarily responsible for 
this light loss as discussed in Section 3.2.8. 

 
Figure 3-18: The LFM of the Product MS-5 test populations operated with (A) the 2,700 K setting on during 

photometric testing but inactive during AST or (B) the 5,000 K setting on during photometric testing but 
inactive during AST. Testing was performed following RTOL, 75OL, or 7575 environments. 

3.2.6 Luminous Efficacy for Product MS-5 
The luminous efficacy for Product MS-5 initially increased with use during RTOL because of the minimal 
change in the LFM and a small (3% to 4%) drop in power consumption. For the 75OL DUTs, there was a 
small, initial increase in luminous efficacy for both CCT settings for the first 2,000 hrs of testing, followed by 
a prolonged decrease that tracked the reduction of luminous flux. For the 7575 environment, the luminous 
efficacy decreased at every measurement time.  

  
Figure 3-19: The temporal change in luminous efficacy for Product MS-5 (A) for the 2,700 K setting and (B) for 

the 5,000 setting. Testing was performed on different populations in RTOL, 75OL, and 7575 environments. 
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Equation 2 was used to model the initial increase in luminous efficacy reported in Figure 3-19. The estimated 
luminous efficacy is calculated by using Equation 2 by changing α, B, γ, and β. This value was compared with 
the measure luminous efficacy and the estimated value recalculated until the (error)2 value was minimized. The 
best-fit parameters for each CCT setting exposed to the RTOL, 75OL, and 7575 environments are presented in 
Figure 3-19. For DUTs set to 5,000 K in RTOL, the exponential decay part of the model could not be 
calculated because there was no reduction in luminous efficacy during the test period. However, all parameters 
could be calculated for both CCT settings during 75OL and 7575 and for the 2,700 setting during RTOL.  

Table 3-4: Parametric Fits for the Luminous Efficacy Model of the LED Primaries in Product MS-5. 

Parameters 
2,700 K Setting 5,000 K Setting 

RTOL 75OL 7575 RTOL 75OL 7575 
α 5.3 × 10-7 5.7 × 10-6 1.1 × 10-4 Not applicable 1.5 × 10-5 4.8 × 10-5 
B 84.5 83.9 84.3 88.3 88.1 88.3 

γ 2.0 1.0 648 3.2 3.5 4.4 

β < 0.001 0.001 < 0.001 < 0.001 0.001 < 0.001 
Error2 1.77 1.65 0.67 2.56 3.04 0.02 

 

3.2.7 Chromaticity Maintenance for Product MS-5 
During the different AST environments, the chromaticity maintenance of Product MS-5 was similar for the 
2,700 K and 5,000 K settings as shown in Figure 3-20. The temporal changes in chromaticity shift are 
provided in Appendix Figure 3 for the 2,700 K setting and in Appendix Figure 4 for the 5,000 K setting. For 
both, the chromaticity shift was in the generally yellow-red direction (i.e., the change was mainly along the 
+Δv' axis, with the change along the +Δu' axis being smaller) and displays CSM-3 behavior. The magnitude of 
the chromaticity shift during 7575 was larger for the 5,000 K setting than for the 2,700 K setting. In addition, 
the initial chromaticity shift for the 2,700 K setting was in the generally green direction for all test conditions, 
and then the shift proceeded more toward a yellowish-red chromaticity. The initial green shift of the MP-LEDs 
was also observed in other LEDs and likely represented a short-term chromaticity change in the phosphors 
(i.e., the initial green shift) followed by the observed continuous long-term change (i.e., the yellow-red shift) 
[16, 17]. 
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Figure 3-20: The chromaticity shift for Product MS-5 (A) for the 2,700 K setting and (B) for the 5,000 setting in 

the RTOL, 75OL, and 7575 environments. 

3.2.8 Lens Transmittance for Product MS-5 
The appearance of the lenses and reflectors used on the MS-5 products were noticeably discolored after 
exposure to the 75OL and 7575 environments. Unfortunately, the curved shape of the lens made it difficult to 
obtain an accurate measurement of transmittance. Likewise, the complex shape of the reflector (see Figure 
2-2) prevented an accurate measurement of its reflectance. Given the attenuation that was observed for the 
device settings that were not in use during AST, it is reasonable to assume that the degradation of the lens and 
reflector also played a significant role in the lumen depreciation. 

