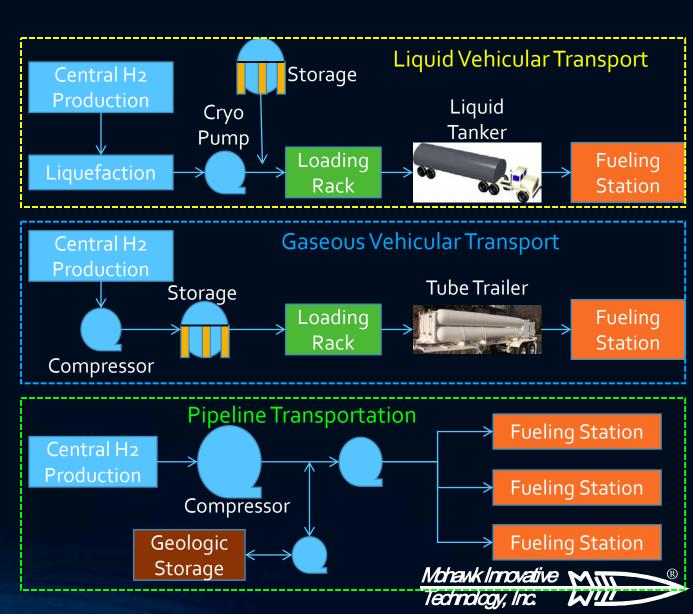
HYDROGEN TRANSMISSION AND DISTRIBUTION WORKSHOP

NATIONAL RENEWABLE ENERGY LABORATORY GOLDEN, COLORADO

> COMPRESSION TECHNOLOGY AND NEEDS

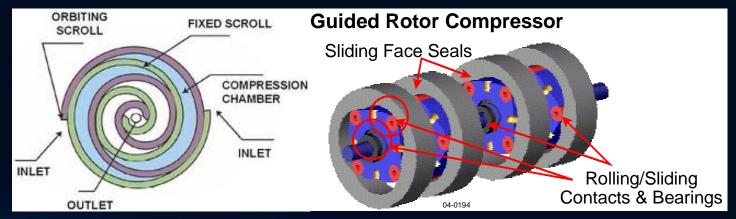
Hooshang Heshmat, PH.D. February 25TH, 2014


Content of my Presentation

- Overall pipeline delivery steps, production to file up
- Different types of compressors
- Pipeline compressor development steps and accomplishments
- Need for Forecourt Compression system
- Other major components: drive, sealing, pipeline, valves, site for testing, gear-box, materials, cost
- Summary of needs

Hydrogen Delivery From Production to Point-of-Use

- Centralized Production
- Delivery to Fueling Station
 - Liquid Vehicular Transport
 - Gaseous Vehicular Transport
 - Pipeline Transportation
 - Others
- Fueling Station
 - Liquid Cryogenic Pump
 - Gaseous Compressor & Storage


Possible GH2 High Volume "Low Pressure" Compressor Types

Centrifugal Compressor
One Moving Part
High Reliability
Oil-Free, No Contaminants
Minimal Contact/Sliding Parts
High Efficiency and High Flow

Contacting Surfaces, Numerous Parts, Lubrication

Development Plan

Climbing the Ladder of Success

Identify Key Technology Needs

Concept & Technologies

Develop Component Technology

Key Components

Bearings
Seals
Drive
Impeller

Demonstrate Feasibility

> Sub-Scale Demonstrator

> > Integrate Seals

Motor

Bearings

Single Stage

Develop System

Application

Field

Test

Full Scale

Demonstrator

Full System Integration

Fully Integrated Test Station

Seals

Motor

Bearings

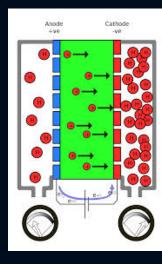
Multi- Stage Compressor

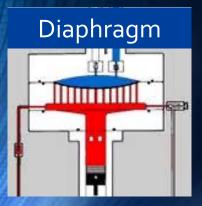
MiTi Pipeline H2 Compressor Development Steps and Accomplishments

