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e Basic Objectives
— Method Development

— Phenomena Characterization
— Predictive Modeling

e Four Technical Missions
— TMA1: Low temperature Creep

— TMAZ2: Hydrogen Behavior and Delayed Hydride Cracking (DHC)
— TMAZ3: Cannister Corrosion

— TMAA4: Novel System Monitoring




TMAL: Low Temperature Creep

e (Context: -
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— Irradiated cladding degraded during service.

e Waterside corrosion, hydride formation, and interface interactions.

Temperature, C

— Dry storage raises fuel rod temperature and pressure. e
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— Creep rupture is potential degradation mechanism.

Time Emplaced, years

Estimated fuel temperature variation during

* ObjECtIVESZ dry storage. (Hoop stress ~ 60 Mpa)?!
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Comparison of Zirlo and Zircaloy data from
literature?2 showing mechanistic transition.
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TMA1L: Low Temperature Creep
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* Assembled database of international creep data (UIUC and UF)

— Fit to analytical models is good at higher temperatures and uncertain
at low temperatures.

— Data shows that irradiation strengthens Zr alloys (i.e., creep resistant)

* Creep testing is in various stages of operation.

— Thermal burst and creep studies on highly oxidized and hydrided
tubing to simulate in-reactor conditions (NCSU).

— In-situ and ex-situ creep experiments using synchrotron methods in
simulated corrosive atmospheres (UIUC).

— Stress relaxation testing to generate creep data over a wide range of
temperatures and strain rates (UF).

— Preparations for extensive transmission electron microscopy are
underway at UIUC and NCSU.

e Atomistic simulations to understand of the long term creep
behavior with emphasis on effects of oxygen, hydrogen, and
neutron irradiation (NCSU).

— Microstructural interactions in radiation creep are being studied using
dislocation dynamics and the code ParaDis (from LLNL).

e Translation of data as input to FRAPCON and other codes to
predict UNF behavior in dry storage (UF and PNNL).

* Significant international exchanges with Korea (KAERI and
Hanyang University) and Spain (Ciemat).
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TMAZ2: Hydrogen Behavior and DHC

e (Context:

Cladding strength is severely degraded after
normal operation.

After storage, vacuum drying (up to ~400°C) and
transfer to dry storage, the fuel sits under load at
low-moderate temperatures.

Stress-directed redistribution of hydrogen
creates a potential failure mechanism: Delayed
Hydride Cracking (DHC).

* Obijectives:

Consider/compare various methods of hydrogen
insertion into Zircaloy.

Perform mechanistic evaluations using advanced
materials characterization methods.

Use advanced materials science modeling
methods to interpret data.

Create predictive model for DHC that may be
used in FRAPCON or similar code.
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UF Sample

500 pm

TMA2: Hydrogen Behavior and DHC

Sample 19 ~10% appm

Multiple hydride methods in operation il | O
across the FAST universities.

— Electrochemical methods (TAMU and NCSU).
— High vacuum vapor phase insertion (UIUC).

el (/UC Samp/es

— Agueous autoclave and flowing gas method
(UF).
Characterization methods underway:
— X-ray diffraction.

— Electron Backscattered Diffraction (EBSD).
— Nano-indentation.

— Small angle X-ray scattering (SAXS) at the L war | war| |
Advanced Photon Source (APS) to quantify S el

reorientation. _ rk . r‘?;
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e (Context

— The stainless steel canisters will be exposed to environmental
conditions for a very long time and containment is critical.

— Corrosion and stress corrosion cracking (SCC) particularly at
welds is a concern.

— Pitting of the surface must be understood since probabilistically a
fraction of pits can become crack initiators for SCC.

— Stainless steel canister temperature, and humidity of air, and salt
concentration at the canister surface must be determined

Concrete vessel

— In certain parameter space of temperature, and humidity, and < -

salt concentration (in the presence of tensile residual stress as at ; 2 e

welds, due to salt deliquescence) SCC will initiate 2

i

 Ongoing collaborations with DOE Disposition Program & A
(PNNL and Sandia), MIT NEUP project, and EPRI-ESCP ‘j i
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TMAZ3: Canister Corrosion

e Methods Underway:
— Electrochemical corrosion
testing

e Potentiodynamic and
potentiostatic

Oxide }I';
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* Pitting Susceptibility T L

+— Passive Sample

— Salt spray corrosion testing

Corroded Sample
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* Basic exposures
e Stressed C-ring samples
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— Direct salt corrosion (controlled
sludge) exposures

— Electrochemical Impedance
Spectroscopy (EIS)

— Fatigue-driven and static load
crack-growth testing
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TMA4: Novel < Monitoring

Obijective to develop a monitoring system for
SNF dry storage to ensure: D

. Retrievability \Q,
e Sub-criticality ;

. Fuel Confinement
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a monitoring system is needed

Effective monitoring will detect degradation
of all SNF dry storage components, for the
entire lifetime of the system
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TMAA4: Novel System

Monitoring

Resistance (R) [Ohms]

Developing:

Sensor selection and
miniaturization.

methods.

System Packaging Design

Deployed sensor
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On-Chip Raman Scattering Optical System Design WISCONSIN

Thermocouple
plate mounting
compartment

Modular Sensor
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In this portable Raman spectrometer, there are four major
components:

Sample under te:+

1.532nm laser diode (~10mW) to provide incident light
signal

//\ J Scattering light

2. Focus lens to collect the scattered light signal from
surface of sample under test.

3. Optical select filter to block other wavelength signal,

Focuslens

“Stinger” Signal with typical way ot but allow 551nm scattering signal to go through.
Additional medules can 4. High sensitive photodetector to detect the intensity of
*. Bottom Mount for be deployed in other et 551nm scattering signal
Rad Sensor canister locations oy
Unshielded photocetector Silicon Chip

Estimated dimension: ~1cmx1cm.

Allthese components can be fabricated from
semiconductor materials by Microfabrication technology
and process of Micra-optical MEMs.




FAST-IRP Project Well Underway
e The UNF dry storage system is complex and the mission
is bigger than our team.

— The project comprises a matrix of applied research with
strong elements of basic science.

— We will strongly collaborate with ongoing programs.

e Our emphasis is on method development, phenomena
characterization, and predictive modeling.

— Four technical mission areas have been defined
* Low temperature creep
* Delayed hydride cracking
* Canister corrosion
* Novel system monitoring




