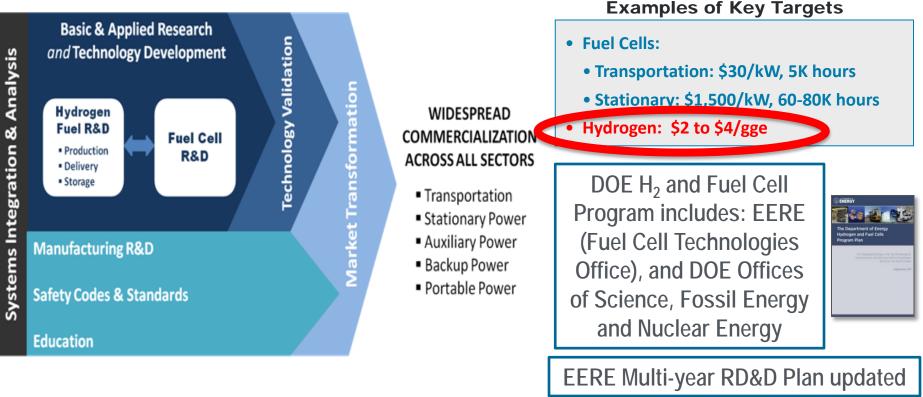


U.S. DEPARTMENT OF

Hydrogen Transmission and Distribution Workshop

Sara Dillich


U.S Department of Energy Office of Energy Efficiency & Renewable Energy Fuel Cell Technologies Office

National Renewable Energy Laboratory Golden, Colorado February 25, 2014

Hydrogen and Fuel Cells Program Overview

Mission: Enable widespread commercialization of a portfolio of hydrogen and fuel cell technologies through applied research, technology development and demonstration, and diverse efforts to overcome institutional and market challenges.

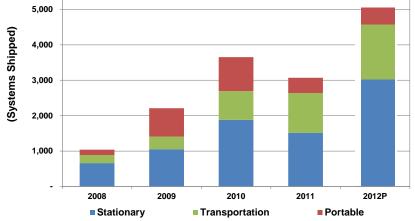
Key Goals : Develop hydrogen and fuel cell technologies for early markets (stationary power, lift trucks, portable power), mid-term markets (CHP, APUs, fleets and buses), and long-term markets (light duty vehicles).

Nearly 300 projects currently funded at companies, national labs, and universities/institutes

Program Plan at: http://www.hydrogen.energy.gov/pdfs/program_plan2011.pdf Basic research conducted thru Office of Science; Applied RD&D conducted through EERE, FE, NE

U.S. DEPARTMENT OF

Fuel Cell Market Overview



Fuel Cell Systems Shipped by Application, World Markets: 2008-2012 35.000 30,000 Shipped) 25.000 20,000 Systems 15,000 10,000 5,000 2008 2009 2010 2011 2012P Portable Stationary Transportation

 Fuel Cell Systems Shipped

 by Application, Manufactured in North America: 2008-2012

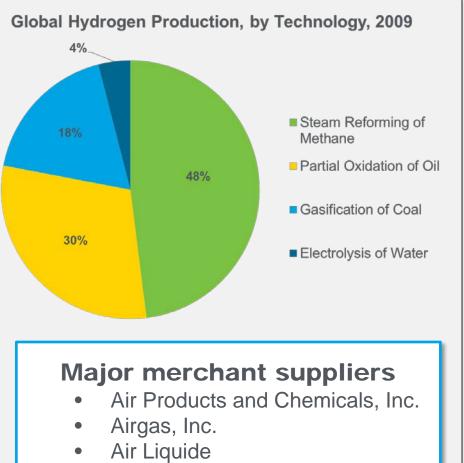
 5,000

Market Growth

Fuel cell markets continue to grow 48% increase in global MWs shipped 62% increase in North American systems shipped in the last year

The Market Potential

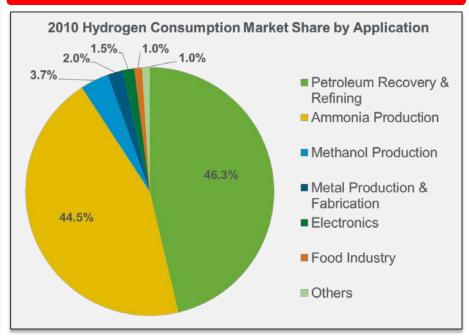
Independent analyses show global markets could mature over the next 10–20 years, producing revenues of:


- \$14 \$31 billion/year for stationary power
- \$11 billion/year for portable power
- \$18 \$97 billion/year for transportation

Several automakers have announced commercial FCEVs in the 2015-2017 timeframe.

