Mirant Potomac River, LLC Alexandria, VA

Update 5 to:

A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant

Modeling Cycling Units 1, 2 plus One Baseload Unit

ENSR Corporation January 6, 2006 Document Number 10350-002-420 (Update 5)

1.0 INTRODUCTION

This report describes dispersion modeling performed for simultaneous operation of one baseload unit and two cycling units at Mirant's Potomac River Generating Station (PRGS). This mode of operation is also referred to as Option A in Mirant Potomac River LLC's December 30, 2005 letter to the U.S. Department of Energy regarding District of Columbia Public Service Commission, Docket No. EO-05-01. The modeling was performed according to the Protocol approved by the Virginia Department of Environmental Quality. The purpose of the modeling was to demonstrate that Option A operations will not cause or contribute to exceedances of the National Ambient Air Quality Standards (NAAQS).

Section 2 of this report presents the stack and emission parameters included in the modeling. Section 3 presents modeling results and conclusions.

1-1 January, 2006

2.0 MODEL INPUTS

Modeling was performed using the same version of AERMOD/AERMET and the same meteorological data and receptor grid used in the August, 2005 report prepared by ENSR.

Mirant is proposing to operate the cycling units (Units 1 and 2) up to 16 hours per day each (with up to 8 hours at full load and 8 hours or more at minimum load) while also operating one of the baseload units (Units 3,4,5) continuously without constraints as to load or operating hours. When operating, Mirant will use trona injection and a blend of the Appalachian coal generally used at the plant and lower sulfur coal to manage SO₂ emissions. In this configuration, Mirant would rotate use of the three baseload units in intervals of approximately two weeks so that one baseload unit is operating at a time and none of the three baseload units would remain or be placed in lay-up mode.

Mirant will operate in the following manner.

- When operating Unit 3 at baseload for up to 24-hours during a calendar day, Units 1, 2 will
 operate together for up to 4 hours each at minimum load (35 MW) and up to 5 hours each at
 maximum load (88MW) during that calendar day.
- When operating Unit 4 at baseload for up to 24-hours during a calendar day, Units 1, 2 will
 operate together for up to 5 hours each at minimum load (35 MW) and up to 6 hours each at
 maximum load (88MW) during that calendar day.
- When operating Unit 5 at baseload for up to 24-hours during a calendar day, Units 1, 2 will operate together for up to 8 hours each at minimum load (35 MW) and up to 8 hours each at maximum load (88MW) during that calendar day. When operating Unit 5, the cycling units will be able to operate up to a maximum of 16 hours each during that calendar day.

Stack gas flow rates for all units operating below maximum load were derived from continuous emission monitoring data for 2004. Hourly flow rates were plotted versus load and a best fit curve was derived. Similarly, hourly temperature measured at the stack breeching was plotted versus load and a best fit curve derived. The values of ACFM and temperature on the best fit curves corresponding to 35 MW were selected and used in the modeling for units operating at minimum load. Exit velocity was calculated from ACFM using the stack diameter.

Power plant personnel provided the historical heat rate versus load for all units. The heat rate for Unit 1 at 35 MW is 14.0 MMBtu/MWh. The heat rate for Unit 2 at 35 MW is 13.4 MMBtu/MWh. The heat rate was used to calculate SO₂ emissions at 35 MW using the following equation:

SO₂ (lb/hr) = Unit heat rate x 35 MW x 0.24 lb SO₂/MMBtu

SO₂ emissions for all units at maximum load (88 MW for Units 1, 2 and 107 MW for Units 3,4,5) were calculated in exactly the same manner as the August 2005 modeling report except that an emission factor of 0.24 lb SO₂/MMBtu was used instead of the permit limit of 1.52 lb SO₂/MMBtu. Mirant plans to control SO₂ emissions from all units using Trona.

 PM_{10} emissions for all units at maximum load were calculated in the same manner as the August 2005 report except that an emission factor of 0.06 lb/MMBtu was used instead of the permit limit of 0.12 lb/MMBtu. Stack testing indicates that maximum PM/PM_{10} emissions are less than 0.06 lb/MMBtu.

NOx emission rates at maximum load are 0.45 lb/MMBtu for Units 1, 2 and 0.24 lb/MMBtu for Units 3, 4, 5 based on CEMS data.

