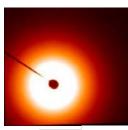
NSLS-II Status and Capabilities: Examples of SAXS and XRD Characterization of RPV Steels and Nanostructured Ferritic Alloys

Lynne E. Ecker and David J. Sprouster Department of Nuclear Science and Technology Brookhaven National Laboratory

<u>G. Robert Odette</u>, Nathan Almirall, Tiberius Stan and Peter Wells University of California Santa Barbara

> DOE Cross-cutting Materials Meting August 15, 2016



a passion for discovery

Brookhaven Science Associates

Presentation Outline

- New partnership between NSLS-II and NSUF
- NSLS-II capabilities including the robot
- Example small angle X-ray scattering (SAXS) characterization of irradiated reactor pressure vessel steels
- Example X-ray Diffraction (XRD) studies of RPV and NFA (ODS) Alloys
- This research is a very close and long-term *science* collaboration between BNL and UCSB (NEET) involving frequent scheduled conference calls, exchanges of ideas and participation by UCSB in NSLS-II beamtime and data analysis development
 - Data analysis challenges and opportunities

National Synchrotron Light Source – II - NSUF User Facility

- Formal partnership between NSUF and NSLS-II in August 2016
- Six percent beam time each year for materials for nuclear energy systems at the NSLS-II X-ray Powder Diffraction (XPD) beamline
- NSLS-II is a DOE user facility with support infrastructure, guest center, training, accommodations and established proposal process
- Unique radiation handling capabilities
- Scientific support for proposals, experiments, and data analysis

Obtaining Beamtime at NSLS-II XPD

• NSUF guaranteed time: proposal process outlined in the Consolidated Innovative Nuclear Research FOA

General User Proposal:

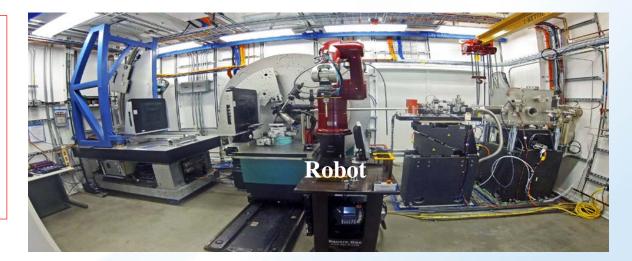
- Three submission cycles per year: January 31, May 31, September 31
- Competitive review process based on feasibility and quality of science
- https://www.bnl.gov/ps/
- We can help with process! (lecker@bnl.gov)

My Proposals

The PASS system is the central location for submitting beamtime proposals for NSLS-II. To see a list of beamtime run cycles, deadlines, and available beamlines, see the NSLS-II call for General User proposals.

It is highly recommended that you contact the beamline on which you are planning to run your experiment to ensure:

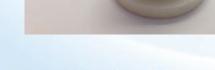
- 1. That your experiment is feasible
- 2. The beamline has the current capacity required for your experiment
- 3. That you are selecting the correct beamline for your experiment


NOTE: After entering your proposal information, make sure you create a time request and use the SUBMIT button to complete the submission process.

X-ray Powder Diffraction XPD Beamline

- Quantitative microstructural characterization of heterogeneous, realworld complex material systems
- High-throughput for high energy diffraction and scattering
- Versatile suite of techniques
- In situ experiments made possible by ultra-high x-ray flux

Energy Range: 30-80 keV Flux: 10¹³ ph/s Spot Size: mm-µm Time Resolution: ms Techniques: Powder diffraction, PDF, SAXS, CT, XRD-CT

