

### LWRS Cable Aging and Cable NDE





Light Water Reactor Sustainability R&D Program

Leo Fifield, PhD Pacific Northwest National Laboratory

Leo.Fifield@pnnl.gov

DOE-NE Materials Crosscut Coordination Meeting August 16, 2016, Webinar



### Cables in Nuclear Power Plants (NPPs)

#### **Cable Functions**

| <ul> <li>Control</li> </ul>         | 61% |
|-------------------------------------|-----|
| <ul> <li>Instrumentation</li> </ul> | 20% |
| <ul> <li>AC power</li> </ul>        | 13% |
| <ul> <li>Communication</li> </ul>   | 5%  |
| <ul> <li>DC power</li> </ul>        | 1%  |

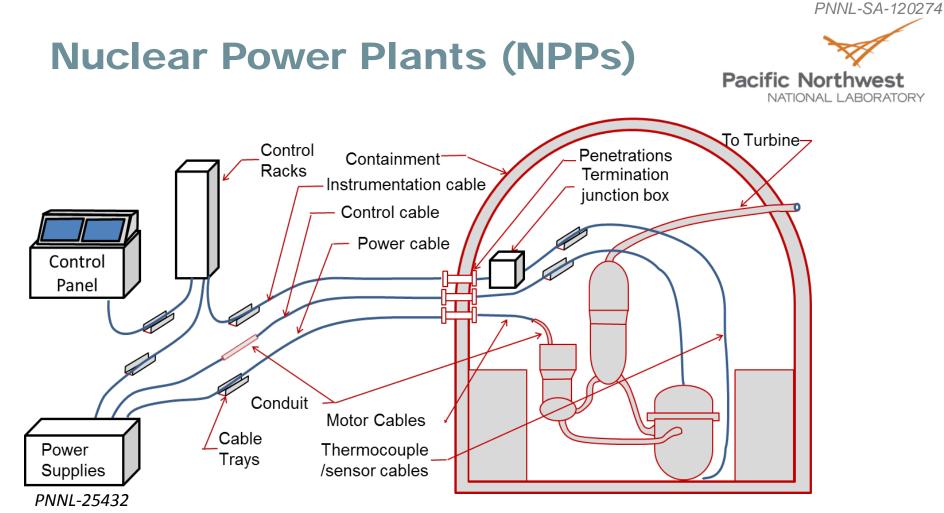
•Low Voltage, Medium Voltage

#### Amount of Cable

**Boiling Water Reactor (BWR)** 

 360 miles of cable in in primary/secondary containment

Pressurized Water Reactor (PWR)


 1000 miles of cable in containment building

NUREG/CR-4257





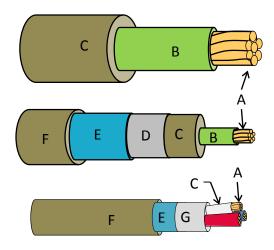
SAND96-0344



• Ramifications of *cable failure* can be significant, especially for cables connecting to: off-site power, emergency service water and emergency diesel generators



### **Cable Construction**


- Insulated metal conductor
- Ground/drain wire
- Semiconducting screen
- Filler
- Metallic shield
- Individual and/or overall jacket
- Single or multi-conductor



MV power cable



LV I&C cable



- A Uncoated copper conductor
- B Semiconducting Screen
- C Insulation
- D Insulation screen extruded semiconductor
- E Shielding copper tape with/without drain wire
- F Jacket
- G Helically applied binder tape

PNNL-25432



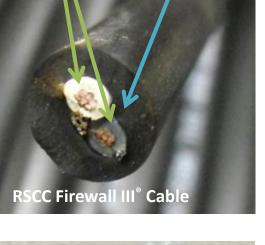




### Cable Polymeric Materials XLPE insulation

CSPE jacket

#### Insulation


- •XLPE cross-linked polyethylene (36% of cables)
- •EPR ethylene-propylene rubber (36% of cables)
- •Kerite<sup>®</sup>-HT EPR-like material (5% of cables)
- •SiR silicone rubber (5% of cables)

### Jacketing

- •Hypalon<sup>®</sup> chlorosulfonated polyethylene (CSPE)
- Neoprene polychloroprene
- CPE chlorinated polyethylene
- •PVC poly(vinyl chloride)

