2014 Smart Grid R&D Program Peer Review Meeting

Complete System-Level Efficient and Interoperable Solution for Microgrid Integrated Controls (CSEISMIC)

Yan Xu, Guodong Liu
Oak Ridge National Laboratory

June 11, 2014

Complete System-Level Efficient and Interoperable Solution for Microgrid Integrated Controls (CSEISMIC)

Objective

Microgrids: future distribution system.

Develop a microgrid with the complete functions:

- Grid-connected and islanded modes
- Islanding transition
- Resynchronization and reconnection
- Energy management
- Protection

Life-cycle Funding Summary (\$K)

Prior to	FY14, authorized	FY15,	Out-
FY 14		requested	year(s)
560	475	500	500

Technical Scope

- Central controller: microSCADA and microEMS
- Component control: primary source, microgrid switch
- Microgrid communication
- Relay protection

Challenges & Needs

- Challenges: distribution system is evolving from a passive radial topology to a complex and active system.
 - Increasing requirements for higher liability, stability, and efficiency
 - Diversified components and their coordination
 - Voltage fluctuation
 - Current DMS or single-node energy management cannot address all issues
 - Uncertainty: both loads and generation
 - Safety concerns rise because of Ineffectiveness of conventional protection
- Need a microgrid controller with the functions:
 - Grid-connected and islanded operation
 - Islanding transition and resynchronization
 - Energy management and DER coordination
 - Participate in energy market and utility operation
 - Effective relay protection

CSEISMIC Significance and Impact

Significance: CSEISMIC microgrid controller is the complete and integrated solution for microgrid control, operation, energy management and protection.

- Systematic approach to enable real-time control and operation: gridconnected and islanded operation, islanding transition and resynchronization
- Energy management to realize networked real and reactive power optimization
- Coordinate high penetration of DER, energy storage, electric vehicle, and demand response
- Provide ancillary services to main grid and participation in energy market
- Accommodate legacy components and architecture

Impact:

- Improve system reliability by enabling islanding operation
- Improve system stability using advanced monitoring and control
- Improve system efficiency by optimizing the power flow
- Reduce total energy cost by energy management

Technical Approach – CSEISMIC System Diagram

- Microgrid controller consists of microgrid SCADA and energy management (EMS)
- SCADA performs supervisory control for sources, loads, microgrid switch, protection relays, etc.
- Volt/freq control and transition control are performed at device level with control modes and setting points dispatched by microgrid controller.
- EMS dispatches operational optimization commands.
- Single-point interface between microgrid and system operator/energy market to participate in utility operation and energy market activities.

ORNL Microgrid

- Operational at the ORNL DECC lab
- Now 3 buses, 4 sources, 3 loads
- Will expend to 4 buses, loop/radial reconfigurable

Leveraged projects:

- Power flow controller
- Community energy storage
- Building technology
- Advanced metering infrastructure
- GridEye

Technical Approach - Communications

Unintentional Islanding

- MS switch is manually opened.
- SCADA data update speed is 3 seconds, and no transients are seen by SCADA.

Resynchronization and Reconnection

- INV1 controls its output to adjust PCC voltage magnitude and frequency.
- Thresholds: $\Delta V \le 2 V$, $\Delta f \le 0.1 Hz$, $\Delta \alpha \le 1^\circ$
- f is controlled slightly higher (60.05 Hz) than grid frequency during resynchronization, maximum T_{resyn} ≈ 20 sec.
- Phase angle control or larger frequency difference is needed for faster resynchronization.

Microgrid Protection - Challenges

- Common distribution protection practice
 - Un-directional overcurrent protection
 - Electromechanical relays
 - Proven track record
 - Simplicity
- Challenges of DERs and microgrids
 - Bidirectional power flow
 - More complex coordination
 - Faults more difficult to isolate
 - Severely reduced fault current when disconnecting from utility
 - Fault current from TVA: 7.4 kA on 480 V circuit
 - Fault current from DECC lab inverters: 0.33 kA on 480 V circuit
 - Need to protect system for both cases without tripping on load current!