 Discussion 
The report demonstrates that LED lighting products offer a range of capabilities beyond energy efficient 
lighting; however, some products require a trade-off in the different elements of LAE (e.g., light source 
efficiency, optical delivery efficiency, spectral efficiency, and intensity efficiency) to achieve their modified 
performance. The balance of these trade-offs continues to change during long-term use of the products as 
shown by the results presented here. For example, achieving a higher spectral efficiency through a modified 
spectral output may come at the cost of initial luminous efficacy or long-term chromaticity stability as 
observed for Products MS-1, MS-2, and MS-3.  

Because of the long lifetimes of most SSL products, it is difficult to assess the long-term performance and 
temporal nature of the LAE changes for lighting products on a laboratory timescale. Fortunately, AST methods 
have emerged as the recommended approach in studying the long-term robustness and reliability of LED 
products [18]. There are two broad classification of failures in LED products that typically occur when using 
AST methods: (1) abrupt failures, in which the device suddenly stops providing the expected light levels; and 
(2) parametric failures, in which the device gradually falls out of specification in a key performance area. 
Typically, abrupt failures are easy to recognize because they are instances when either the device no longer 
provides light at all (i.e., “lights-out” failures), when the light level has dropped precipitously (e.g., typically 
less than 50% of the original value), or when the level of TLA has increased to the point where the light source 
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is unusable. Abrupt failures are typically linked to the light source efficiency component of LAE because some 
devices consume electricity even when no light is produced [19]. 

Parametric failures are defined by a change in a key performance parameter (e.g., luminous flux, chromaticity, 
luminous efficacy, temporal lighting artifacts) that exceeds a predefined limit termed the “failure threshold.” 
As such, parametric failures can affect any of the four elements of LAE. The limits for parametric failure vary 
depending upon the application, but in this work, the following definitions were used for the failure thresholds: 

• LFM—Parametric failure occurs when the luminous flux value falls below 70% of the initial 
luminous flux, which is referred to as the LFM life, L70. Changes in LFM mainly affect light 
source efficiency but can also be caused by changes in optical delivery efficiency of the device. 

• Chromaticity maintenance—Parametric failure occurs when the chromaticity shift (Δu'v') 
exceeds 0.007. Changes in chromaticity maintenance may impact spectral efficiency and could 
also be the result of changes in optical delivery efficiency of the device. 

• Luminous efficacy—Parametric failure occurs when the luminous efficacy falls below 70% of 
the initial value. This value is typically viewed as the fundamental measurement of light source 
efficiency.  

When determining L70, a standard test procedure (IES LM-84-14) combined with a luminous flux projection 
method (IES TM-28-14) is used to estimate long-term LFM. When three DUTs are used when testing LED 
lamps, light engines, and luminaires, the maximum projection time allowed by IES TM-28-14 is 3 times the 
test duration. We have previously used this method with dim-to-warm (D2W) lamps and demonstrated that 
under mild conditions, the LFM is high enough for L70 to reach the maximum allowed projection value. 
However, under more severe conditions such as temperature and humidity, the L70 value is often below the 
maximum allowed value [8]. The relative LFM decay of a device evaluated during different ASTs can be used 
to estimate the acceleration factor of the exposure method for lumen depreciation.  

Currently, no equivalent to IES TM-28-14 exists for projecting chromaticity shift in LED lamps, light engines, 
and luminaires. Fortunately, AST methods can often accelerate chromaticity shifts in SSL devices and reduce 
the time required for changes in LED components (e.g., phosphors) or system optical elements (e.g., lenses). 
Therefore, in this study, we used the relative chromaticity maintenance performance of the DUTs in AST as an 
indication of potential long-term trends in chromaticity caused by changes in the materials used in the light 
source LEDs and the luminaire optics. In the absence of a quantitative model of chromaticity shift components, 
only qualitative information can be determined regarding the impacts of different AST environments on 
materials and the corresponding effect on chromaticity maintenance. 

In general, the long-term luminous efficacy of SSL devices is determined by the LFM. As discussed in Section 
3.2, there can be improved efficiencies in power consumption of SSL devices during initial use that can extend 
the time when luminous efficacy remains above the parametric failure threshold. However, as shown in 
Section 3.1, there is a definite trend in other devices toward exponential decay of the luminous efficacy under 
all test conditions. Consequently, we would expect the acceleration factors for luminous efficacy loss in the 
different AST environments to closely follow the behavior measured for LFM.  