NUREG/CR-7153





**Okonite-FMR®** Cable

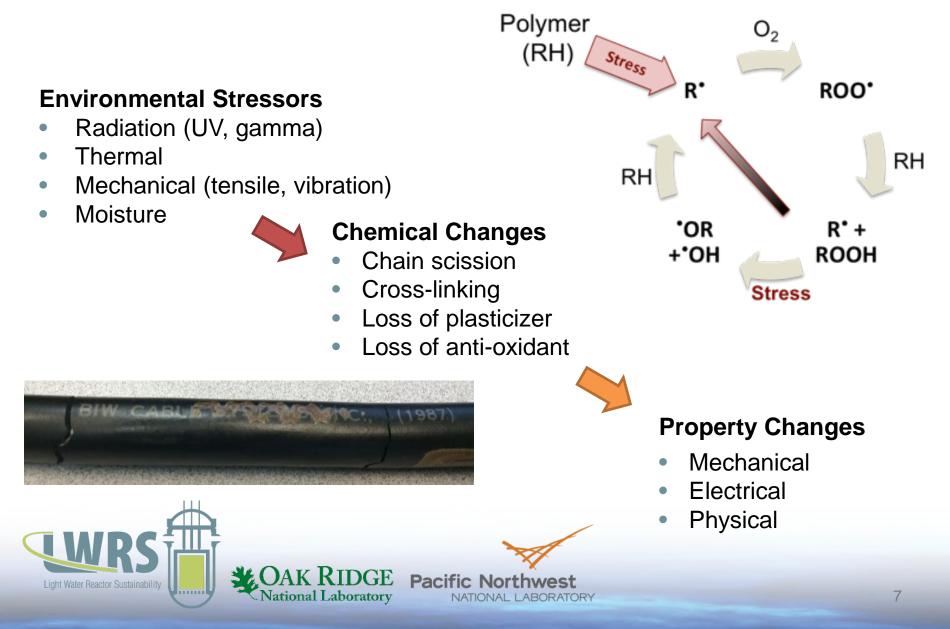
### **In Plant Conditions for Cables**

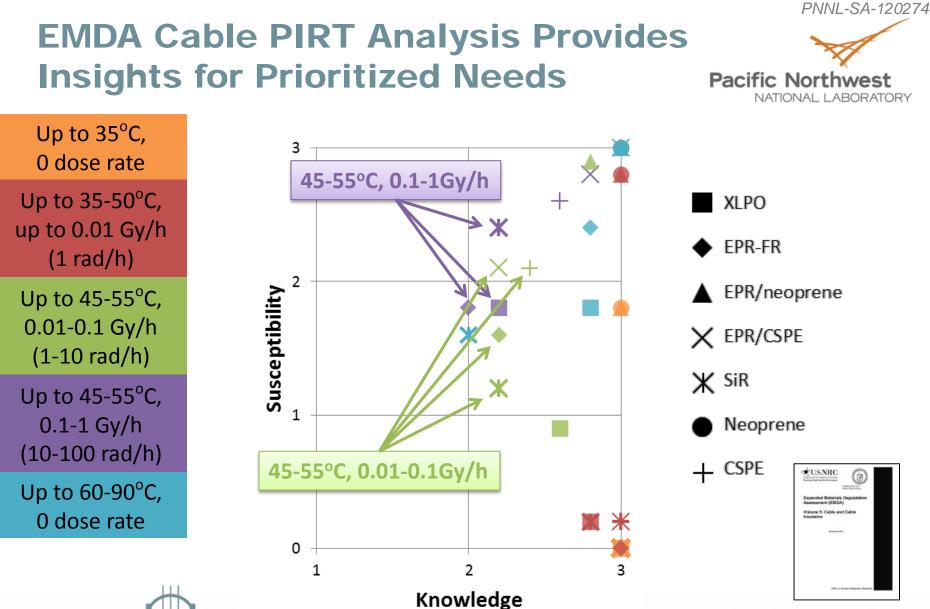
#### Example Area Classification

#### **Example Generic Hot Spots**

|   | Applicable environmental conditions<br>Maximum values in<br>normal service |                                    | Reactor             | Hot spot | To some or seture          | Rad.                     | Dose         |             |   |
|---|----------------------------------------------------------------------------|------------------------------------|---------------------|----------|----------------------------|--------------------------|--------------|-------------|---|
|   |                                                                            |                                    |                     | type     | location region            | Temperature              | dose<br>rate | (40 yr)     |   |
|   | Temp.                                                                      | Total 40-yr<br>dose                | Accident conditions | PWR      | Steam<br>generator box     | 47-48 °C<br>(max 100 °C) | 0.1<br>Gy/h  | 4<br>Mrad   |   |
| A | ≤ 40 °C                                                                    | ≤10 <sup>2</sup> Gy<br>(0.01 Mrad) | N/A                 |          | Primary loop               | 50 °C                    | 0.7<br>Gy/h  | 25<br>Mrad  |   |
| В | ≤ 50 °C                                                                    | ≤5×10 <sup>4</sup> Gy              | N/A                 |          | Drywell neck               | $100\pm5~^{\circ}C$      | 0.5<br>Gy/h  | 18<br>Mrad  |   |
|   | <u>⊒ 30 0</u>                                                              | (5 Mrad)                           | N/A                 | BWR      | Primary steam relief valve | 70 ± 5 °C                | 0.01<br>Gy/h | 0.4<br>Mrad |   |
| С | ≤ 50 °C                                                                    | ≤5×10⁴ Gy<br>(5 Mrad)              | Applicable          |          |                            | Power range              | 80 ± 5 °C    | 0.24        | 8 |
| D | Local conditions higher than for C (e.g. hot spots)                        |                                    |                     |          | monitor                    | 00 - 5 0                 | Gy/h         | Mrad        |   |