Table 2-1 shows the stack and flue gas exit parameters used in modeling all units.

Sources of PM_{10} emissions include the combustion stacks, two fly ash silos and one bottom ash silo, plus material handling sources. Table 2-1 shows the Units' stack emissions plus the silos. In modeling PM_{10} emissions from PRGS when only three units are operating (one at baseload and two cycling), Mirant assumed that emissions from all the silos and from the material handling sources are 60% of what they are when all units are operating at maximum load. This is because three units operating produce approximately 60% of the entire station's power output. The one exception to this is the coal pile wind erosion. We assumed that these emissions remain the same as they were in the August 2005 modeling.

2-2 January, 2006

Table 2-1 - Stack and Emission Parameters Used in the Modeling

			_						Emissio	ns (g/se	c)	
Point Source	Height (m)	Diam	Tem	p (K)	Exit Velo	city (m/s)	so	2	PN	/ 1 ₁₀	NO	Ox
Source	(111)	(m)	Min Load	Max Load	Min Load	Max Load	Min Load	Max Load	Min Load	Max Load	Min Load	Max Load
Boiler 1/ Stack 1	48.2	2.6	442.6	444.3	19.0	35.7	14.82	31.84	3.704	7.961	27.783	59.705
Boiler 2/ Stack 2	48.2	2.6	431.5	455.4	18.7	30.2	14.18	31.12	3.546	7.779	26.592	58.344
Boiler 3/ Stack 3	48.2	2.4	-	405.4	-	30.8	-	30.78	-	7.696	-	30.784
Boiler 4/ Stack 4	48.2	2.4	-	405.4	-	33.2	-	32.87	-	8.218	-	32.871
Boiler 5/ Stack 5	48.2	2.4	-	405.4	-	33.8	-	33.48	-	8.369	-	33.476
Fly Ash Silo	33.6	1.0	29	3.0	0	.1	0.0)	0.0		0.	0
Fly Ash Silo		1.0	1.0 293.0		0	.1	0.0		0.0)51	0.	0
Bottom Ash Silo	31.0	1.0	29	3.0	0	.1	0.0)	0.0)70	0.	0

Table 2-2 - Stack and Emission Parameters Used in the Modeling

Area Sources	Size	Height		PM ₁₀ Exis	ting Emissio	ons
Area Sources	m ²	m	lb/hr	tpy	g/sec	g/sec-m ²
Ash Loader Upgrade	546	2.0	0.03	0.024	0.0036	7.08E-06
Coal Pile Wind Erosion and Dust Suppression	17,679	4.6	0.93	1.12	0.118	6.66E-06
Coal Stackout Conveyor Dust Suppression	263	9.1	0.03	0.12	0.0036	1.31E-05
Coal Railcar Unloading Dust Suppression	288	1.0	0.072	0.036	0.0096	3.23E-05
Ash trucks on Paved Roads	5,886	1.0	0.36	0.73	0.046	7.72E-06

Notes:

Coal Pile = $4 \text{ acres} = 17,679 \text{ m}^2$

Modeled height of coal pile = one half of average pile height = 30 feet \times 0.5 = 15 feet (4.6 meters)

Modeled height stackout conveyor dust suppression = average height of coal pile (9.1 meters)

Resuspended roadway dust from paved roads: area = 2×0.3 miles $\times 20$ feet wide = 5,886 m²

2-3 January, 2006

3.0 MODELING RESULTS

3.1 Modeling Results For Cycling Units 1 & 2 and Baseload Unit 3

Tables 3-1, 3-2 and 3-3 present results of modeling SO_2 emissions from the two cycling units plus one baseload unit. Table 3-1 presents results for Units 1, 2 and 3. Table 3-2 presents results for Units 1, 2 and 4. Table 3-3 presents results for Units 1, 2 and 5.

