
Cryocompressed Hydrogen Storage & Liquid Delivery

Jacob Leachman, Ph.D.
Assistant Professor
DOE H₂ Transmission
& Delivery Workshop
2/26/2014

NIST SP

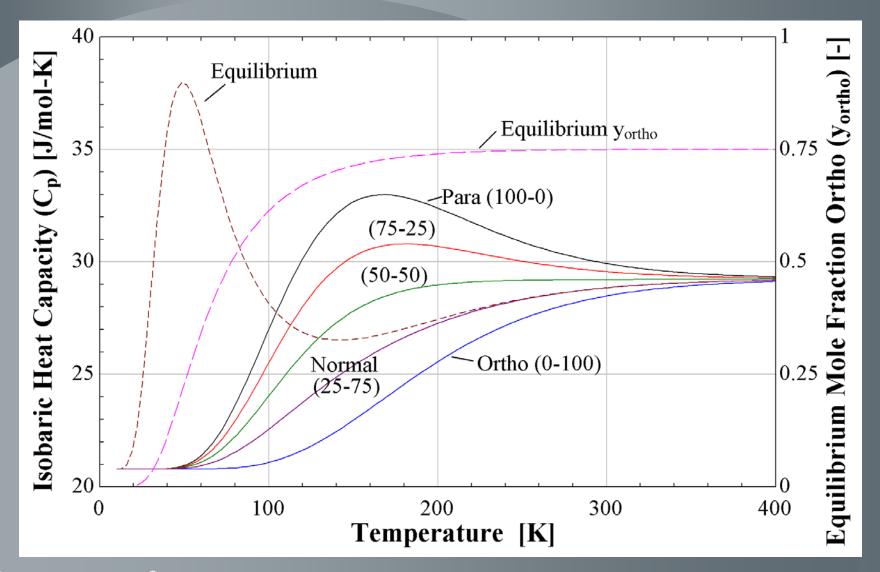
Reference Fluid Thermodynamic and Transport Properties

NIST Standard Reference Database 23, Version 9.1
DLL version number 1.
E.W. Lemmon, M.L. Huber, and M.D. McLinden
Applied Chemicals and Materials Division
Copyright 2013 by the U.S. Secretary of Commerce on behalf of
the United States of America. All Rights Reserved.

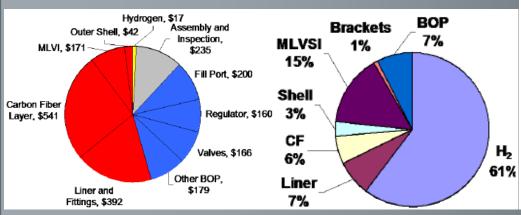
H Y drogen
P roperties for
E nergy
R esearch

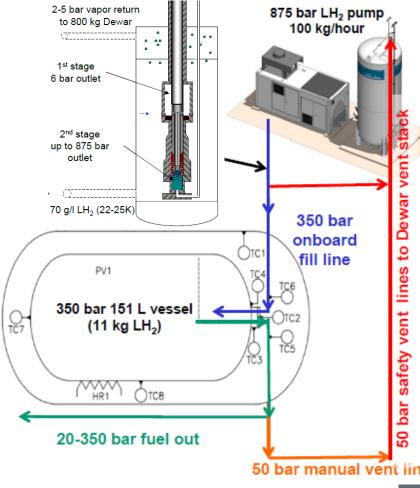
This presentation does not contain any proprietary, confidential, or otherwise restricted information.

WASHINGTON STATE UNIVERSITY


World Class. Face to Face.

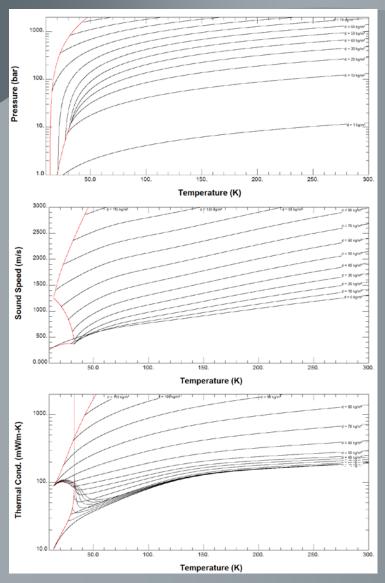
Why Cryogenic Hydrogen?


- LH₂ tanker trucks delivered 80-90 % of total small merchant H₂ in 2010.1
- Cryo-H₂ densities are superior.²
 - LH₂ at NBP is 70.8 g/L
 - Cryocompressed at 440 bar and 30 K is 90 g/L
 - Gaseous at 700 bar and 295 K is 39.7 g/L
- Cryo-H₂ fill rates are substantially faster than gas.
 - No on-board cooling required
- Big downside: 30 % of usable energy lost to liquefaction.¹
 - · Liquefaction energy can be recouped via autogenous pressurization
 - Many cryo-challenges remain



Para, Normal, & Ortho Hydrogen

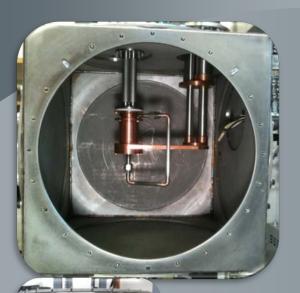
- Linde & BMW partnering with LLNL
- Reducing Type 3-5 tank volume and cost.²
 - Novel ideas needed to improve carbon fiber synthesis, insulation, cold thermal mass, & liners



(above) Cryocompressed H₂ distribution concept.¹ (left) 5.6 kg Cryocompressed H2 tank cost estimate.² (center) 5.6 kg Cryocomp. tank volume distribution.²

¹ Aceves et al. "Rapid High Pressure LH2 Refueling for Maximum Range & Dormancy" DOE AMR (2013) ² Ahluwalia, Hua, & Peng, DOE H2 Distribution & Transmission Workshop (2011)

Cryo Delivery Challenges



- Cryo H₂ Flow Metering
 - Bulk weighing is typical for mass gauging but not a long term solution
 - Accurate + low cost flow meters needed!
 - Ortho-para mixtures, very low viscosity and density confound traditional meters
 - Short property standards for cryo custody exchange needed (current >200 K)
- Cryo H₂ Component Safety
 - Lower cost and accelerated testing in LH₂ needed
 - Thermal and mechanical fatigue testing
 - High pressure and impact testing
 - Failure Modes & Effects Analysis (FMEA)
- Streamline Technology Readiness
 Level (TRL) advancement to
 reduce cost

Washington State

¹ REFPROP v. 9.1 NIST (2013)

Current Research: Advancing H₂ TRL @ lower cost

- Solid H₂ Twin-Screw Extruder performance for US ITER ~ \$67k
- Para-ortho conversion enhanced vapor cooled shielding ~ \$66k
- 1st dual-sinker magnetic levitation balance for cryogenic density & sorption ~ \$100 k
- Genii UAV 1st LH₂ drone built by students
 ~ \$30 k

Thank you!