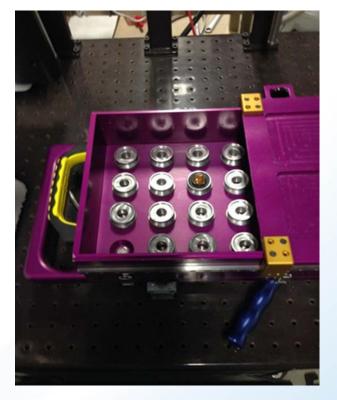

XPD Robot

- High throughput at XPD: < 3 min/sample @ 25 mA (<< 500 mA max)
- Mail in access (this is the antithesis of this collaboration)
- Sample holders are bar-coded with sample ID
- Up to 100 mrem/h @ 30 cm dose rates (600mrem/h possible)

Sample Holders and Containment

- Sample holder provides containment
- Solid samples require single layer of containment
- Holders have a magnetic closure ring for rapid loading
- Sample holders are bar coded

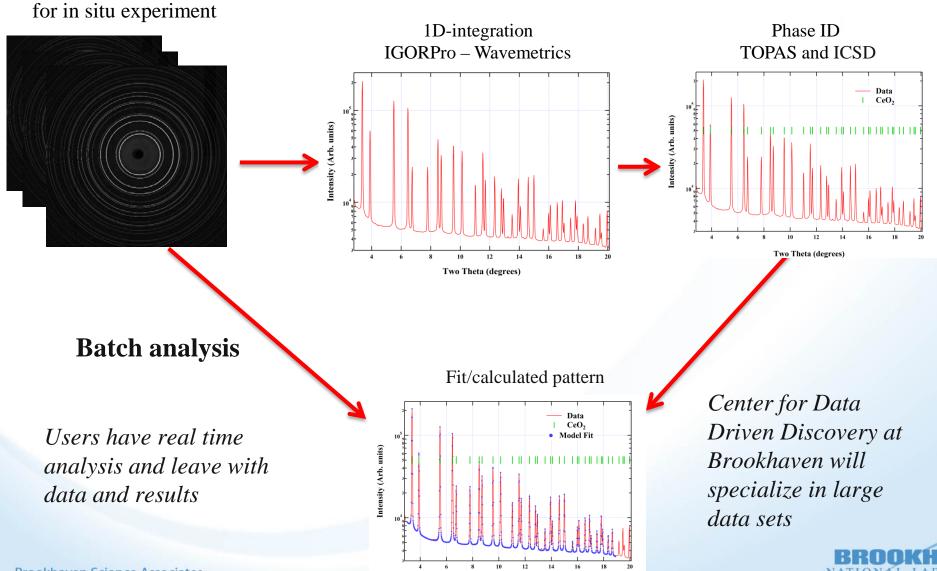
remove sample from base



RPV steel sample ~2.5mm

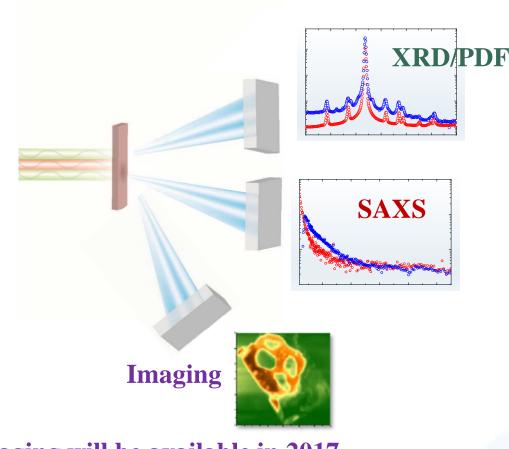
Robot and Dose Rate Limits

- Robot reduced dose rates enabled low fluence irradiated U-Zr alloy fuel study
- Limits for gamma at the NSLS-II are generally 5 mrem/h @ 30 cm
- Limits for gamma at XPD for steels when using the robot are 100 mrem/hr @ 30 cm
- Twenty samples loaded in the magazine
 600 mrem/h on contact including beta
- Using the robot reduces dose to hands
- Magazines hold up to 20 samples (depending on activity)
- Users load the holders and/or magazine at their home institutions