3.1.1 SO₂ Results

Highest second highest 3-hour and 24-hour impacts and highest annual average impacts for each year are presented in Table 3-1. Modeled impacts are added to the highest monitored background concentrations for comparison with the NAAQS. The monitored background for the 24-hour average was $60.3 \, \mu g/m^3$. This represented the highest, second highest concentration over the three year (2002-2004) period used in the August 2005 report. Mirant reviewed daily monitored concentrations for the entire 5-year period 2000-2004 and determined that the highest monitored background concentrations do not occur on the days when highest 24-hour SO_2 impacts are predicted from these three units. For this modeling of Units 1, 2 and 3, Mirant identified all the days in years 2000-2004 during which the top twenty-five 24-hour SO_2 concentrations were predicted for each year. Mirant then recorded the 24-hour monitored SO_2 concentration on these days and ranked them. The highest monitored 24-hour SO_2 concentration during these five years was 21 $\mu g/m^3$. This value was used in the NAAQS compliance assessment shown in Table 3-1.

As shown in Table 3-1, the highest second highest 3-hour average SO_2 concentration is 943 $\mu g/m^3$. This concentration is below the 1,300 $\mu g/m^3$ 3-hour NAAQS. The highest, second highest 24-hour average concentration is 361 $\mu g/m^3$. This concentration is below the 365 $\mu g/m^3$ 24-hour NAAQS. Finally, the highest annual average concentration of 67 $\mu g/m^3$ is below the 80 $\mu g/m^3$ annual NAAQS.

3.1.2 PM₁₀ Results

Table 3-1 presents results of modeling PM_{10} emissions from Units 1, 2 and 3 plus all other non-combustion sources at PRGS. The highest, second highest 24-hour average concentration is 144.0 $\mu g/m^3$. This concentration is below the 150 $\mu g/m^3$ 24-hour NAAQS. The highest annual average concentration of 41 $\mu g/m^3$ is below the 50 $\mu g/m^3$ annual NAAQS.

3.1.3 Nitrogen Oxides (as NO₂) Results

Table 3-1 presents results of modeling NOx emissions from Units 1, 2 and 3. Maximum total NO₂ concentrations are predicted to be 97 μg/m³. This concentration is below 100 μg/m³ annual NAAQS.

3-1 January, 2006

3.2 Modeling Results for Cycling Units 1, 2 and Baseload Unit 4

3.2.1 SO₂ Results

Highest second highest 3-hour and 24-hour impacts and highest annual average impacts for each year are presented in Table 3-2. Modeled impacts are added to the highest monitored background concentrations for comparison with the NAAQS. The monitored background for the 24-hour average was $60.3 \, \mu \text{g/m}^3$. This represented the highest, second highest concentration over the three year (2002-2004) period used in the August 2005 report. Mirant reviewed daily monitored concentrations for the entire 5-year period and determined that the highest monitored background concentrations do not occur on the days when highest 24-hour SO_2 impacts are predicted from these three units. For this modeling of Units 1, 2 and 4, Mirant identified all the days in years 2000-2004 during which the top twenty-five 24-hour SO_2 concentrations were predicted for each year. Mirant then recorded the 24-hour monitored SO_2 concentration on these days and ranked them. The highest monitored 24-hour SO_2 concentration during these five years was $53 \, \mu \text{g/m}^3$. This value was used in the NAAQS compliance assessment shown in Table 3-2.

As shown in Table 3-2, the highest second highest 3-hour average SO_2 concentration is 960 $\mu g/m^3$. This concentration is below the 1,300 $\mu g/m^3$ 3-hour NAAQS. The highest, second highest 24-hour average concentration is 357 $\mu g/m^3$. This concentration is below the 365 $\mu g/m^3$ 24-hour NAAQS. Finally, the highest annual average concentration of 60 $\mu g/m^3$ is below the 80 $\mu g/m^3$ annual NAAQS.

3.2.2 PM₁₀ Results

Table 3-2 presents results of modeling PM_{10} emissions from Units 1, 2 and 4 plus all other non-combustion sources at PRGS. The highest, second highest 24-hour average concentration is 144 $\mu g/m^3$. This concentration is below the 150 $\mu g/m^3$ 24-hour NAAQS. The highest annual average concentration of 41 $\mu g/m^3$ is below the 50 $\mu g/m^3$ annual NAAQS.

3.2.3 Nitrogen Oxides (as NO₂) Results

Table 3-2 presents results of modeling NOx emissions from Units 1, 2 and 4. Maximum total NO₂ concentrations are predicted to be 93 µg/m³. This concentration is below 100 µg/m³ annual NAAQS.