IAEA NP-T-3.6


IAEA-TECDOC-1188 vol1








### **Confounding Environmental Stresses**





# Light Water Reactor Sustainability

EMDA=Expanded Materials Degradation Assessment, NUREG/CR-7153, Vol. 5 PIRT=Phenomena Identification and Ranking Technique

### Cable Degradation Knowledge Gaps:



- Diffusion limited oxidation (DLO)
  - How to improve correlation between field and accelerated aging?
- Inverse temperature effects (ITE)
  - What dose/temp. combinations avoid ITE in accelerated aging?
- Thermal/radiation exposure
  - At what dose does thermal damage dominate radiation damage?
- Synergistic effects
  - What is the effect of rad/heat exposure sequence on aging?
- Acceptance criteria for characterization techniques
  - What should measured values be for acceptable qualified condition?



### Cable Aging/NDE Task Activities Map to MAaD Targets



#### LWRS Targets for Materials Aging and Degradation

#### **Activities**

Cable Aging

- Accelerated Aging Methods
- Materials Characterization-
- Degradation Pathways
- Models of Aging (Accelerated vs. Long Term)
- Cable Rejuvenation

#### Cable NDE

- Key Indicators
- Current Methods
- New Methods
- Predictive Models

- Measurements of degradation
- Mechanisms of degradation
  - Modeling and simulation
  - Monitoring
  - Mitigation strategies



11

PNNL-SA-120274

### **LWRS** Materials Aging and Degradation **MAaD Pathway**

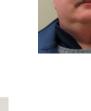
Pathway Lead – Keith Leonard (ORNL)

Deputy Pathway Lead – Tom Rosseel (ORNL)

Cable Aging – Leo Fifield (PNNL), Robert Duckworth (ORNL)

Cable NDE – Bill Glass (PNNL)
















### **LWRS Cable Research Program**







## Cable Research Coordination & Collaboration Team (CRCCT)

- Meets face-to-face 1-2 times per year
- Often co-located with EPRI Cable Users Group
- Cable Research Working Group Collaboration Portal (SharePoint)
- Coordinated Roadmap of activities
- Avoid duplication toward common goals











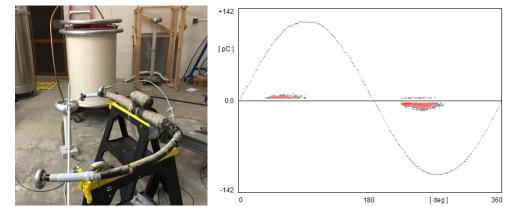
### **Working with Industrial Partners**



#### <u>AMS FDR Measurements</u>

- Frequency Domain Reflectometry (FDR) based condition monitoring system has been developed by Analysis & Measurement Systems (AMS) Corporation through DOE LWRS Phase II SBIR
- Measurable differences observed over course of irradiation

