

Trans-Atlantic Workshop on Storage Technologies for Power Grids Washington, October 19th-20th 2010

"Electrochemical Capacitors for Power Grid Storage technology:

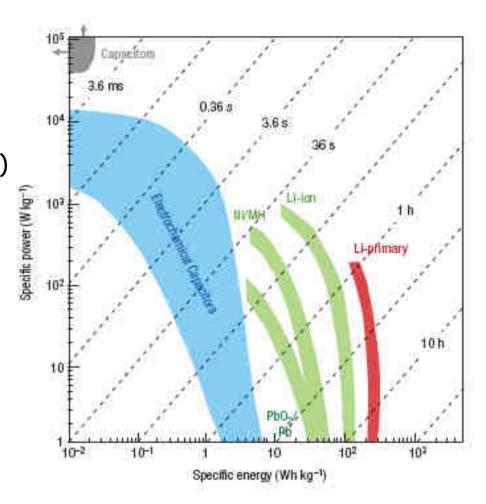
State of the art and next challenges"

Patrice Simon

Univ. Paul Sabatier, CIRIMAT, UMR 5085, Toulouse - FRANCE simon@chimie.ups-tlse.fr

Electrochemical Capacitors

Electrochemical Capacitors:

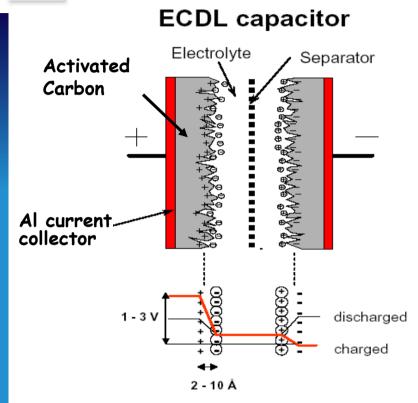

- high power (10-20 kW/kg)
- medium energy density (5 Wh/kg)
- time constant about 1 5 s

 \rightarrow performance between capacitors and batteries

ECs:

Université de Toulouse

- Carbon-based (EDLCs)
- Oxide-based (pseudocapacitors)


Electrochemical Double Layer Capacitors (EDLCs)

95% of the commercialized cells

 \rightarrow high surface area carbons as active materials

Electrochemical Double Layer Capacitor basics

Supercapacitors:

- no redox reaction \rightarrow *high power*
- very high cyclability (> 10⁶ cycles)
- fast-rate discharge AND charge
- low temperature operation (-40 °C)

Electrolyte

Charge of the double layer C

$$C = (\epsilon_0 \epsilon S) / d$$

(about 10-20 μF.cm⁻²)

Ion adsorption onto Activated carbon

- high surface area (1500 m².g⁻¹)
- \rightarrow about 100 F. g⁻¹ of carbon
- electrolyte: AN or PC-based
 electrolytes (cell voltage = 2.7V)

Applications:

- high power for < 10s
- \rightarrow complement to Li-ion batteries

1.2 EDLC Applications

Capacitive storage for Power Grids:

Power Quality:

→ grid stabilization: suppress voltage sags and swells due to high peak power demands (peak-shaving)

	64 -					
	63 -	Equipment Damage				
	62 -	Overfrequency Generation Trip				
	61 -					
-requency	60 -	Governor Response Nominal				
Fre	59 -	Underfrequency Load Shedding Underfrequency Generation Trip				
	58 -	Contingency Response				
	57 -					
	56 -	Equipment Damage				

Fig. 4. The ac frequency range of a typical electric power system, showing operator-controlled and automatic control responses. $^{\delta}$

	Customer (load) applications		Power system operator applications			
Storage technology parameter	Power quality	Backup power for outages	Regulation	Reserve power for grid stability and reliability	Load shifting and load leveling	
Capital cost (1) (\$/kW)	400		700	300-1000	300 (load leveling) 400–1000 (peak shaving and load shifting) 650 (renewables)	
Total U.S. market potential (GW)			30-40	70–100	80 (cost sensitive)	
Storage system power level	Up to 100 kW	1 to 50 MW	Up to 200 MW	10 MW to 1	1 MW to 1 GW	
Discharge time at rated power	0 to 5 s	Minutes to days	Seconds	0.2 to 2 h	1- 8 hours	
Capacity (storage time)	Up to 1 min	Months to years	Seconds	~ 2 weeks	Hours to days	
Lifetime (years)	5	20	20	40	7-10	
Other			Long cycle length			