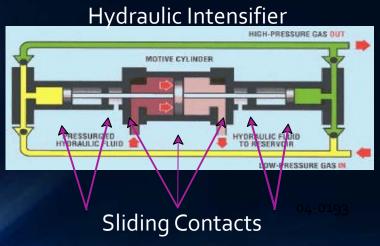
- Oil-Free Multi-Stage Dual Entry
- Centrifugal Compressor Design
- Ultra-High Operating Speed
- Supercritical Operation
- Gen. IV Foil Bearings & Seals
- Single Stage Testing in Helium
- 1300 to 1500 psi Pressure Rise
- ½ x10+9 H2 gr-/day & 9 MW Drive

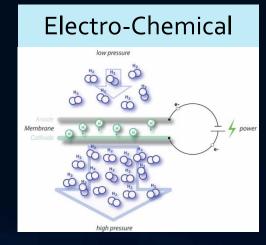
Issues Left to be Resolved for High Volume

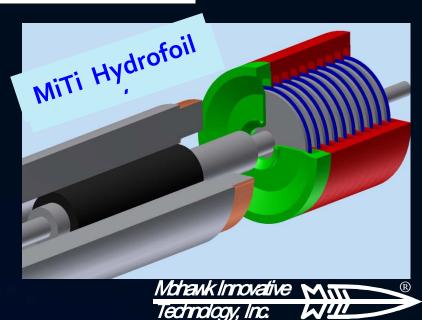
- Oil-Free High Power & Speed Drives
- System Level Performance Validate Facility
 - Multi-Stage Compressor Train
 - High-Speed & Power Transmission Coupling
 - Static & Dynamic Sealing
 - Validate Life/Reliability/Maintenance
- Materials
 - Validation in High Pressure H2
 - Foil Bearing/Seals Performance in H2
- Economics & Manufacturing

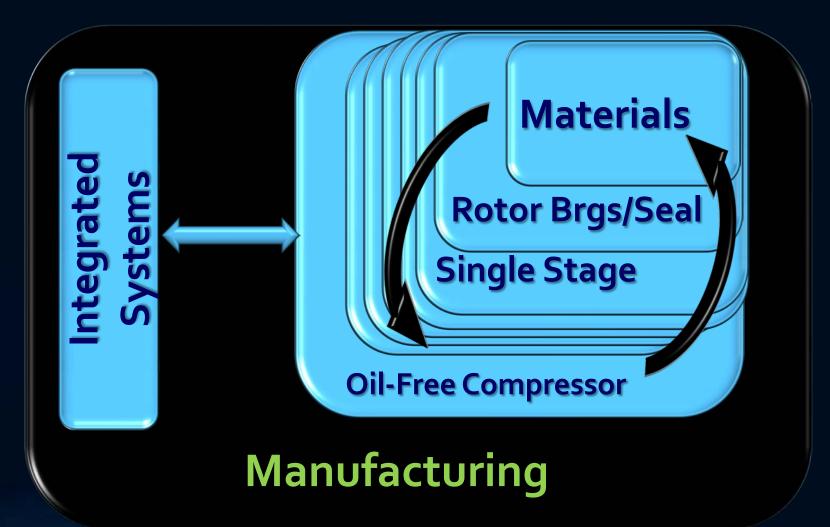

Low Volume "High Pressure" Compressor Types


Reciprocating




Compressor Type	P Inlet	P Outlet	Flow Capacity	Limitations/Issues
	(Bar)	(Bar)	(kg/hr)	
Reciprocating	2.4 - 20.7	310 – 448	8-251	Contamination, Maintenance,
				Reliability, Cost
Diaphragm	20.7	414 - 448	33-164	Maintenance, Reliability, Material
				Compatibility
Intensifier	20.7-431	414 – 862	9-30	Contamination, Maintenance,
				Reliability
Ionic	25	1000	27-323	High cost, New Technology, Unknown
				Reliability
Electrochemical	0	207 - 827	0.5-2	Still at R&D stage, Low Flows
MiTi Viscous Hydrofoil	20.7	103 - 896	10-100	Material Hydrogen Compatibility
Concept				