#### <u>San Onofre MV Splice</u> <u>Measurements</u>


- Splices harvested from San Onofre switchyard by AMS
- PD and AC Withstand measured
- Two out of three failed to meet standard for AC withstand.
- CHAR measurement planned to see if changes happened during handling

OAK RIDGE National Laboratory





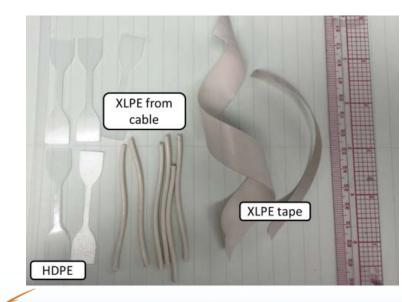
Two 50-foot long cables with 1 foot exposures prior to insertion into Co-60 irradiator (left) and FDR measurement by AMS (above)



Setup of AC Withstand/PD Meas. (left) and resultant PD waveform at 7 kV (right)

#### Robert Duckworth, ORNL

### **University Partnership Example**


Iowa State University NEUP on Cable NDE Professor Nicola Bowler group

- Developing new characterization methods
- Fundamental modeling of degradation
- Access to ISU resources in
  - Nuclear engineering
  - Complex data analysis
  - Spectroscopy

www.mse.iastate.edu/nbowler/

Pacific Nort

NATIONAL LABORATORY



IOWA STATE







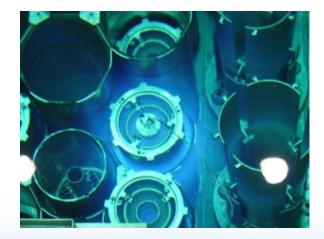
### Gamma Exposure Capabilities





#### PNNL

High Exposure Facility (HEF)


- Temperature control through mechanical convection ovens
- Dose rates from 1 to 1000 Gy/h



#### ORNL

High Flux Isotope Reactor (HFIR) Spent Fuel Gamma Irradiation Facility (GIF)

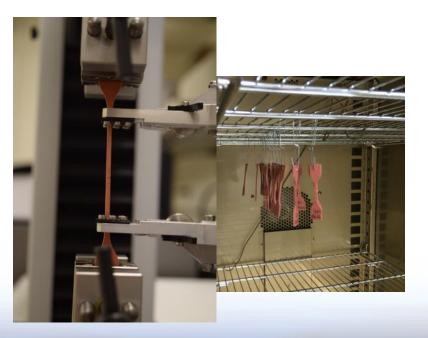
- Dose rates from 200 to 1000 Gy/h
- Co-60 Irradiator
- Uniform dose rate of 140 Gy/h



### **Firewall<sup>®</sup> III XLPE Specimen Matrix**

| Dose Rate (Gy/h) | 60C               | 90C               | 115C              |
|------------------|-------------------|-------------------|-------------------|
| 552              | 10d, 15d, 25d     | 10d, 15d, 25d     | 10d, 15d, 25d     |
| 501              | 5d, 20d, 25d      | 5d, 20d, 25d      | 5d, 20d, 25d      |
| 458              | 5d, 10d, 15d, 20d | 5d, 10d, 15d, 20d | 5d, 10d, 15d, 20d |
| 419              | 5d, 20d, 25d      | 5d, 20d, 25d      | 5d, 20d, 25d      |
| 385              | 5d, 10d, 15d, 20d | 5d, 10d, 15d, 20d | 5d, 10d, 15d, 20d |
| 355              | 5d, 20d, 25d      | 5d, 20d, 25d      | 5d, 20d, 25d      |
| 328              | 5d, 10d, 15d, 20d | 5d, 10d, 15d, 20d | 5d, 10d, 15d, 20d |
| 304              | 5d, 20d, 25d      | 5d, 20d, 25d      | 5d, 20d, 25d      |
| 283              | 5d, 20d, 25d      | 5d, 20d, 25d      | 5d, 20d, 25d      |
| 263              | 5d, 10d, 15d, 20d | 5d, 10d, 15d, 20d | 5d, 10d, 15d, 20d |
| 246              | 5d, 20d, 25d      | 5d, 20d, 25d      | 5d, 20d, 25d      |
| 230              | 5d, 10d, 15d, 20d | 5d, 10d, 15d, 20d | 5d, 10d, 15d, 20d |
| 215              | 10d, 15d, 25d     | 10d, 15d, 25d     | 10d, 15d, 25d     |
| 202              | 5d, 20d, 25d      | 5d, 20d, 25d      | 5d, 20d, 25d      |
| 190              | 10d, 15d, 25d     | 10d, 15d, 25d     | 10d, 15d, 25d     |
| 179              | 5d, 20d, 25d      | 5d, 20d, 25d      | 5d, 20d, 25d      |
| 169              | 5d, 20d, 25d      | 5d, 20d, 25d      | 5d, 20d, 25d      |
| 160              | 5d, 20d, 25d      | 5d, 20d, 25d      | 5d, 20d, 25d      |
| 151              | 5d, 10d, 15d, 20d | 5d, 10d, 15d, 20d | 5d, 10d, 15d, 20d |
| 143              | 5d, 10d, 15d, 20d | 5d, 10d, 15d, 20d | 5d, 10d, 15d, 20d |
| 136              | 5d, 20d, 25d      | 5d, 20d, 25d      | 5d, 20d, 25d      |
| 129              | 10d, 15d, 25d     | 10d, 15d, 25d     | 10d, 15d, 25d     |
| 123              | 5d, 20d, 25d      | 5d, 20d, 25d      | 5d, 20d, 25d      |
| 117              | 5d, 10d, 15d, 20d | 5d, 10d, 15d, 20d | 5d, 10d, 15d, 20d |