Basic Research Needs for Electrical Energy Storage, DOE Worshop, Washington, April 2-4, 2007

Next Challenges for Supercapacitors

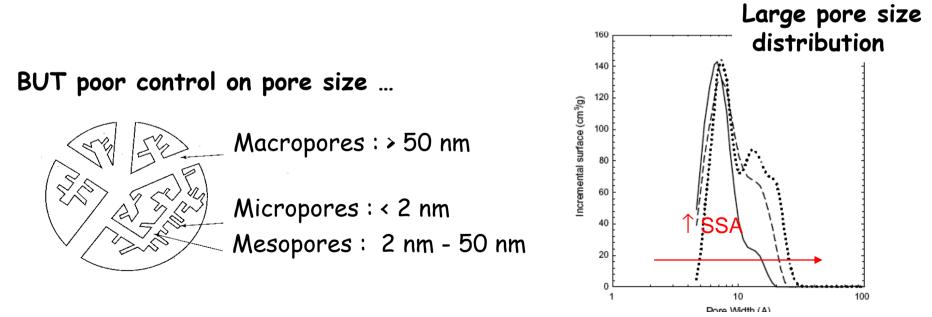
Increase the energy density to >10 Wh/kg (E=1/2 C.V²)

 EDLCs: Carbons with controlled Pore Size to increase C Control the carbon pore size to maximize Capacitance
 → designing carbons with tailored pore size

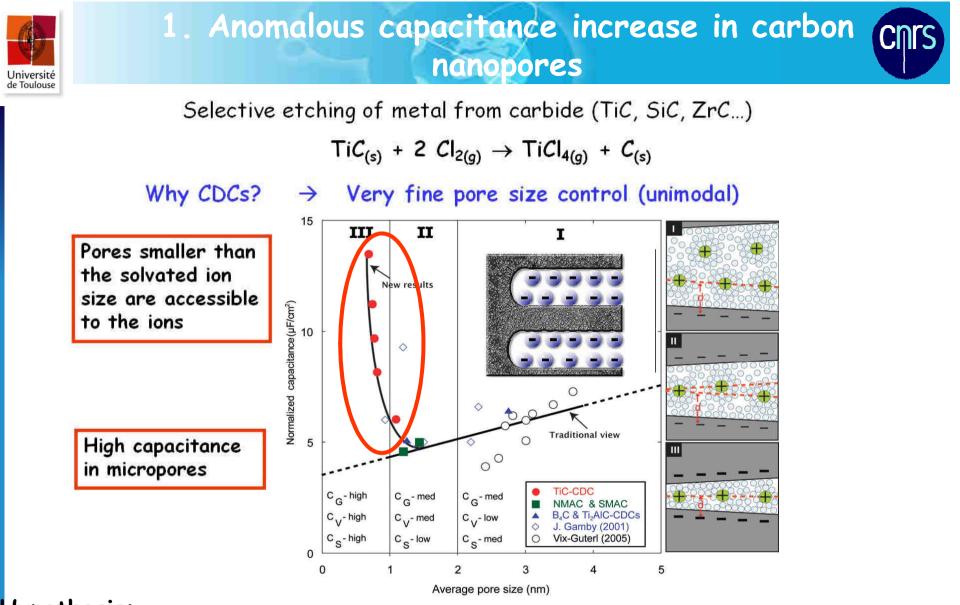
2. Multifunctionnal charge storage concept to increase C
 Combining EDLC and pseudo-capacitive charge storage (DOE report 2007)
 → "pseudo-intercalation" reaction