 Time-Dependence Changes in Light Source Efficiency 
Light source efficiency is best measured on individual LEDs or LED modules without secondary optics in 
order to eliminate effects arising from optical degradation. During the current study, only Product MS-3 
allowed direct measurement of the light source efficiency. The initial luminous efficacy of Product MS-3 was 
only 68 lumens per watt (lm/W) because of the use of violet LEDs as the optical pump. This value is well 
below that typically measured for LEDs that use blue pumps, which can exceed 150 lm/W [4]. Although the 
source efficiency of the violet-pump LEDs may not be near the upper limit of that available with other SSL 
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technologies, the change in the source efficiency does provide insights regarding aging of the devices over 
time. 

For Product MS-3, the radiant power of violet emissions from the LEDs remained higher regardless of the test 
environment. In contrast, the emissions from the phosphors used for Product MS-3 changed significantly, 
resulting in not only reductions in luminous flux (see Figure 3-2) and luminous efficacy (see Figure 3-4), but 
also a large chromaticity shift toward the violet emitter (see Figure 3-6). The phosphors used in Product MS-3 
had temperature stabilities that decreased in the order blue phosphor > green phosphor > red phosphor. As a 
result, the light emissions become depleted in red emissions over time as evidenced by the chromaticity shift. 
Although the composition of the phosphors used in this product is not known, there is clearly a sensitivity to 
moisture and temperature, especially for the longer wavelength emissions.  

The LFM and chromaticity maintenance measured for Product MS-3 demonstrate the importance of knowing 
the long-term characteristics of the materials used in the light source. As demonstrated for Product MS-3, 
differential aging of the phosphors used in the source LEDs can have undesired effects on chromaticity 
maintenance and loss of luminous flux. The degradation of light emissions from Product MS-3 were 
undoubtedly accelerated by the high temperature and high electrical current used in this testing. The LEDs 
were operated at 111% of the manufacturer’s derated current limit for 75°C operation. However, many other 
LEDs are able to operate at 75°C without any significant derating, suggesting that there is a known sensitivity 
at these use conditions with Product MS-3. Although many blue-pump MP-LEDs are able to operate for 
extended times in these environments [19], the phosphor mix used in this violet-pump LED product was not 
able to withstand the test conditions. Ironically, the performance of the violet LED changed little through 
10,000 hrs of 75OL or 7,000 hrs of 7575. 

For most blue-pump LED devices, the luminous efficacy will likely be higher than the value that was observed 
during these tests for Product MS-3. Two typical examples are Products MS-4 and MS-5 which both exhibited 
initial luminous efficacies of approximately 90 lm/W, even after taking the optical losses into account. The 
cerium-doped yttrium aluminum garnet phosphor commonly used in blue-pump LEDs in known to be very 
stable to temperature, although some nitride phosphors used to impart a warm white color are less stable [17]. 
Because of their different long-term characteristics, the choice between products using violet-pump LEDs and 
blue-pump LEDs should be made with knowledge of the impact of the expected use environment of the long-
term performance of the device. 

 Time-Dependent Changes in Optical Delivery Efficiency  
Both LED downlights examined during this study achieved spectral modification by setting a switch to a 
predetermined CCT value. This method of spectral modification was a single-use tuning mechanism in which 
the CCT value was adjusted to a desired setting prior to fixture installation. Changing the light to another CCT 
value required removal of the lamp and adjusting the switching appropriately. In between these extremes, the 
current was distributed between the two LED primaries in a pre-determined manner (e.g., see Table 2-1). This 
spectral tuning method contrasts with fully tunable lighting methods in which the fixture CCT value can be 
adjusted remotely and at any time. Despite the different tuning methods, the downlights products tested here 
have many common features with fully tunable white lighting systems, including two LED primaries, two 
LED control channels, and the use of a two-stage driver with a separate transistor switch for each LED primary 
[19].  

Although a lot of attention has been paid to the impact of LED degradation on the LFM, chromaticity shift, 
and luminous efficacy, other factors of the lighting system can have a significant impact on lifetime that may 
exceed that of the LEDs [18]. During AST, the switchable downlight DUTs were set to either a warm white or 
cool white CCT value, meaning that one of the two LED primaries was set to either a zero current (e.g., 
Product MS-5) or a minimal value (Product MS-4), and the other LED primary was set to a maximum value. 
However, the luminous flux degradation of the two LED primaries was pretty much the same regardless of 



Changes in SSL Device Efficiency and Optical Performance With Aging: Final Report  

27 

which one was the dominant one during AST. Clearly, the LED primary that was operated at a minimal current 
level (≤ 3 mA, as shown in Table 2-1) would be expected to have a better LFM value than one that was 
operated at a maximum current value. Therefore, factors beyond LED degradation must be controlled to 
maximize the LFM for these products. 