For further details and sources see: *DOE Hydrogen and Fuel Cells Program Plan*, <u>http://www.hydrogen.energy.gov/pdfs/program_plan2011.pdf;</u> FuelCells 2000, Fuel Cell Today, Navigant Research

Hydrogen Production & Applications



- BOC India Limited
- Linde AG
- Praxair Inc.
- Taiyo Nippon Sanso Corp.

Hydrogen is produced through a variety of technologies, though ~95% of U.S. hydrogen production comes from SMR.

Hydrogen is used in a broad range of applications including electronics and metal production and fabrication in addition to its traditional role in refinery operations and ammonia production.

Fuel Cell Electric Vehicles at U.S. Auto Shows



FCEVs on display at North American auto shows.

Hyundai Tucson Fuel Cell Electric Vehicle

To be launched in California in Spring 2014—lease includes free H₂ and maintenance.

Honda Fuel Cell Electric Vehicle

Toyota Fuel Cell Electric Vehicle

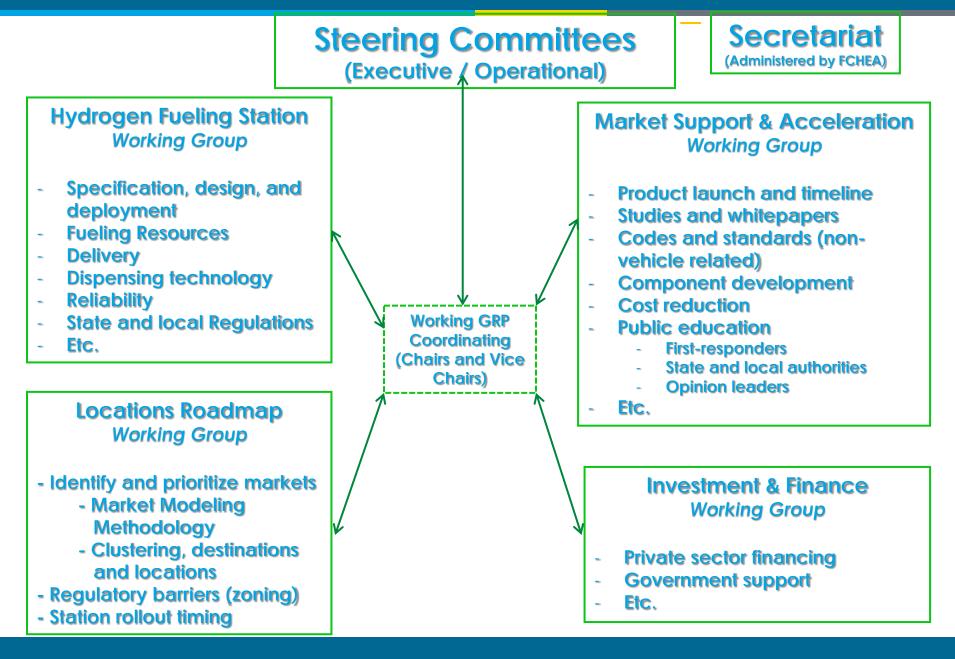
Public-Private Partnership

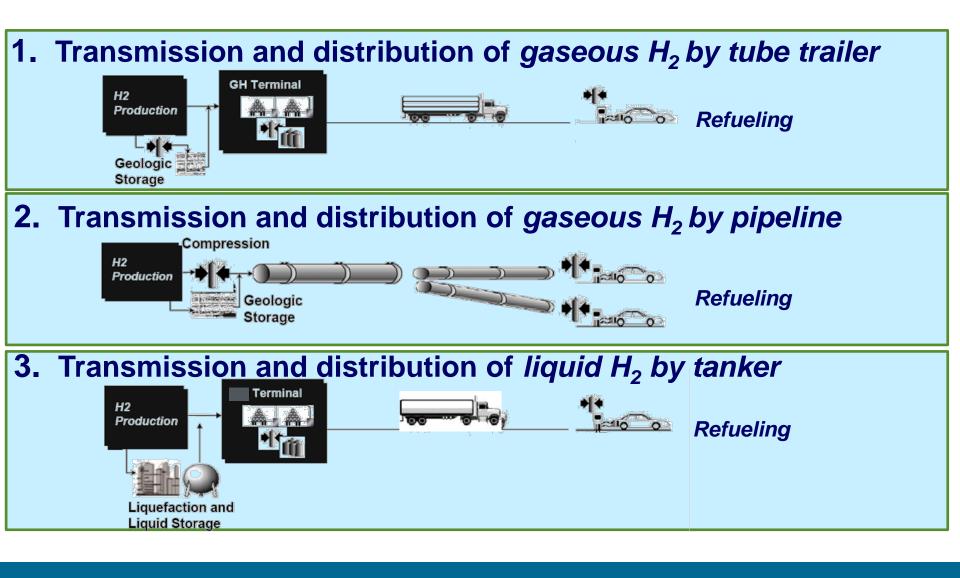