3. Increasing the cell voltage

 \rightarrow developing new electrolytes and architectures



Active materials for EDLCs \rightarrow Activated Carbon

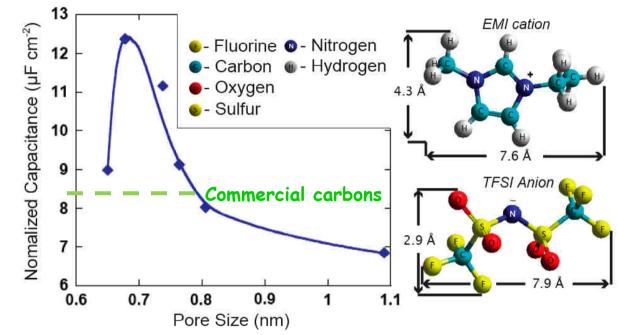


Activated carbons: Physical or Chemical Porous High SSA activation Network ~1500 m²/g

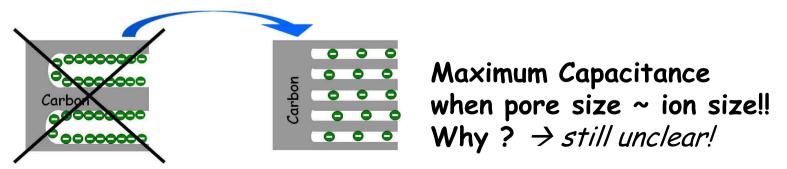
A. G. Pandolfo and A.F. Hollenkamp, J. Power Sources 157 (2006) 11-27

O. Barbieri et al. / Carbon 43 (2005) 1303-1310

Hypothesis:


 \rightarrow Micropores accessible thanks to the distortion of the ion solvation shell

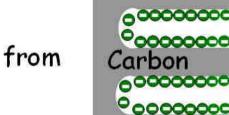
J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P.L. Taberna and P. Simon, *Science* 313, 1760-1763 (2006)

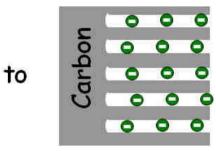

1. Anomalous capacitance increase in carbon cors nanopores

Capacitance change vs carbon pore size in solvent-free electrolyte

Université de Toulouse

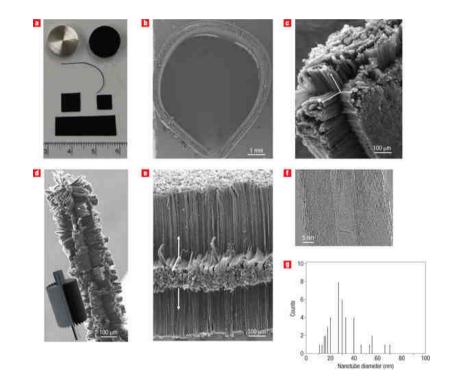
- 1. From +50% to 100% increase capacitance vs commercial AC
- 2. Maximum at approx. 0.7 nm \rightarrow when ion size ~ pore size!!!





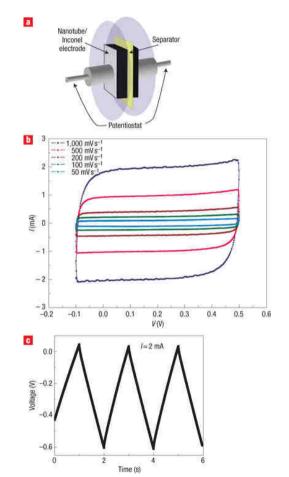
Summary for carbon materials:

- 1. Anomalous capacitance increase in micropores thanks to ion partial desolvation \rightarrow high-energy EDLCs (+100% Cvol.)
- 2. Recast the double layer theory in sub-nanopores


Challenges:

- 1. designing carbons with controled pore size
 - \rightarrow new (cheap) synthesis routes (from biomass or others)
- 2. understanding the « anomalous capacitance » effect to fully exploit this effect:

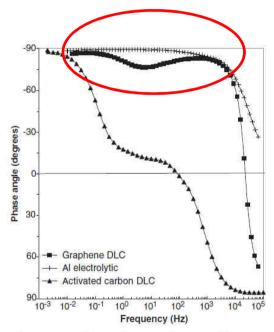
 \rightarrow in-situ experiments needed (NMR, XRD) coupled with modeling

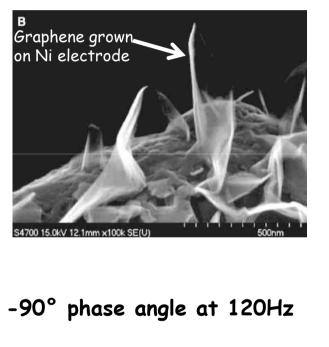


What about nanostructured carbons (CNTs, nanofibers...)?