3.3 Modeling Results for Cycling Units 1, 2 and Baseload Unit 5

3.3.1 SO₂ Results

Highest second highest 3-hour and 24-hour impacts and highest annual average impacts for each year are presented in Table 3-3. Modeled impacts are added to the highest monitored background concentrations for comparison with the NAAQS. The monitored background for the 24-hour average

3-2 January, 2006

was 60.3 μ g/m³. This represented the highest, second highest concentration over the three year (2002-2004) period used in the August 2005 report. Mirant reviewed daily monitored concentrations for the entire 5-year period and determined that the highest monitored background concentrations do not occur on the days when highest 24-hour SO₂ impacts are predicted from these three units. For this modeling of Units 1, 2 and 5, Mirant identified all the days in years 2000-2004 during which the top twenty-five 24-hour SO₂ concentrations were predicted for each year. Mirant then recorded the 24-hour monitored SO₂ concentration on these days and ranked them. The highest monitored 24-hour SO₂ concentration during these five years was 42 μ g/m³. This value was used in the NAAQS compliance assessment shown in Table 3-3.

As shown in Table 3-3, the highest second highest 3-hour average SO_2 concentration is 833 $\mu g/m^3$. This concentration is below the 1,300 $\mu g/m^3$ 3-hour NAAQS. The highest, second highest 24—hour average concentration is 294 $\mu g/m^3$. This concentration is below the 365 $\mu g/m^3$ 24-hour NAAQS. Finally, the highest annual average concentration of 52 $\mu g/m^3$ is below the 80 $\mu g/m^3$ annual NAAQS.

3.3.2 PM₁₀ Results

Table 3-3 presents results of modeling PM_{10} emissions from Units 1, 2 and 5 plus all other non-combustion sources at PRGS. The highest, second highest 24-hour average concentration is 144 $\mu g/m^3$. This concentration is below the 150 $\mu g/m^3$ 24-hour NAAQS. The highest annual average concentration of 42 $\mu g/m^3$ is below the 50 $\mu g/m^3$ annual NAAQS.

3.3.3 Nitrogen Oxides (as NO₂) Results

Table 3-3 presents results of modeling NOx emissions from Units 1,2 and 5. Maximum total NO_2 concentrations are predicted to be 83 μ g/m³. This concentration is below 100 μ g/m³ annual NAAQS.

3.4 Conclusions

Modeling results indicate that cycling Units 1, 2, operating with one baseload unit in the mode described in Section 2.0, produces ambient air concentrations that are better than the NAAQS for SO_2 , PM_{10} and NO_2 .

Table 3-1 AERMOD Modeling Results Units 1,2 Cycling between Maximum and Minimum Loads, Unit 3 at Maximum Load

Year	Pollutant	Averaging Period	AERMOD- PRIME	Monitored Background	AERMOD- PRIME + Background	NAAQS	Impact	Location	Distance	Direction	Ground Elevation	Flagpole Elevation
		Period		Concentratio	ns (μg/m³)		X (m)	Y (m)	М	deg	m	m
		3-hour	687	238.4	925	1300	322770.8	4298791.5	182.7	349	6.1	39.6
2000	SO ₂	24-hour	340	21.0	361	365	322787.7	4298786.0	174.8	354	4.6	39.6
		Annual	46	15.7	62	80	322787.7	4298786.0	174.8	354	4.6	39.6
		3-hour	688	238.4	926	1300	322770.8	4298791.5	182.7	349	6.1	39.6
2001	SO ₂	24-hour	296	21.0	317	365	322787.7	4298786.0	174.8	354	4.6	39.6
		Annual	51	15.7	67	80	322787.7	4298786.0	174.8	354	4.6	39.6
		3-hour	704	238.4	943	1300	322787.7	4298786.0	174.8	354	4.6	39.6
2002	SO ₂	24-hour	314	21.0	335	365	322770.8	4298791.5	182.7	349	6.1	39.6
		Annual	44	15.7	59	80	322787.7	4298786.0	174.8	354	4.6	39.6
		3-hour	561	238.4	800	1300	322854.0	4298627.0	51.0	73	5.0	0.0
2003	SO ₂	24-hour	272	21.0	293	365	322854.0	4298627.0	51.0	73	5.0	0.0
		Annual	32	15.7	48	80	322854.0	4298627.0	51.0	73	5.0	0.0
		3-hour	621	238.4	859	1300	322787.7	4298786.0	174.8	354	4.6	39.6
2004	SO ₂	24-hour	238	21.0	259	365	322854.0	4298627.0	51.0	73	5.0	0.0
		Annual	36	15.7	51	80	322854.0	4298627.0	51.0	73	5.0	0.0