Physical inspections of both Products MS-4 and MS-5 DUTs showed that there was a yellowing of both the 
main secondary lens and the white reflector surfaces. A previous examination of the impact of changes in SSL 
device optical efficiency (i.e., lens transmittance, reflector reflectance) for 6-inch downlights showed that 
Equation 4-1 can be used to model the change in device performance [7, 20]. 

 LE(t) = LE(t = 0)[L(t)]l[R(t)]r (Eq. 4-1) 

Where 

LE(t) = Luminaire efficiency at time t 

LE(t = 0) = Initial luminaire efficiency  

L(t) = Change in the normalized lens transmittance [%T(t) / %T(t = 0)] at time t 

l = Design-dependent factor for the lens as determined from a least squares fit of the simulation results 

R(t) = Change in the normalized reflector reflectance [%R(t) / %R(t = 0)] at time t 

R = Design-dependent factor for the reflector as determined from a least squares fit of the simulation 
results. 

For a 6-inch downlight with a 1-inch optical cavity with tapered walls, l = 1.05 and r = 0.55 meaning that the 
degradation of the lens has a much bigger impact on longer term optical performance than changes in the 
reflector. A similar argument can be made for other geometries (e.g., Product MS-2), even though the relative 
contribution of the lens and reflector surfaces, which are dependent on geometry, will be different. For Product 
MS-2, changes in the transmittance of the secondary lens would be expected to have a dominant impact on 
optical delivery efficiency because the devices do not have much in the way of reflectors or other optical 
surfaces (see Figure 2-1A). 

Figure 3-15 demonstrates that transmittance of the lens on Product MS-4 changed significantly during the 
AST, resulting in increased light absorption and a reduction in luminaire efficiency, yielding a lower luminous 
flux value. In addition, because the increase in absorbance was greatest at low wavelengths, this part of the 
spectrum was filtered from the light with greater prevalence, resulting in a shift in the yellow-red direction in 
agreement with the findings presented in Figure 3-14. A similar assignment of the mechanism for luminous 
flux depreciation and chromaticity shift can also be made for Product MS-5 DUTs. 

This finding provides another example of the importance of knowing the long-term behavior of the entire 
luminaire system when assessing product reliability. During RTOL, virtually no change in the LFM was 
observed at 12,000 hrs of testing. However, after 12,000 hrs during 75OL, a significant drop in the LFM was 
measured for both the Product MS-4 and MS-5 DUTs. It is clear that the degradation of the lenses in Products 
MS-4 and MS-5 DUTs is responsible for this loss of luminous flux and not changes in the LEDs. Therefore, 
the use of better materials for lenses would likely extend the lifetime of the switchable downlight products or 
similar products when used in the field and promote greater efficiency in light delivery over the lifetime of the 
products. 



Changes in SSL Device Efficiency and Optical Performance With Aging: Final Report  

28 

 Time-Dependent Changes in Spectral Efficiency 
“Spectral efficiency” refers to providing the proper light for the task, regardless of whether it is a spectrum that 
is specially tailored to provide a desired equivalent melanopic lux (EML) level, high color rendering, 
monochromatic colors, or other desired light. For example, Product MS-2 was specifically designed to provide 
a low EML value to prevent disruption of circadian rhythms by blue light in the evening. Product MS-3 was 
designed to provide a spectrum that has some of the characteristics of sunlight. Products MS-4 and MS-5 were 
designed to provide switchable spectra to match the light color with the space to achieve a desired appearance 
in the area that is being lit. 

Although the initial spectral efficiency of an SSL device depends upon the properties of the chosen light 
source, the long-term spectral efficiency can change significantly as the device ages. All of the products 
examined in this study underwent significant changes in their emission spectra during the simulated aging that 
occurred in the AST environments. The net result was a shift in the generally yellow-red direction for products 
where the optical efficiency changed significant during aging (e.g., Products MS-2, MS-4, and MS-5) and a 
shift in the blue-violet direction for the product where source efficiency dropped. The yellow-red shift was 
because of selective filtering of blue emissions by the lenses as the optical system in the SSL device ages. The 
blue-violet shift found in Product MS-3 can be attributed to the relative stability of the violet LED pump used 
in this product and the relative instability of the phosphors, particularly the red and green phosphors, that are 
also used to produce white light. Although these changes impacted source efficiency and optical delivery 
efficiency, they also changed the light emission spectrum in demonstrable ways. Consequentially, if the goal of 
the light source is to achieve a particular spectrum over a long period of time, it is essential to know how the 
light source spectrum will change with time to ensure that the desired spectrum is delivered throughout the 
product’s intended life.  