Talapatra et al., Nature Nanotechnology 1 (2) 112-116 Nov. 2006

High P with low E density (capacitance is at least twice less than activated carbons)


 \rightarrow Applications for AC line filtering (grid/storage system interface)


. Carbons: perspectives

→ AC line filtering (grid/storage system interface) Graphene-based Double-Layer Capacitor (Science, September 2010)

Fig. 2. Impedance phase angle versus frequency for the graphene nanosheet DLC. Measurements from a commercial DLC having an activated carbon electrode and an aluminum electrolytic capacitor are shown for comparison.

Store 50 times more charge than electrolytic capacitors

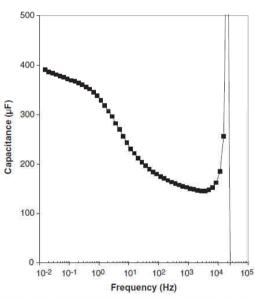
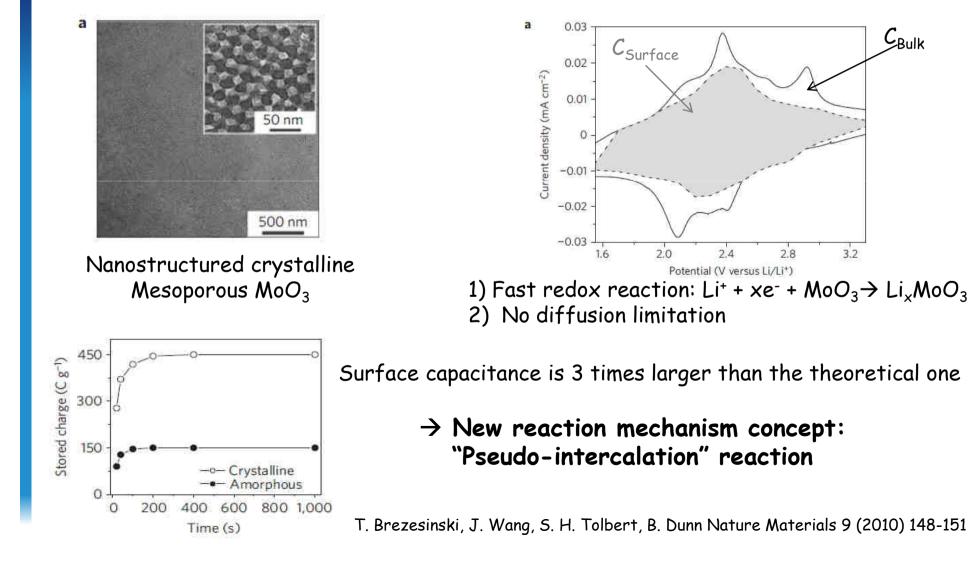


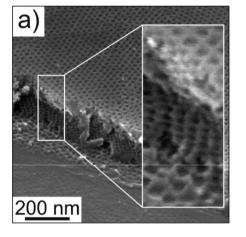
Fig. 4. Capacitance versus frequency of the graphene nanosheet DLC, assuming a series-RC circuit model. Capacitive behavior is shown up to $\sim 10^4$ Hz.

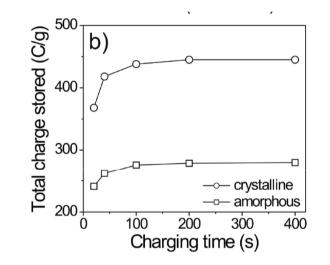


2. Pseudo-capacitive materials

2. Pseudo-capacitive Materials

Pseudo-capacitance: fast, surface redox reaction known for RuO_2 , MnO_2 (...)