Table 3-1 Cont.

Year	Pollutant	Averaging Period	AERMOD- PRIME	Monitored Background	AERMOD- PRIME + Background	NAAQS	Impact	Location	Distance	Direction	Ground Elevation	Flagpole Elevation
		Period		Concentratio	ns (μg/m³)		X (m)	Y (m)	m	deg	m	m
2000	PM10	24-hour	89	45	134	150	322810.6	4298329.0	283.1	179	10.6	0.0
2000	FIVITO	Annual	17	21	38	50	322810.6	4298329.0	283.1	179	10.6	0.0
2001	PM10	24-hour	99	45	144	150	322810.6	4298329.0	283.1	179	10.6	0.0
2001	FIVITO	Annual	18	21	39	50	322880.8	4298542.5	102.7	133	6.7	0.0
2002	PM10	24-hour	83	45	128	150	322810.6	4298329.0	283.1	179	10.6	0.0
2002	FIVITO	Annual	18	21	39	50	322810.6	4298329.0	283.1	179	10.6	0.0
2003	PM10	24-hour	82	45	127	150	322810.6	4298329.0	283.1	179	10.6	0.0
2003	FIVITO	Annual	20	21	41	50	322810.6	4298329.0	283.1	179	10.6	0.0
2004	PM10	24-hour	71	45	116	150	322810.6	4298329.0	283.1	179	10.6	0.0
2004	1 IVITO	Annual	19	21	40	50	322810.6	4298329.0	283.1	179	10.6	0.0

Table 3-1 Cont.

Year	Pollutant	Averaging Period	AERMOD- PRIME	Monitored Background	AERMOD- PRIME + Background	NAAQS	Impact	Location	Distance	Direction	Ground Elevation	Flagpole Elevation
				Concentratio	ns (μg/m³)		X (m)	Y (m)	m	deg	m	m
2000	NO ₂	Annual	43	48.9	92	100	322787.7	4298786.0	174.8	354	4.6	39.6
2001	NO ₂	Annual	48	48.9	97	100	322787.7	4298786.0	174.8	354	4.6	39.6
2002	NO ₂	Annual	40	48.9	89	100	322787.7	4298786.0	174.8	354	4.6	39.6
2003	NO ₂	Annual	32	48.9	81	100	322854.0	4298627.0	51.0	73	5.0	0.0
2004	NO ₂	Annual	35	48.9	84	100	322854.0	4298627.0	51.0	73	5.0	0.0

NOx concentrations were multiplied by 0.75 to obtain NO2 estimates in accordance with USEPA guidelines.

3-6 January, 2006

Table 3-2 AERMOD Modeling Results Units 1, 2 Cycling between Maximum and Minimum Loads, Unit 4 at Maximum Load

