

Monitoring of Unvented Roofs with Diffusion Vents & Interior Vapor Control in a Cold Climate

Building Science Corporation

Joseph W. Lstiburek, Principal / Kohta Ueno, Senior Associate
joe@buildingscience.com / kohta@buildingscience.com

Project Summary

<u>Timeline</u>:

Start date:October 2016

Planned end date: September 2019

Key Milestones

- 1. Budget Period 2→3 Go/No-Go (October 2018)
- 2. Milestone 8.1 Winter 2 Report (January 2019)
- 3. Winter 3 Air Leakage System (February 2019)

Key Partners:

DowDuPont	NAIMA
Owens Corning	Nu-Wool
Cosella-Dörken	

Budget:

Total Project \$ to Date: \$355,647

DOE: \$279,687

Cost Share: \$75,960

Total Project \$: \$544,687

DOE: \$429,687

Cost Share: \$115,000

Project Outcome:

In an effort to improve moisture-managed high-R envelopes to reduce heating and cooling loads, the moisture safety of roofs insulated with fibrous insulation in cold climates is being monitored. This early-stage research will provide more options for lower-cost unvented roofs, thus increasing market penetration. At 5% of new single-family housing start, this would be on the order of 40,000 units/year.

Team

OFFICIAL TEAM MEMBERS				
DowDuPont	NAIMA			
Owens Corning	Nu-Wool			
Cosella-Dörken				

ADVISORY TEAM MEMBERS			
Johns Manville	Knauf		
Saint-Gobain	Rockwool		

- Project team includes leading building material manufacturers and industry trade associations.
- Advisory team includes further insulation manufacturers/industry leaders
- Team provides cost-share funding, project input/vetting, connection to market opportunities, and donations of key building materials/installation
- Annual on-site meetings to discuss project results (August 2017, August 2018)

Challenge: Energy Loss in Unconditioned Attics

- Ducts in unconditioned attic = substantial energy losses
 - Industry reluctant to move ducts out of attic
- Solution: bring ducts into conditioned space
- Unvented/conditioned attic
 - Keeps ductwork in conditioned space, duct leak issues eliminated
 - "Unventable" roof configurations (cathedrals, complex geometries)
 - Lowers risks for hot-humid climates (ductwork and AHU condensation)
 - Potential airtightness improvement

Challenge: Moisture Control in Unvented Roofs

- 2006 IRC onward: §R806.4 Unvented attic assemblies
 - Minimum R-value of "air impermeable insulation" (foam), controls wintertime condensation risks
- High cost of spray foam or rigid foam + nail base
- Anti-foam sentiment in industry segments
- Unvented roofs with fibrous insulation alone
 - Lower cost option but moisture risks; topic of research

Challenge

Problem Definition:

- Moisture-safe unvented roofs (spray foam, exterior rigid foam): code-compliant, effective, but costly with limited uptake
- Insulating roofs with fibrous insulation only: some research exists, but no systematic study with current vapor control and drying technologies
 - Assembly considered risky: quantifying risks
- Research aligns with the DOE goal of developing Moisture Managed High-R Envelopes
- Cautious approach:
 - High moisture risk assemblies = moisture failures
 - Damages reputation of technique & hurts energy efficiency efforts
- Targeting climate zones at least up to 5A

Approach

Approach:

- Climate Zone 5A Test Hut: side-by-side test roofs constructed and monitored for moisture behavior over 3 winters
- Using "diffusion vents": vapor open but air leakage closed detail at ridge to release accumulated moisture

Key Issues:

- Constructability of fibrous insulation at roofline/unvented
- Costs vs. current practice—estimated cost reduction from current SPF roof factor 2-3 typical
- Moisture measured by mold index model (from T-RH data)
- Visual inspection of roof bay conditions (summer disassembly)

Distinctive Characteristics:

- Side-by-side assembly and north/south test hut approach
- Cooperation from manufacturers in multiple insulation industries;
 DOE providing third party unbiased research

Test Hut Experimental Approach

- Climate Zone 5A test hut
- Eight north-south roof bays
- ±R-50 (14-3/4" framing, 2012 IECC)
- Test variables (changed Winters 1/2/3):
 - Vapor retarder: fixed perm, variable perm (several diffusion curves)
 - Diffusion vent at ridge, no diffusion vent, DV size, DV permeance
 - Fiberglass vs. cellulose
 - "Control" comparison §R806.4 spray foam + cellulose
- Varying interior boundary conditions
 - Winter 1: "Normal" interior conditions (constant T, ~30% RH)
 - Winter 2: Elevated RH (50% constant)
 - Winter 3: Air leakage into rafter bays

Test Hut South Elevation

Experimental Approach: Diffusion Vent

- Previous research: moisture concentrates at roof ridge
- Release water vapor via vapor-permeable watertight membrane (~500 perms)
- Previous installations & monitoring in CZ 2A (Houston, Orlando)

Experimental Approach: Instrumentation

Impact

- Potential for higher-R roofs
 (meeting 2012 IECC) insulated at roofline; ducts within conditioned space; greater airtightness, at lower costs than current practice
- Lower costs → wider deployment
- Knowledge from research informs potential moisture risks of all-fibrous insulation, and risk factors (interior conditions, orientation, roof location)
- Potential application in retrofit geometries (kneewall, short cathedral ceiling)