Open magazine showing holders

NSLS-II XPD Data Analysis


Data flow for 2D-1D and Rietveld Fitting

Over 12000 2D patterns

Two Theta (degrees)

NSLS-II XPD, XRD, SAXS and PDF Analysis

Imaging will be available in 2017

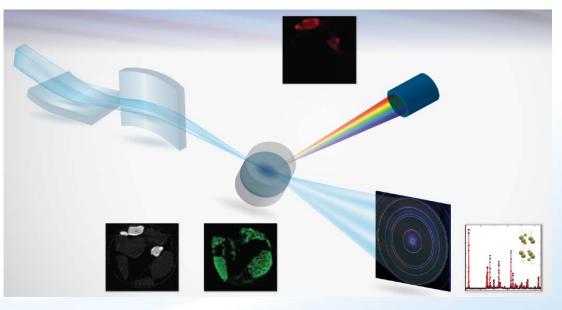
- Morphology
- Mapping capability for information from Absorption and Diffraction

Diffraction:

- Crystal structure
- Lattice parameter
- Strain (isotropic/anisotropic)
- Grain or domain Size
- Point defects and dislocations

PDF:

• Medium range order

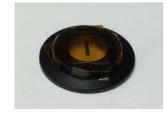

SAXS:

- Size of second phase particles
- Volume fraction
- Shape/orientation

Diffraction Tomography for Nuclear Energy Materials

- Engineering scale samples for studying cracks, joining and flaws during manufacturing
- Measure the sample morphology (absorption and diffraction imaging), diffraction patterns (crystal structure, grain size and lattice strain) and fluorescence maps (chemical composition)
- Ideal for stress corrosion cracking, fatigue and eutectic formation

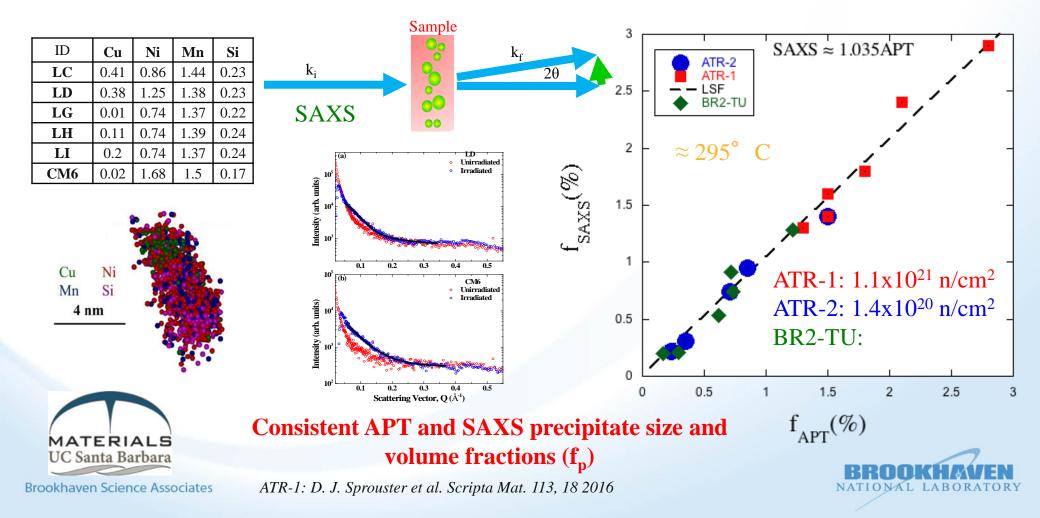
FY 2015 NEET Infrastructure Award


Schematic of a Diffraction Tomography Experiment

NSLS-II XPD Irradiated & Unirradiated Sample Inventory

• Ultra high speed-automated data collection provides and unparalleled opportunity for nuclear materials characterization including a new paradigm for combinatorial experiments