Year	Pollutant	Averaging Period	AERMOD- PRIME	Monitored Background	AERMOD- PRIME + Background	NAAQS	Impact	Location	Distance	Direction	Ground Elevation	Flagpole Elevation
		Period		Concentratio	ns (μg/m³)		X (m)	Y (m)	М	deg	m	m
		3-hour	587	238.4	825	1300	322770.8	4298791.5	182.7	349	6.1	39.6
2000	SO ₂	24-hour	291	53.0	344	365	322787.7	4298786.0	174.8	354	4.6	39.6
		Annual	39	15.7	55	80	322787.7	4298786.0	174.8	354	4.6	39.6
		3-hour	722	238.4	960	1300	322770.8	4298791.5	182.7	349	6.1	39.6
2001	SO ₂	24-hour	270	53.0	323	365	322770.8	4298791.5	182.7	349	6.1	39.6
		Annual	44	15.7	60	80	322787.7	4298786.0	174.8	354	4.6	39.6
		3-hour	687	238.4	926	1300	322787.7	4298786.0	174.8	354	4.6	39.6
2002	SO ₂	24-hour	304	53.0	357	365	322787.7	4298786.0	174.8	354	4.6	39.6
		Annual	38	15.7	53	80	322787.7	4298786.0	174.8	354	4.6	39.6
		3-hour	509	238.4	748	1300	322787.7	4298786.0	174.8	354	4.6	39.6
2003	SO ₂	24-hour	194	53.0	247	365	322787.7	4298786.0	174.8	354	4.6	39.6
		Annual	20	15.7	36	80	322787.7	4298786.0	174.8	354	4.6	39.6
		3-hour	557	238.4	795	1300	322787.7	4298786.0	174.8	354	4.6	39.6
2004	SO ₂	24-hour	179	53.0	232	365	322787.7	4298786.0	174.8	354	4.6	39.6
		Annual	28	15.7	44	80	322787.7	4298786.0	174.8	354	4.6	39.6

Table 3-2 Cont.

Year	Pollutant	Averaging Period	AERMOD- PRIME	Monitored Background	AERMOD- PRIME + Background	NAAQS	Impact	Location	Distance	Direction	Ground Elevation	Flagpole Elevation
		Period		Concentratio	ns (μg/m³)		X (m)	Y (m)	m	deg	m	т
2000	PM10	24-hour	90	45	135	150	322810.6	4298329.0	283.1	179	10.6	0.0
2000	PIVITU	Annual	17	21	38	50	322810.6	4298329.0	283.1	179	10.6	0.0
2001	PM10	24-hour	99	45	144	150	322810.6	4298329.0	283.1	179	10.6	0.0
2001	FIVITO	Annual	17	21	38	50	322810.6	4298329.0	283.1	179	10.6	0.0
2002	PM10	24-hour	83	45	128	150	322810.6	4298329.0	283.1	179	10.6	0.0
2002	FIVITO	Annual	18	21	39	50	322810.6	4298329.0	283.1	179	10.6	0.0
2003	PM10	24-hour	82	45	127	150	322810.6	4298329.0	283.1	179	10.6	0.0
2003	FIVITO	Annual	20	21	41	50	322810.6	4298329.0	283.1	179	10.6	0.0
2004	PM10	24-hour	82	45	127	150	322810.6	4298329.0	283.1	179	10.6	0.0
2004	FIVITU	Annual	19	21	40	50	322810.6	4298329.0	283.1	179	10.6	0.0

Table 3-2 Cont.

Year	Pollutant	Averaging Period	AERMOD- PRIME	Monitored Background	AERMOD- PRIME + Background	NAAQS	Impact	Location	Distance	Direction	Ground Elevation	Flagpole Elevation
				Concentratio	ns (μg/m³)		X (m)	Y (m)	m	deg	m	m
2000	NO ₂	Annual	39	48.9	88	100	322787.7	4298786.0	174.8	354	4.6	39.6
2001	NO ₂	Annual	44	48.9	93	100	322787.7	4298786.0	174.8	354	4.6	39.6
2002	NO ₂	Annual	38	48.9	87	100	322787.7	4298786.0	174.8	354	4.6	39.6
2003	NO ₂	Annual	24	48.9	73	100	322787.7	4298786.0	174.8	354	4.6	39.6
2004	NO ₂	Annual	29	48.9	78	100	322787.7	4298786.0	174.8	354	4.6	39.6

NOx concentrations were multiplied by 0.75 to obtain NO2 estimates in accordance with USEPA guidelines.