States will be included in H₂USA partnership to overcome the hurdles for hydrogen infrastructure development.

Mission: To promote the commercial introduction and widespread adoption of FCEVs across America through creation of a public-private partnership to overcome the hurdle of establishing hydrogen infrastructure.

Current partners include (additional in process):

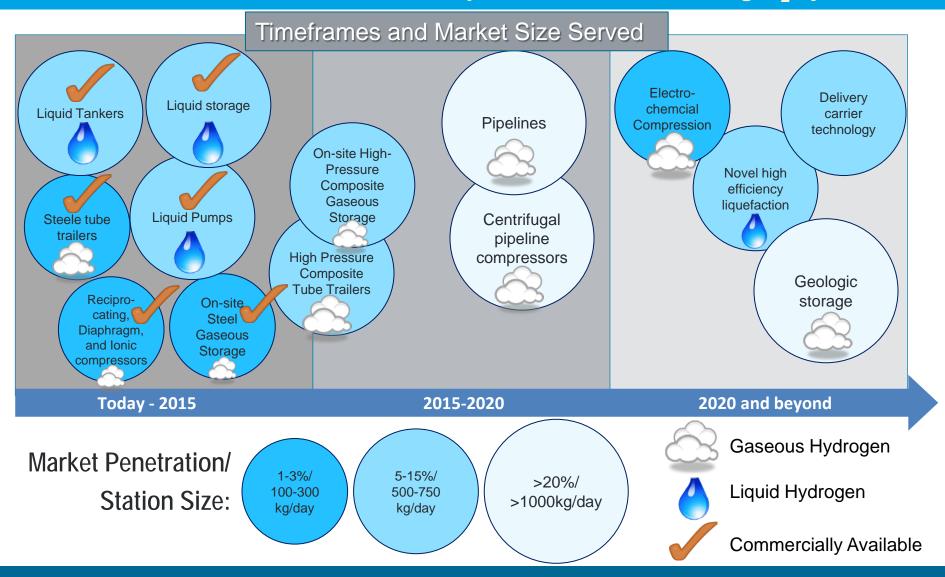
- Air Liquide
- American Gas Association
- American Honda Motor Company
- ARC: Hydrogen
- Argonne National Lab
- Association of Global Automakers
- California Fuel Cell Partnership
- Daimler
- Electric Drive Transportation Association
- Fuel Cell and Hydrogen Energy Association
- General Motors
- Hydrogenics


- Hyundai Motor America
- ITM Power
- Massachusetts Hydrogen Coalition
- Mercedes-Benz USA
- Nissan North America Research and Development
- Nuvera
- NREL
- ORNL
- Plug Power
- Proton OnSite
- Sandia National Lab
- South Carolina Research Authority
- Toyota Motor North America