Samples	#	Partner institution	Technique	Mission	Achievement
RPV	> 400	UCSB	XRD + SAXS	NEET/LWS	NSLS-II First Light Experiment, BES Science highlight
RPV	20	ORNL	XRD + SAXS	NEET/LWS	
SiC	35	ORNL	XRD + PDF	NEET/AFC	
UO ₂	20 (30,000 XRD patterns)	LANL	XRD	AFC	First in-situ, real time experiment at NSLS-II
UZr & UMo	80	INL	XRD + SAXS	AFC	3
ODS/NFA	30	LANL UCSB	XRD + SAXS	FES	$= \langle 0.07\% \text{ Cu} \rangle$ 0.07-0.20% Cu Open: 5 different conditions
FMS	12	LANL	XRD	AFC	0.07-0.2070 Cu Ci 1 ATD 2 C 1
FeCrAl	18	ORNL	XRD + SAXS	NEET/LWS	
HEA	9	ORNL UT	XRD + SAXS	BES/EFRC	SAXS Alloy Matrix
Alloy 690	9		XRD		e ti se
					te i


Irradiated silicon carbide sample ready for use with robot

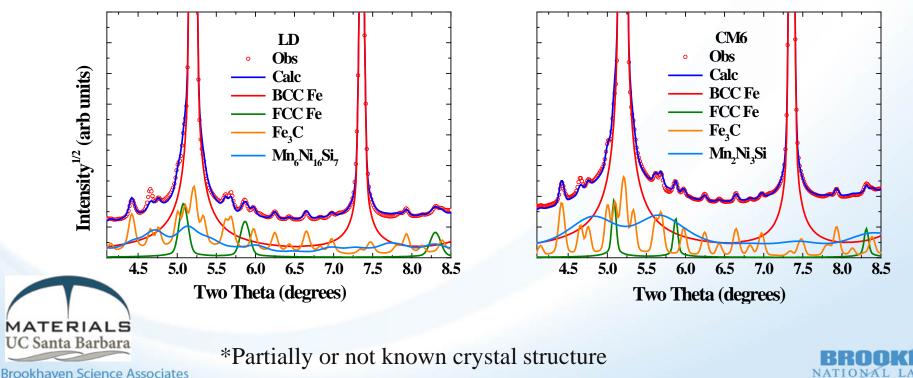
Microstructural Characterization of Irradiated RPV steels

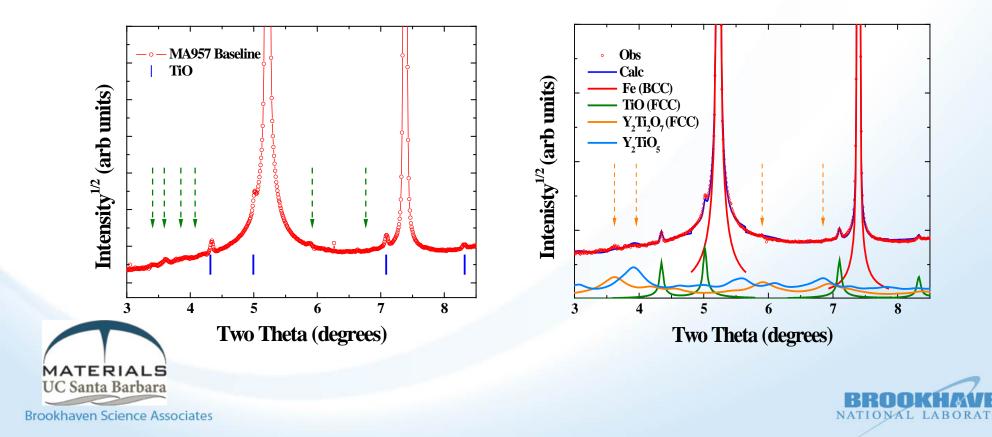
 Example of intermetallic precipitate measurements in 6 core RPV steels in UCSB irradiation experiments: ATR-1 (SAXS + XRD), ATR-2 and BR2-TU (SAXS to date)