Progress: Winter 1 Takeaways

- "Normal" interior RH
- High moisture concentrated at roof ridges (gradient), north worse than south
- Non-diffusion vent (nDV) roofs show wintertime condensation, high sheathing moisture content (vs. diffusion vent roofs)
- Variable-perm ("smart") vapor retarder + DV safest combination
- All roofs pass ASHRAE 160 (MI)
- Fiberglass & cellulose similar
- Inward drive with fixed-perm VR

Progress: Winter 1 → **Winter 2 Changes**

- Replace poor performers from Winter 1
- Non-DV roofs changed with "small" and "tight" DVs
- Cellulose settling, especially on north side (full length of bay)
- Moisture evidence at nDV roofs
- Add humidification (50%)

Progress: Winter 2 Takeaways

- 50% "flatline" interior RH
- Roofs with diffusion vent & variable-perm VR safest, BUT
- 50% RH→ much more challenging; many roofs at risk of failure
- "Tight" diffusion vent (25 perms vs. 500 perms) did not work acceptably
- "Small" diffusion vent: better than nothing, but larger allows more drying
- All roofs pass ASHRAE 160 (MI)

Progress: Winter 2 → **Winter 3 Changes**

- "Tight" DVs to full size DVs
- New interior vapor control membrane
- Ridge disassembly (replace failed sensors)
- Mold growth occurring at roof ridges (despite ASHRAE 160)
- Repack all settled roof bays

Progress: Takeaways from Data to Date

- Unvented roof assemblies with fibrous insulation and interior vapor control can work
- Diffusion vent + variable-perm vapor retarder safest
- But at higher interior RHs, roofs accumulate moisture, in the risk range
- Disassembly revealed mold growth on sheathing & framing
- Airtightness of interior vapor control critical for performance → testing requirements
- Impossible to guarantee interior wintertime RH control (operation of ventilation system, tighter buildings)
- Difficult to recommend technology as-is for wide deployment (too many caveats/conditions)
- Code-compliant spray foam (§R806.5) roof safest by far

Stakeholder Engagement

- Annual meetings with team members (August 2017, August 2018) plus report updates
- Building insulation and building material manufacturers represented
- Research project presented at conferences (NESEA BE19, Passive House US, Buildings XIV)
- Consulting with residential and commercial building industry on implementing diffusion vent roofs (small scale deployments, retrofits)

Remaining Project Work

- Final winter of operation 2018-2019 (air injection) & 50% RH
- Continue data collection, observe summer dry-down
- Decommission and disassemble: sheathing conditions, airflow pathways in insulation?
- Final data analysis and recommendations
- Share results/recommendations with industry stakeholders
- Future research: limited retrofit applications?

Thank You

Building Science Corporation

Joseph W. Lstiburek, Principal / Kohta Ueno, Senior Associate
joe@buildingscience.com / kohta@buildingscience.com

REFERENCE SLIDES

Project Budget

Project Budget: Three-year project, covering monitoring of climate zone 5A

test hut

Variances: n/a

Cost to Date: Roughly 65% of total budget spent to date

Additional Funding: Cost share provided by funding partners

(Nu-Wool and NAIMA)

Budget History							
	L6 - FY 2018 ast)	FY 2019 (current)		FY 2020 (planned)			
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share		
\$258,331	\$68,960	\$ 171,355	\$46,039	n/a	n/a		

Project Plan and Schedule

- Start date: October 2016
- Planned end date: September 2019
- Three Winters of Operation
 - 2016-2017: Winter 1 ("Normal")
 - 2017-2018: Winter 2 ("Humidified")
 - 2018-2019: Winter 3 ("Air Leak")
- Go/no-go decision: viable assemblies based on roof moisture? (Mold Index)

- Current work:
 - Finishing Winter 3 data collection
 - Winter 3 start: no air leakage ("baseline operation")
 - Air leakage system in operation
- Future work:
 - Summer dry-down
- Disassembly & decommissioning M7 M8 M9 M10 M11 M12 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 M32 M33 M34 M35 M36 Blue = Desian/Implementation Start Finish Mar Feb Mar Apr May Aug Sep Oct Nov Dec Jan Feb Aug Sep Green = Reporting Nov Roof Assembly Selection 10/20/2016 11/17/2016 **BUDGET PERIOD 1** Vetting Test House, Site Visit 12/1/2016 11/3/2016 Roof Instrumentation Package Design 12/5/2016 1/2/2017 1/3/2017 Instrumentation Setup & Testing 1/20/2017 Test Plan to Industry Partners 1/3/2017 2/2/2017 1/23/2017 2/6/2017 Pre-Insulation Instrumentation ("Rough") Insulation/Installation Documentation 2/7/2017 2/22/2017 Post-Insulation Instrumentation ("Final") 2/7/2017 2/21/2017 Field Testing/Commissioning 2/8/2016 2/22/2016 Reporting: Instrumentation & Testing 3/22/2017 4/6/2017 Reporting: Initial Data (Sensor Function) 5/8/2017 5/22/2017 8/22/2017 Reporting: Winter 1 Results 9/18/2017 **BUDGET PERIOD 2** Develop and Test Humidification System 10/23/2017 11/21/2017 Install Humidification System 12/21/2017 1/4/2018 Reporting: Winter 2 Results, Humidifier 8/22/2018 9/17/2018 Develop and Test Air Leak System 9/20/2018 10/18/2018 **BUDGET PERIOD 3** Install Air Leak System 12/24/2018 Decommissioning and Disassmbly 8/21/2019 9/3/2019 Reporting: Winter 3 Results, Air Leakage 8/21/2019 9/16/2019 9/18/2019

Reporting: Final and Summary

10/16/2019