- Situational assessment and analysis
- Forming a strategy to coordinate vehicle and infrastructure rollout by:
 - Identifying potential investments and funding opportunities
 - Developing an action plan to identify and address key barriers
 - Conducting a rigorous evaluation of potential infrastructure deployment, including promising locations and timeframes
- Identifying synergies and opportunities to leverage other alternative fueling infrastructure – such as natural gas – to enable cost reductions and economies of scale
- Identifying actions to incentivize early adopters for deploying infrastructure and FCEVs
- Evaluating the business cases required for national commercialization of vehicle and hydrogen infrastructure technologies
- Supporting participation in programs for the deployment of advanced technology vehicles, such as the National Community Deployment Challenge

H₂USA ORGANIZATION CHART

Primary Delivery Pathways


U.S. DEPARTMENT OF

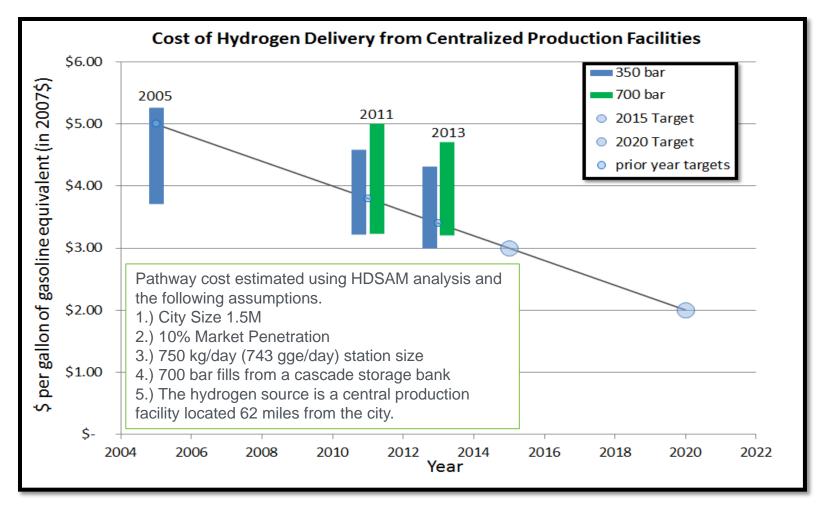
Delivery Technologies

Objective: Develop technologies to produce hydrogen from clean, domestic resources at a delivered and dispensed cost of \$2-\$4/kg H₂ by 2020

U.S. DEPARTMENT OF

ENERGY

Critical Challenges in H₂ Delivery



Broad challenges to maintain broad R&D portfolio of near- to longer-term pathways

Compression			Dispensing	Storage		Meeting H ₂ delivery cost threshold for all near and longer term	all
 Capital costs Operating and maintenance costs Throughput Efficiency 		 Hose durability Meter accuracy Robust communication 		Capital costDurabilityFootprint		near- and longer-term pathways requires improvements in durability and reductions in overall capital costs	
•	Reliability						
	Pipelines		Tube Ti	railers	Liqu	uid Delivery	
	 Capital cost Diameter of FRP Durability Manufacturing 		 Pressure capa Carbon fiber 	-	Capital control plants	tion efficiency ost of liquefaction ost of liquid pumps	

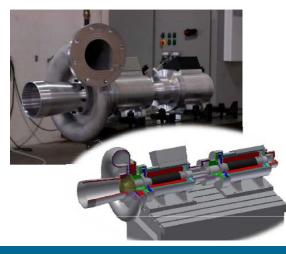
Current Status and Hydrogen Delivery Cost Targets^a

Range of HDSAM projected costs of hydrogen delivery from central production facilities in 2005, 2011, and 2013 along with the relevant targets.

^a See Fuel Cell Technologies Office Record 13013 for details : http://hydrogen.energy.gov/program_records.html