### **Polymer Aging Characterization** and Testing Laboratory at PNNL Pacific Northwest

#### Aging

- Advanced protocol ovens with temperature logging
- Dedicated dynamic mechanical analyzer (DMA) for in-situ aging

#### Test and Characterization

- Test stand with contact extensometer
- Modulated differential scanning calorimeter (M-DSC)
- Digital microscope
- Photographic documention booth

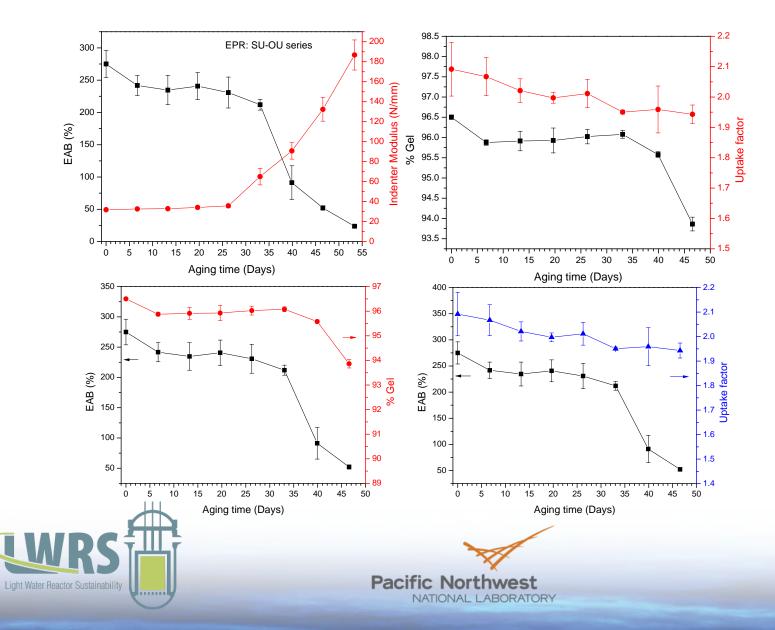






### Characterization of Aged and Received Cable Materials

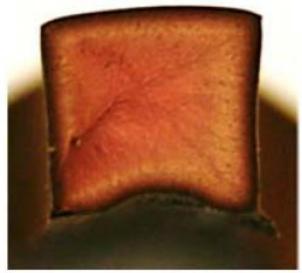
- Visual
- Density

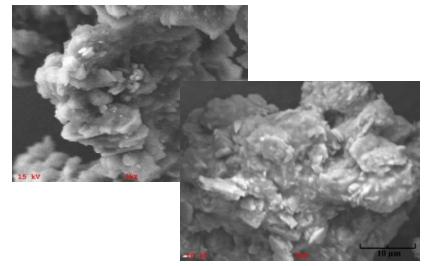

 Aging curves toward activation energies and end of life behavior determination

- Mass
- DSC (differential scanning calorimetry) (incl. OITP, OIT)
- DMA (dynamic mechanical analysis)
- TGA (thermal gravimetric analysis)
- FTIR (Fourier transform infrared spectroscopy)
- XRD (x-ray diffraction)
- EAB (elongation at break)
- IM (indenter modulus)
- Gel/swell
- Permittivity
- Breakdown voltage
- SEM (scanning electron microscopy