Application and Impact of SAXS and XRD

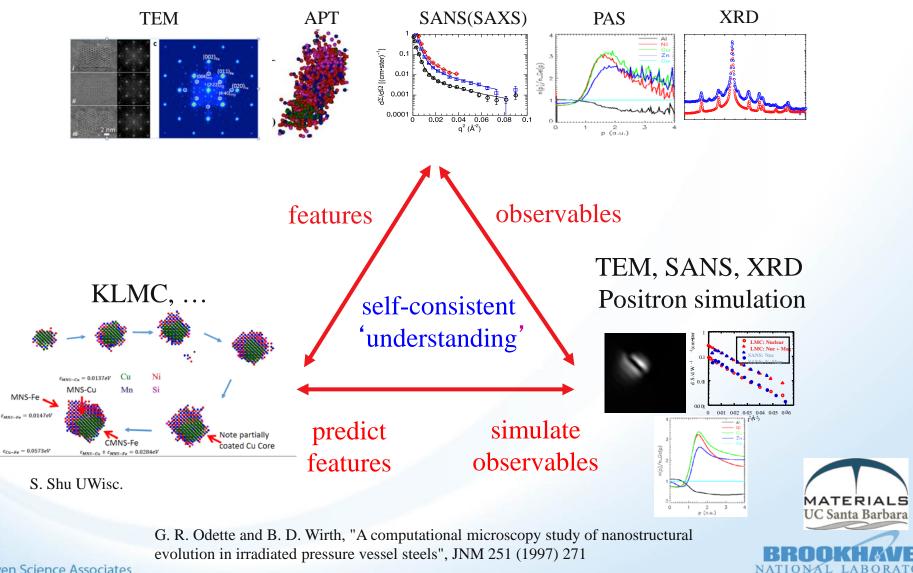
 Extended life ΔT models: f_p versus effective fluence* model developed before ATR-2 SAXS (green triangles) and APT data (large red circles)

Complications - Challenges - Opportunities


- SAXS data analysis requires new procedures that are still under development and *especially* complimentary APT, XRD, SANS, TEM,...
 - Various pre-existing features like carbides with very large size range & different scattering characteristics must deconvolute nano-precipitate signal
 - Irradiation may change the coarser pre-existing features
 - May be multiple populations of nano-precipitates
 - Scattering contrast factors (composition & atomic density) unknown a priori
 - Massive amount of data requires automation
- Bad news is also good news SAXS plus XRD provide a potential *"one stop shopping"* to characterize the "entire" micro-nanostructures
- Many opportunities X-ray microscope, glancing incidence, ... will probe ion irradiations and lab on a chip-type experiments


XRD Phase Identification - Micro to Nano

- Limited f and small d very difficult to use XRD to characterize nanoscale features due to low signals and enormous line broadening
- Major XRD advance at NSLS-II characterizing G- and β₂ phase nano precipitates - SAXS (or APT/SANS) for feature size used in a PONKCS* simulation fit to the major peak background 2θ spectrum
- Also characterized carbides and some retained austenite



Characterization of the Nano-Oxides

- Controversy regarding structure of nano-oxides in nanostructured ferritic alloys (aka ODS steels)
- Applied PONKCS technique to various NFA example MA957
- Other nanoscale techniques to be explored (coherency strains?)

Multi-Tool Multi-Simulation Computational Microscope

Summary and Future Opportunities

- Major XRD advance in characterizing G- and Γ_2 phase RPV steel nanoscale precipitates
- SAXS results are generally consistent with SANS and APT (much more work required)
- XRD/SAXS to help develop rigorous physical ΔT models for extended life
- XPD beam time available through NSUF current open call
 - BNL will work with users from proposal to data analysis stages
 - Robot routinely allows use of activated materials and very high throughput
 - High resolution SAXS/XRD/PDF available
 - Tomography coming in 2017
 - Routine data analysis is automated but complex engineering materials will require new methods and multiple techniques

Many new future capabilities and opportunities