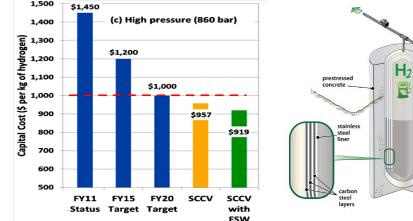
Year Ending	Organization	Project					
Compression, Storage and Dispensing							
FY14	Nanosonic (SBIR)	700 bar delivery hose					
FY14	Fuel Cell Energy	Electrochemical hydrogen pump					
FY14	FY14 NREL Dispenser hose reliability evaluation						
FY15	FY15 ORNL Low-cost, in-ground station storage						
Cross Cutting							
TBD	ANL and PNNL	Delivery analysis					
FY14GVD Corp. (SBIR)High pressure seals		High pressure seals (selected for award)					
	Pipelines						
FY14 SNL Steel pipelines		Steel pipelines					
FY14- Ended Concepts NREC Centrifugal compressor		Centrifugal compressor					
FY15 SRNL		FRP Pipelines					
	Tube Trailers						
FY15	FY15 Lincoln Composites High pressure tube trailers						
Liquid Delivery							
FY15 – On Hold	FY15 - On Hold Emerald Energy Northwest Magnetocaloric-based cryo-refrigeration						

Recent Technical Accomplishments

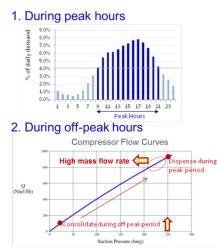


Lowered the cost of stationary storage below the 2015 target - ORNL

Cost reductions of 30% or more for a steel concrete composite vessel using commodity materials and an optimized design.


Cost < \$1200/kg H2 stored at 860 bar (based on supplier & manufacturer quotes.

 Successfully completed the prototype evaluation of an oil free centrifugal pipeline compressor operating at 60,000 RPM- Mohawk Innovative Technologies Inc.




World's First

- Oil-Free
- 200 KW PM Motor
- Internally Gas Cooled
- Direct-drive
- No Transmission or Gearbox
- 60,000 rpm
- Made In USA

 Created high pressure tube trailer control algorithms to reduce station cost by 20% - ANL

Recent Key Activities

Interactions

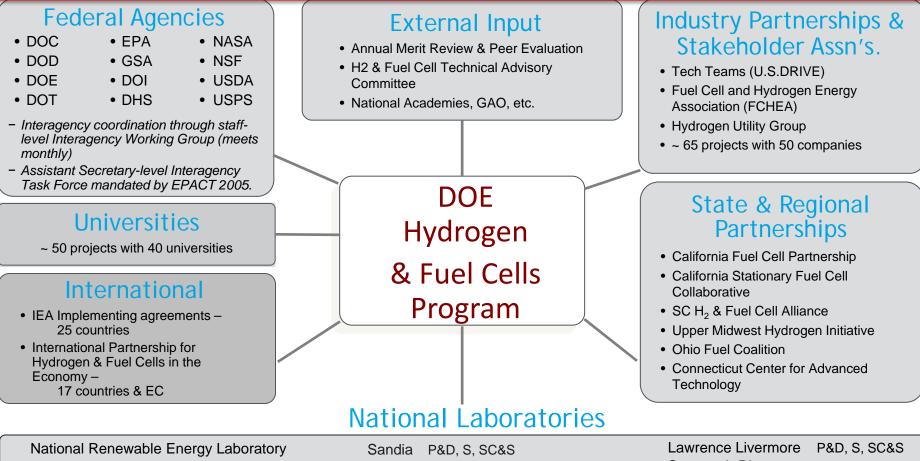
- U.S.DRIVE Hydrogen Delivery Tech Team
- H2USA Station working group
- IEA-HIA Hydrogen Infrastructure Task
- Leveraging of BES SBIR Funding
 - New project selection for hydrogen sealing materials (GVD Corp)

Workshops & Meetings

- Forecourt CSD Workshop and Report
- Joint NOW/NEDO/DOE Workshops
- DOE/DOT/NIST pipeline RD&D coordination meeting

Assessments and Reports

- Independent panel review of CSD cost estimates
- Report on Polymer and Composite compatibility with hydrogen (with FCTO SCS)


Funding Opportunity Announcement

Closed February 18, 2014

Broader Collaborations

New in 2013: H₂USA- Public-private partnership to enable the widespread commercialization of FCEVs and address the challenge of hydrogen infrastructure

P&D, S, FC, A, SC&S, TV, MN	Pacific Northwest P&D, S, FC, SC&S, A	Savannah River S, P&D
Argonne A, FC, P&D, SC&S	Oak Ridge P&D, S, FC, A, SC&S	Brookhaven S, FC
Los Alamos S, FC, SC&S	Lawrence Berkeley FC, A	Idaho National Lab P&D

Other Federal Labs: Jet Propulsion Lab, National Institute of Standards & Technology, National Energy Technology Lab (NETL)

P&D = Production & Delivery; S = Storage; FC = Fuel Cells; A = Analysis; SC&S = Safety, Codes & Standards; TV = Technology Validation, MN = Manufacturing

Objectives:

To identify research, development, and demonstration (RD&D) to enable low-cost, effective delivery of hydrogen from centralized production facilities to the point of use.