 Conclusions 
LAE describes the efficient delivery of light from the light source to the task and is viewed as a new frontier in 
increasing the energy savings that are possible with SSL technologies. The framework for LAE consists of 
four major efficiency elements: light source efficiency, optical delivery efficiency, spectral efficiency, and 
intensity effectiveness. This report focuses on a sampling of the available SSL products that can be broadly 
defined as having modified spectral output because the method of spectra modification has significant impacts 
on light source efficiency and long-term optical and spectral efficiencies. The DUTs examined during this test 
can be broadly classified as pcLEDs that either contain a violet LED pump or a blue LED pump. The tested 
violet LED pump devices were either an A19 lamp (Product MS-2) or a light engine (Product MS-3), whereas 
the blue LED pump devices were switchable downlights (Products MS-4 and MS-5).  

A focus on this study was to build on the earlier benchmarks of these types of products [1] to study the effects 
of long-term aging on source efficiency, optical delivery efficiency, and spectral efficiency. The results 
demonstrated that understanding the properties of the materials used in the SSL system is essential to 
providing products with long-term performance in a variety of different use environments. For source 
efficiency, initial luminous efficacy values are important. In addition, temperature and moisture stability of 
critical LED components (e.g., red and green emissions) should be controlled to maintain performance during 
the product’s lifetime. Likewise, optical delivery efficiency can change significantly during the use of an SSL 
device because of aging of the lenses in the device and, to a lesser extent, aging of reflective surfaces. Ignoring 
these materials limitations when choosing or designing an SSL device can result in low LFM performance and 
significant chromaticity shifts during the product’s lifetime. However, matching the SSL materials and product 
designs with the use environment can result in long-term performance at high efficacy and optimal spectrum 
output for the lifetime of the product.   
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Appendix  
Appendix Table 1. Optical Properties of the Solid-State Lighting Products Examined During This Study. 

Label Spectral 
Modification 

Luminous 
Flux (lm) 

Nominal CCT 
(K) Rf Rg 

Product MS-2 
Violet-pump LED 
with no blue 
emissions 

575 2,600 59 109 

Product MS-3 
Violet-pump LED 
with additional 
emitters 

984 5,200 94 103 

Product MS-4 Low CCT Switchable CCT 795 2,800 92 100 

Product MS-4 High CCT Switchable CCT 858 5,000 93 101 

Product MS-5 Low CCT Switchable CCT 1,019 2,700 91 97 

Product MS-5 High CCT Switchable CCT  1,107 4,900 89 96 

Note: CCT = correlated color temperature; K = Kelvin; LED = light-emitting diode; lm = lumen; Rf = fidelity index in American 
National Standards Institute/Illuminating Engineering Society (ANSI/IES) technical memorandum (TM)-30-18; Rg = gamut 
index in ANSI/IES TM-30-18. 
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Appendix Table 2. Electrical Properties of the Solid-State Lighting Products Examined During This Study. 
Label ac Power (W) Power Efficiency Vf of LEDs (V) If of LEDs (mA) 

Product MS-2 12.0 0.90 3.1 58 

Product MS-3 14.3 Not applicable 3.57 150 

Product MS-4 Low CCT 9.1 0.85 2.91 215 

Product MS-4 High CCT 9.1 0.85 2.91 215 

Product MS-5 Low CCT 11.8 0.86 3.01 169 

Product MS-5 High CCT 12.1 0.85 3.04 169 

Note: ac = alternating current; CCT = correlated color temperature; If = forward current; LED = light-emitting diode; 
mA = milliampere; Vf = forward voltage; W = watt.  
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Appendix Figure 1: Temporal change in the chromaticity of the MS-4 DUTs when the 2,700 K primary was 

active in the different AST environments. The values for Δu' are given in (A), and the values for Δv' are given in 
(B). 

 
Appendix Figure 2: Temporal change in the chromaticity of the MS-4 DUTs when the 5,000 K primary was 

active in the different AST environments. The values for Δu' are given in (A), and the values for Δv' are given in 
(B). 
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Appendix Figure 3: Temporal change in the chromaticity of the MS-5 DUTs when the 2,700 K primary was 

active in the different AST environments. The values for Δu' are given in (A), and the values for Δv' are given in 
(B). 

 
Appendix Figure 4: Temporal change in the chromaticity of the MS-5 DUTs when the 2,700 K primary was 

active in the different AST environments. The values for Δu' are given in (A), and the values for Δv' are given in 
(B). 
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