OLD HICKORY HYDROPOWER REHABILITATION ANALYSIS REPORT TEAM CUMBERLAND

David Hendrix, USACE Dan Patla, USACE

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."

File Name

OBJECTIVES

- Determine the benefits of turbine-generator unit replacement
- Optimize the design of the replacement units

2

CONSTRAINTS

- Inter-blade/Inter-channel vortices
- Pressure pulsations
- Outflow cavitation
- Equipment Limitations
- Pool Elevations
- Minimum Tailwater

- Time of No Generation
- Power Production Ramp Rates
- Spill Ramp Rates
- Minimum Flow
- Dissolved Oxygen

ANALYSIS

Construction Cost

Scheduled Outage

Water Availability & Energy Modeling

Comparative Benefit-Cost Analysis

DEFINITION OF ALTERNATIVES

Alternative	Description	MW	Rated Plant Capacity (MW)	Cost
Existing		25.0	100.0	
1	4 Peak Correct Kaplans	44.5	178.0	\$95,779,000
2	4 Uprated Kaplans	44.5	178.0	\$98,679,000
3	3 Kaplans, 1 Fixed	44.5	178.0	\$98,848,000
4	2 Kaplans, 2 Fixed	44.5	178.0	\$97,117,000

5

COMPARISON OF ALTERNATIVES

	Alternative 1 - 4 Peak Correct Kaplans	Alternative 2 - 4 Uprated Kaplans	Alternative 3 - 3 Kaplans, 1 Fixed	Alternative 4 – 2 Kaplans, 2 Fixed		
Estimated Outage Cost/year	\$1,770,250	\$1,770,250	\$1,770,250	\$1,770,250		
Construction Costs	\$95,779,000	\$98,679,000	\$98,848,000	\$97,117,000		
Estimated Annual Energy Benefit*	\$2,078,139	\$2,158,631	\$1,988,183	-\$403,311		
Estimated Annual Capacity Benefits*	\$1,344,179	\$2,349,544	\$2,765,907	(\$2,603,055)		
BCR	0.78	1.00	1.05	-0.67		
*at completion of construction						

U.S.ARM

RECOMMENDATIONS

- Implement Alternative 2 (4 uprated Kaplans)
- Conduct shaft study during design phase
- Utilize optimization software, such as GDACS T2

PATH FORWARD

- Program Management Plan Approval 2Q17
- Design 3Q17
- Construction 2022