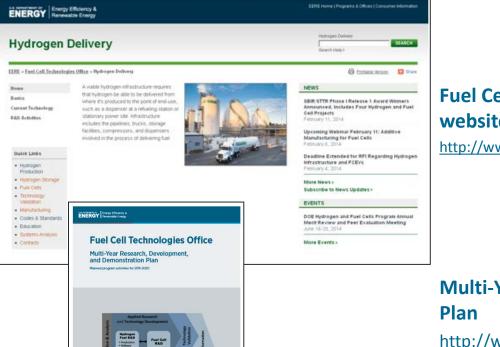
Outcomes:

- Summary of key barriers to development of low-cost hydrogen delivery
- Summary of key R&D activities with potential to reduce the cost of hydrogen delivery
- A workshop report for public dissemination of findings.-

Workshop Strategy

Tuesday: Pipelines

Wednesday: Over-the Road Delivery


Expert panel discussions and Breakout Sessions to address:

- Challenges (internal and external) to achieving DOE's cost goals for hydrogen delivery
- RD&D activities needed to overcome these barriers, including timeframe. When should these start and end?
- Key Issues such as cost, codes and standards adoption, and safety

Target \$/gge	FY 2015	FY2020
Transport & Distribution	1.40	<1.30
Forecourt Station	1.60	<0.70

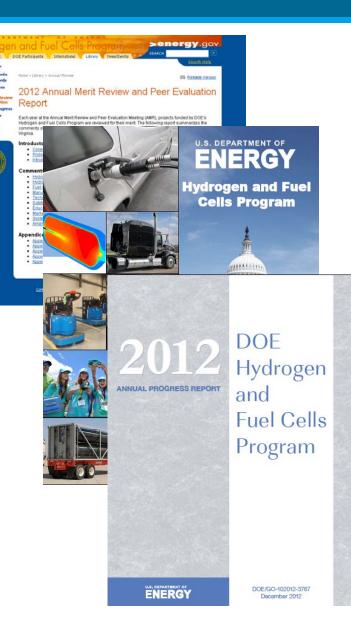
For More Information on the Hydrogen Delivery Portfolio

USDAIN

Fuel Cell Technologies Office Hydrogen Delivery website

http://www1.eere.energy.gov/hydrogenandfuelcells/delivery/

Multi-Year Research, Development and Demonstration Plan


http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/ delivery.pdf

U.S. Drive Hydrogen Delivery Technical Team Roadmap

http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/hdtt_road map_june2013.pdf

Annual Merit Review

Annual Merit Review & Peer Evaluation Proceedings Includes downloadable versions of all presentations at the Annual Merit Review http://www.hydrogen.energy.gov/annual_review13_proceedings.html

Annual Merit Review & Peer Evaluation Report

Summarizes the comments of the Peer Review Panel at the Annual Merit Review and Peer Evaluation Meeting http://www.hydrogen.energy.gov/annual_review12_report.html

Annual Progress Report

Summarizes activities and accomplishments within the Program over the preceding year, with reports on individual projects

http://www.hydrogen.energy.gov/annual_progress12.html

Save the Date

Next Annual Review: June 16–20, 2014 Washington, DC

http://annualmeritreview.energy.gov/

Thank You

For questions please contact:

Erika.Sutherland@ee.doe.gov

Or

Chris.Ainscough@go.doe.gov

hydrogenandfuelcells.energy.gov

Co-Launched Public-Private Partnership

Mission: To promote the commercial introduction and widespread adoption of FCEVs across America through creation of a public-private partnership to overcome the hurdle of establishing hydrogen infrastructure. U.S. DEPARTMENT OF

Current partners include (additional in process):