### **Gel Content and Uptake Factor**

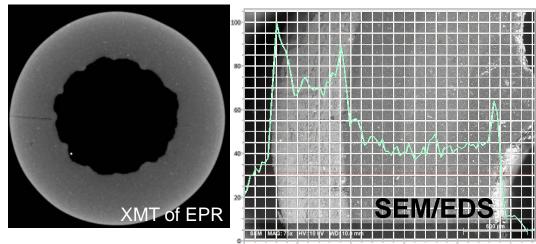


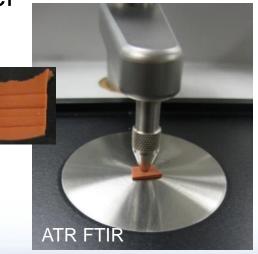

### Inhomogeneous Aging Study Understanding of Mechanisms<sup>Pa</sup>

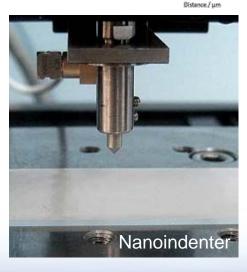


- Diffusion Limited Oxidation
- Nucleation of Degradation
- Effect of Sample Geometry







21

### Microstructure Analysis Imaging and Quantifying Degradation Pacific Northwest

- Defect mapping
  - X-ray microtomography
- Chemical mapping
  - TOF-SIMS/XPS
  - SEM/EDS
  - FTIR/Raman
- Mechanical mapping
  - Nanoindenter









### **Focus Cable Materials**

- Legacy material formulations
  - XLPE, EPR insulation
  - Hypalon, Neoprene, CPE jackets
- Modern materials
  - That closely approximate legacy materials (Firewall III XLPE)
- New Old Stock
  - Stored since manufacture
- Harvested
  - Installed in nuclear power plant

| Rank | Manufacturer              | Insulation | # Plants |
|------|---------------------------|------------|----------|
| 1    | Rockbestos Firewall III   | XLPE       | 61       |
| 3    | Brand-Rex                 | XLPE       | 30       |
| 7    | Raychem Flametrol         | XLPE       | 23       |
| 2    | Anaconda Y Flame-Guard FR | EPR        | 35       |
| 4    | Okonite FMR               | EPR        | 26       |
| 8    | Samuel Moore Dekoron      | EPDM       | 19       |
| 9    | BIW Bostrad 7E            | EPR        | 19       |
| 5    | Kerite HTK                | ~EPR       | 25       |

EPRI 103841R1







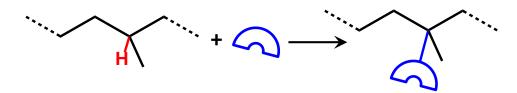
### Cable Aging Mitigation: Cable Rejuvenation



Goal: Recover performance and inhibit further degradation.

#### **Sources of performance loss:**

- Loss of plasticizer
- Molecular chain scission
- Degradative crosslinking




Thermally-initiated radical reactions cause chain scission and crosslinking



#### **Strategies for Rejuvenation:**

- Plasticizer replacement
- Constructive crosslinking
- New polymer network creation



Chemical anchors added to polymer: a platform for crosslinking and functionality

### Challenges

- Availability of Materials
  - NOS relevant materials
  - Harvest materials with known conditions
- Knowledge of Actual Plant Conditions
  - Actual temps and totals doses over 40 years
- High Total Dose at Low Dose Rate
  - Time and \$\$ are limiting for low dose rate (<100Gy/h), high total dose (>50 Mrad) experiments



### **Cable Aging Path Forward**

- Characterization of NOS/Harvested Legacy Cables
- Mid dose rate Combined Thermal/Gamma studies
- Inhomogeneous Aging studies
- Lower dose rate Combined Thermal/Gamma
- Revised Aging Models
- Cable Rejuvenation



#### Nuclear Power Plant Cable Aging Management Strategy Pacific Northwest NATIONAL LABORATORY

- Evaluate for susceptibility focus on rooms/areas with highest temp and highest radiation. Also give special attention to most safety critical components. Select samples for test.
- Visual walk-down looking for visible indications on jackets.
- FDR, Tan-Delta and other bulk tests looking for worst case areas of degradation on sample of cables.
- Local specific NDE (indenter, capacitance, FTIR, ...) at local area identified with bulk tests.
- **Repair/replace** where indicated. Consider also replacement in similar environments even if no degradation is observed.