3-9 January, 2006

Table 3-3 AERMOD Modeling Results Units1,2 Cycling between Maximum and Minimum Loads, Unit 5 at Maximum Load

Year	Pollutant	Averaging Period	AERMOD- PRIME	Monitored Background	AERMOD- PRIME + Background	NAAQS	Impact	Location	Distance	Direction	Ground Elevation	Flagpole Elevation
		Period		Concentratio	ns (μg/m³)		X (m)	Y (m)	М	deg	m	m
		3-hour	543	238.4	781	1300	322787.7	4298786.0	174.8	354	4.6	39.6
2000	SO ₂	24-hour	252	42.0	294	365	322787.7	4298786.0	174.8	354	4.6	39.6
		Annual	31	15.7	47	80	322787.7	4298786.0	174.8	354	4.6	39.6
		3-hour	585	238.4	824	1300	322787.7	4298786.0	174.8	354	4.6	39.6
2001	SO ₂	24-hour	245	42.0	287	365	322787.7	4298786.0	174.8	354	4.6	39.6
		Annual	36	15.7	52	80	322787.7	4298786.0	174.8	354	4.6	39.6
		3-hour	595	238.4	833	1300	322763.3	4298799.5	192.1	347	6.5	39.6
2002	SO ₂	24-hour	247	42.0	289	365	322787.7	4298786.0	174.8	354	4.6	39.6
		Annual	29	15.7	45	80	322787.7	4298786.0	174.8	354	4.6	39.6
		3-hour	519	238.4	757	1300	322787.7	4298786.0	174.8	354	4.6	39.6
2003	SO ₂	24-hour	179	42.0	221	365	322787.7	4298786.0	174.8	354	4.6	0.0
		Annual	19	15.7	35	80	322854.0	4298627.0	51.0	73	5.0	0.0
		3-hour	500	238.4	738	1300	322770.8	4298791.5	182.7	349	6.1	39.6
2004	SO ₂	24-hour	177	42.0	219	365	322880.8	4298542.5	102.7	133	6.7	0.0
		Annual	22	15.7	38	80	322854.0	4298627.0	51.0	73	5.0	0.0

Table 3-3 Cont.

Year	Pollutant	Averaging Period	AERMOD- PRIME	Monitored Background	AERMOD- PRIME + Background	NAAQS	Impact	Location	Distance	Direction	Ground Elevation	Flagpole Elevation
		Period		Concentratio	ns (μg/m³)		X (m)	Y (m)	m	deg	m	m
2000	PM10	24-hour	90	45	135	150	322810.6	4298329.0	283.1	179	10.6	0.0
2000	FIVITO	Annual	17	21	38	50	322810.6	4298329.0	283.1	179	10.6	0.0
2001	PM10	24-hour	99	45	144	150	322810.6	4298329.0	283.1	179	10.6	0.0
2001	PIVITU	Annual	17	21	38	50	322810.6	4298329.0	283.1	179	10.6	0.0
2002	PM10	24-hour	83	45	128	150	322810.6	4298329.0	283.1	179	10.6	0.0
2002	FIVITO	Annual	18	21	39	50	322810.6	4298329.0	283.1	179	10.6	0.0
2003	PM10	24-hour	83	45	128	150	322810.6	4298329.0	283.1	179	10.6	0.0
2003	FIVITO	Annual	21	21	42	50	322810.6	4298329.0	283.1	179	10.6	0.0
2004	PM10	24-hour	71	45	116	150	322787.7	4298786.0	174.8	354	4.6	39.6
2004	FIVITU	Annual	19	21	40	50	322787.7	4298786.0	174.8	354	4.6	39.6

Table 3-3 Cont.

Year	Pollutant	Averaging Period	AERMOD- PRIME	Monitored Background	AERMOD- PRIME + Background	NAAQS	Impact	Location	Distance	Direction	Ground Elevation	Flagpole Elevation
				Concentratio	ns (μg/m³)		X (m)	Y (m)	m	deg	m	m
2000	NO_2	Annual	30	48.9	79	100	322787.7	4298786.0	174.8	354	4.6	39.6
2001	NO ₂	Annual	34	48.9	83	100	322787.7	4298786.0	174.8	354	4.6	39.6
2002	NO ₂	Annual	28	48.9	77	100	322787.7	4298786.0	174.8	354	4.6	39.6
2003	NO ₂	Annual	21	48.9	70	100	322787.7	4298786.0	174.8	354	4.6	39.6
2004	NO_2	Annual	23	48.9	72	100	322787.7	4298786.0	174.8	354	4.6	39.6

NOx concentrations were multiplied by 0.75 to obtain NO2 estimates in accordance with USEPA guidelines.

3-12 January, 2006