Miniaturization Technology & Design Methodology

Requires Miniaturization Factor by 3 Orders of Magnitude (6-9 MW to x kW)

Key Technology Miniaturization:

- ► Design Rule (t•P)
- **▶** Parametricalization
- ► Time + 3D Modeling
- **▶** Process-Technology

Forecourt Compressor Requirements

- High Pressure (From 20 to 875 Bar)
- High Efficiency (≥ 73% Isentropic)
- Low Capital Cost (\$240,000 Uninstalled)
- High Reliability (Single Unit Operations)
- Low Maintenance Needs and Costs (≤ \$4800/year)
- Contaminant & Oil Free

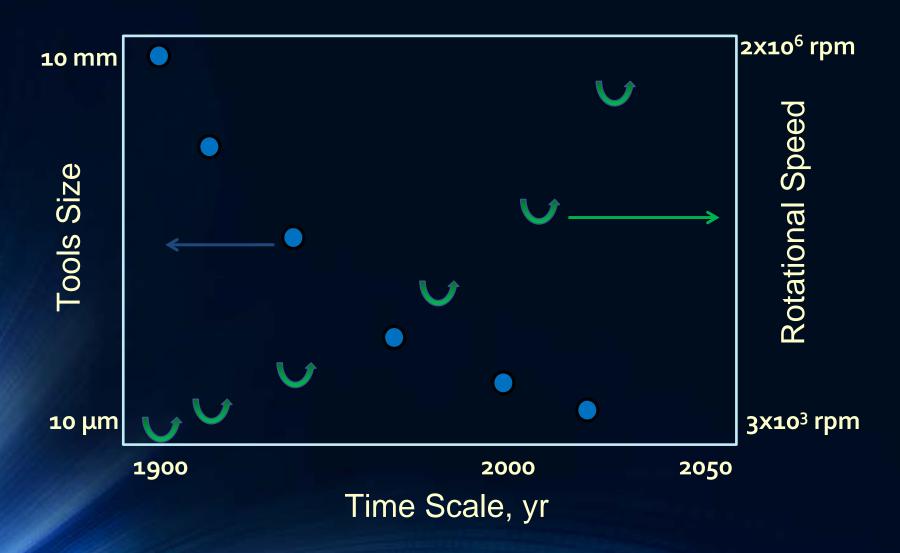
Miniaturization Technology Development

Miniaturized manufacturing tools are key to the development and fabrication of miniaturized system components.

Miniaturization Technology Developments

Design Rule for Miniaturization, M ~ ∫ (t x P)

Miniaturization Factor < 0.12 N $\sim 0.5 \times 10^6$ rpm, P ~ 1 kW



Additional Forecourt Compression System Needs

- Drive System & Possibly Gear Box
- Static and Dynamic Sealing
- Valves
- Hydrogen Compatible <u>Materials</u>
- Site and Facility for Testing
- Manufacturing Process and Specialized Tooling

Miniaturized Manufacturing Tools & Spindles Status -- Development of high speed spindles lags the development of tools, 10 µm range requires 1 Mrpm spindle, which HYTBD

Miniaturization Technology Development

In Order to Properly Miniaturize Critical System and its Components:

- Parametricalization method is essential for the time dependent 3-D miniaturized system.
- Miniaturized manufacturing tools are key to the economical development and fabrication of miniaturized system components.

Summary of Needs

- Efficient Compression of Low Molecular Weight Gas
- Establish Creative Design & Design Rules
- Miniaturization Technology Developments
 - Power
 - Thermal Management
 - Miniaturized Manufacturing Tools

Establish Creative Design & Design Rules

SBIR Little

Huge Potential Impact

Single Stage Centrifugal Compressor Testing in Helium

Mohavk Innovative Mill ® Technology, Inc.