#### Condition-Monitoring Techniques for Electric Cables Used in NPPs (NRC Reg Guide 1.218)



| Test                           | Applicability    | Ends  | Damage | Comment                |
|--------------------------------|------------------|-------|--------|------------------------|
| DC High Pot/ Step Voltage      | Cable – 2/C      | Both  | Maybe  | Not trendable          |
| Very Low Freq. Tan-Delta       | Cable – 2/C      | Both  | Yes    | Not trendable          |
| Visual / Illum. Borescope      | Visible exterior | No    | No     | Not quantitative       |
| Indenter                       | Local Jacket     | No    | No     | Trendable              |
| Dielectric Loss Dissipation    | Cable – 2/C      | Yes   | No     | Not for long/Irge cble |
| Insulation Resistance          | Cable – 2/C      | Both  | No     | Not trendble/uncrtain  |
| Partial Discharge              | Cable – 2/C      | Both  | Yes    | Locates weak point     |
| Time Domain Reflectometry      | Cable – 2/C      | Both  | No     | Limited val for insul. |
| Frequency Domain Reflectometry | Cable – 2/C      | Maybe | No     | Can ID local flaws     |
| IR Thermography                | Under load       | No    | No     | Weak signal for insul. |



 $\bigcirc$ 

### **Cable Health Evaluation**



- Destructive test vs. Nondestructive
- Full length cable vs. locally accessible point
- In-situ vs ex-situ (in place or sample to lab)
- Disconnected vs connected/energized
- Shielded vs non-shielded
- Multi vs single conductor





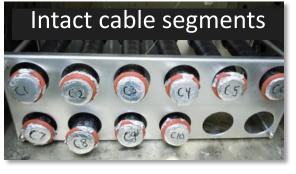
### Cable NDE and Condition Monitoring Objectives



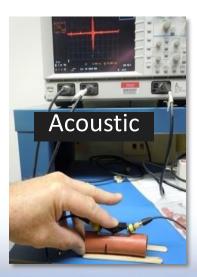
Develop/Demonstrate NDE techniques that provide <u>sensitive</u>, <u>in-situ</u> assessment of cable performance with the ability to:

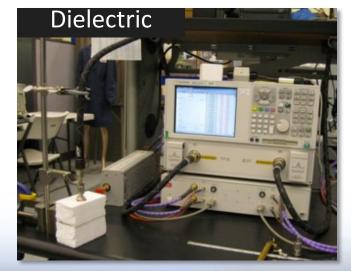
- Reduce uncertainty in safety margins
- Enable informed replacement planning
- Provide confidence in continued use




### Non-Destructive Evaluation (NDE) of Cable Remaining Useful Life

- PNNL-SA-120274
  Pacific Northwest
  - NATIONAL LABORATOR

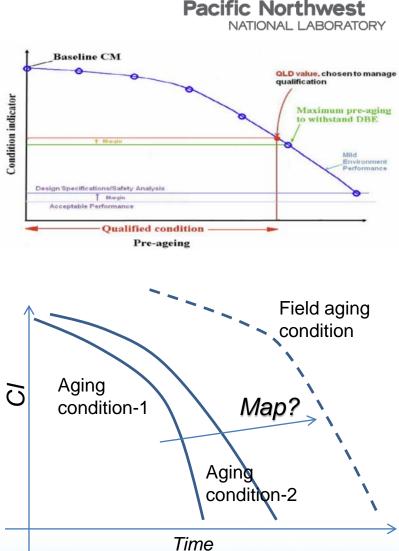

- Coordination Aging and NDE
- Sensitivity analysis of key indicators
- Correlation of destructive and nondestructive data
- Assessment of NDE methods