RTDS-Based Microgrid Protection HIL Test Bed

2378 @10° VLI

39 @-59° A 125 kW

- Real Time Digital Simulator
- Hardware-in-the-loop microgrid test bed
- Real Time Automation Controller (RTAC)
 - Protection control control
- SEL 351S relays

SEL 351S

Both physical and virtual

Microgrid Protection Scheme Development and Testing

Protection Schemes	Microgrid Status	Fault Locations	Effective Protection?	Notes
Single setting OC	On-grid	External	Yes	Faults cleared in 15-21 cycles.
		Internal	No	Relay unable to detect fault current from downstream DERs.
	Islanded	Internal	No	Unable to isolate the faults. Microgrid is shutdown.
Adaptive OC	On-grid	External	Yes	Faults cleared in 15-21 cycles.
		Internal	Yes	
	Islanded	Internal	Yes	
Differential OC	On-grid	External	Yes	Faults cleared in 3-6 cycles. No need to change settings.
		Internal	Yes	
	Islanded	Internal	Yes	
Directional control			No	Problems with voltage polarization during faults.

Technical Approach – Microgrid EMS

Prior Year Progress and Results – Microgrid EMS

- Development of DER economic models
- Integration of forecast results of Wind, PV and market prices.
 - Scenario generation and reduction.
- Microgrid optimal bidding strategy in the day-ahead market
 - Included intermittent DERs, storage and responsive loads.
 - Considered uncertainties of DERs, dayahead and real-time market prices.
 - Proposed a hybrid stochastic/robust optimization model.
 - A journal paper is ready for submission.

FY 2014 performance and results, against objectives and outcomes

- FY13: individual component controller development
- FY14: microgrid system integration and communication
 - Functional microgrid with real-time control capabilities
 - EMS development will be completed by FY14.
 - 3 papers submitted.
- Milestones are met or on track.

Due Date	Milestone Type	Milestone Description
12/31/2013	Process	Implementation and testing of communication
	Milestone	network.
03/31/2014	Process	Implementation and testing of grid-connected and
	Milestone	islanded modes, islanding transition and
		reconnection in the DECC microgrid.
06/30/2014	Process	Implementation and testing of microgrid protection.
	Milestone	
09/30/2014	Final Deliverable	Development of microgrid EMS. Final annual report.

FY 2015 Plan

- 1. CSEISMIC, collaborate with NIST, IREQ, and NI
 - Complete development of the microgrid controller EMS implementation, communication standardization, microgrid controller development for field demonstration.
 - Participation on Technical Advisory Committee.
 - Standards collaborate with NIST on microgrid standardized test bed, microgrid controller standard development.
- 2. Hardware-in-the-loop microgrid test bed, collaborate with RTDS
- 3. Networked microgrids, collaborate with Chattanooga Electric Power Board
- Integrated communications, controls and connected devices for DC microgrids (I3CDC). Partners: LBNL, Virginia Tech, and Emerge Alliance
- 5. De-coupled microgrid control, collaborate with OSIsoft

Collaborations

- NIST: Microgrid standardized test bed, microgrid controller standard
- Hydro-Quebec IREQ: microgrid protection
- Chattanooga EPB: networked microgrids
- National Instruments: microgrid control for field implementation
- OSIsoft: de-coupled microgrid control

Contact Information

Power & Energy Systems Group

Electrical & Electronics Systems Research Division

Oak Ridge National Laboratory

One Bethel Valley Road P.O. Box 2008, MS-6070

Oak Ridge, TN 37831-6070

Yan Xu Guodong Liu

(865) 574-7734 (865) 241-9732

(865) 574-9323 fax (865) 574-9323 fax

xuy3@ornl.gov liug@ornl.gov

Q&A