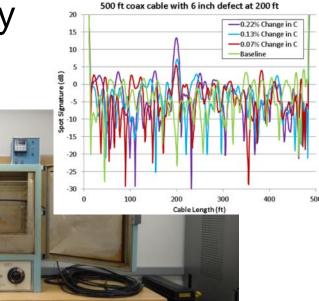






### Cable NDE and Condition Monitoring Scope:

- Identify key indicators of aging
  - Determine measurements capable of "early warning" of condition degradation
  - Correlate aging with macroscopic material properties
- Advance state-of-the-art and develop new/transformational NDE methods
  - Enable in-situ cable condition measurements
  - Demonstrate on laboratory-aged and fielded cables
- Develop models for predicting condition-based remaining life
  - Enable condition-based qualification methodology
  - Use cable condition index data, conditionbased aging models





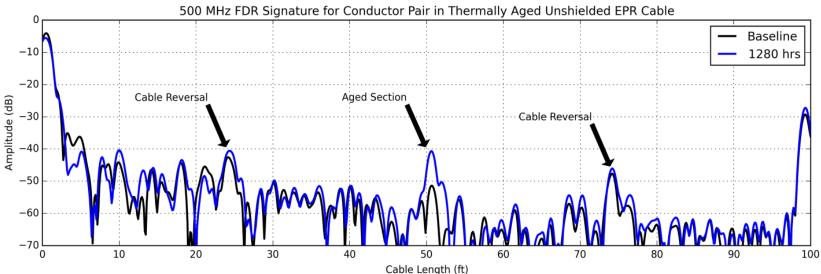

PNNL-SA-120274

### **Full Cable Measurements**

- Frequency Domain Reflectometry
- Dissipation Factor (tan  $\delta$ )
- High Pot
- Partial Discharge





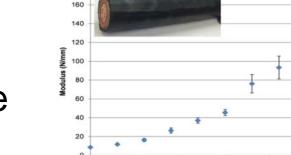





### Thermally Aged Unshielded EPR Cable










 $\sum$ 

### **Local Spot Measurements**

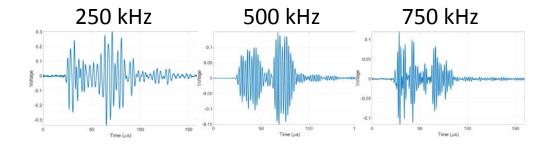
- Indenter
- Capacitance
- Acoustic
- Dielectric Constant



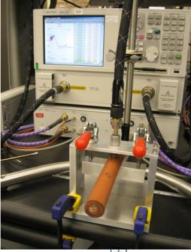
200

400

600


Age (Days)

800


1000




Pacific Northwest



1200







#### Qualitative Assessment of Local Cable NDE Methods (from PNNL-25432) Paci



NATIONAL LABORATORY

| Tachniqua     | Ease/<br>Cost | Commercially<br>Available | Correlates to | Quantitativa | R&D<br>Needed |
|---------------|---------------|---------------------------|---------------|--------------|---------------|
| Technique     |               |                           | EAB/Aging     | Quantitative |               |
| Visual Walk-  | +             | +                         | N             | -(1)         | +             |
| downs         |               |                           |               |              |               |
| IR Camera     | N(2)          | +                         | -             | N(1,2)       | +             |
| Indenter      | +             | +                         | +             | +            | +             |
| Recovery      | +             | N(4)                      | +             | +            | N(4)          |
| Time Indenter |               |                           |               |              |               |
| DMA           | -             | -                         | N             | +            | -             |
| FTIR          | N             | +                         | N             | N            | -             |
| FT-NIR        | N             | +                         | N             | N            | -             |
| Inter-Digital | +             | N                         | +             | +            | -             |
| Capacitance   |               |                           |               |              |               |
| Ultrasound    | -             | -                         | -             | -            | -             |
| Velocity      |               |                           |               |              |               |
| Fiber-Optic   | -(10)         | +                         | N             | N            | -             |
| Temp Sense    |               |                           |               |              |               |




 $\bigcirc$ 

### **Cable NDE Path Forward**



- Numerical modeling of FDR signal response due to insulation-related degradation
- Linking numerical models with circuit models to complete the physics-based understanding and representation of FDR response.
- Further evaluating inter digital capacitance (IDC) as alternate quantitative local test
- Extending IDC to assess insulation through jacket material







Light Water Reactor Sustainability

## Leo.Fifield@pnnl.gov

Questions?