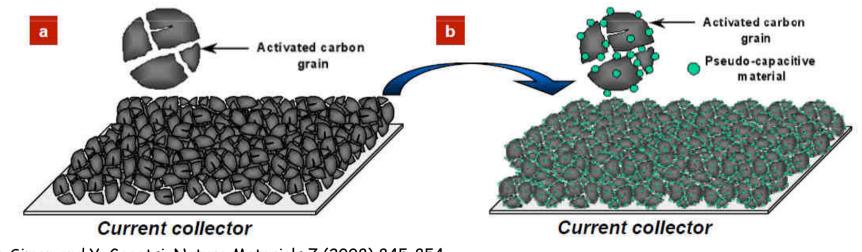

2. Pseudo-capacitive materials:

Nanostructuration of mesoporous cristalline oxides

Nanostructured crystalline Mesoporous Nb₂O₅

Capacitance ×2

(same results with V_2O_5 , Ta_2O_5 , TiO_2)


B. Dunn et al., JACS 132, (2010) 6982-6990

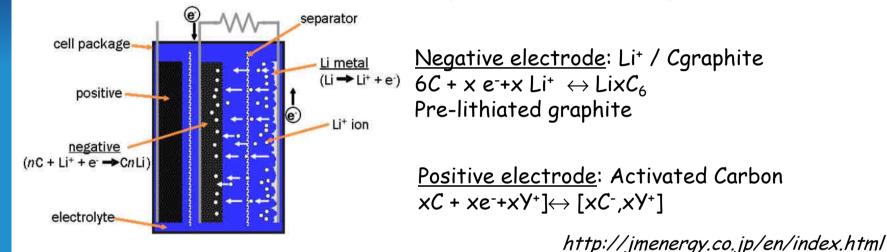
→ Taking advantage of this "new" reaction mechanism to prepare high pseudo-capacitive materials and explore various oxides, nitrides

Pseudo-capacitive materials: perspective Chrs

- 1. Synthesis of mesoporous cristalline oxides and/or nitrides (...)
- 2. New synthesis routes (fine-tuning porosity, upscaling)
- 3. Decorating high specific surface area carbons with these mesoporous materials...

P. Simon and Y. Gogotsi, Nature Materials 7 (2008) 845-854

... to combine Double Layer capacitance and pseudo-intercalation capacitance


3. Increasing the cell voltage

3. Increasing the cell voltage

1. Combining a battery-like electrode to a capacitive electrode

The Li-ion capacitor (JSR Corp.)

Cell Voltage (V)	C (F) / Ah	Energy (Wh/kg)	R _{DC} (mΩ)	Power ma×. (kW/kg)
3.8 - 2.2	2200 / 1	14	2.3	8

*Self discharge after 3 months

** 100C at 100% DOD

Added value vs high power Li-ion cells questionable

Trans-Atlantic Workshop on Storage technologies for Power Grids, October 19th-20th

BUT:

- high power uptake?
- low T behaviour?
- cyclability at high DOD?

3. Increasing the cell voltage

- 3. Increasing the cell voltage
 - 2. Designing new electrolytes

Today's best performance:

Acetonitrile-based electrolytes* (CH_3 -CN) + 1M NEt₄BF₄ (60 mS/cm @25°C)

 E_{cell} =2.7V, $T_{operation}$ -40°C / +70°C

*Japan: carbonate-based electrolytes (PC) but lower conductivity (15 mS/cm $@25^{\circ}C$) since AN forbiden (safety)

Research directed towards:

- replacement of acetonitrile
- implementing Ionic Liquids

Key (unsoved) issues:

- conductivity
- conductivity at T< roomT

Still no real breakthough

Future research directions for capacitive storage

1. Carbon

a) Synthesis of carbons with controlled pore size

- \rightarrow new (cheap) synthesis routes (from biomass or others)
- b) Basic work needed to understand the anomalous capacitance increase

 \rightarrow coupling in-situ experiments to modeling

c) Nanostructured carbons (CNTs, graphene) for high power (filtering)

2. Pseudo-capacitive materials

a) Synthesis of mesoporous cristalline oxides and/or nitrides (...)
b) New synthesis routes (fine-tuning porosity, upscaling)
c) Decorating high specific surface area carbons with pseudo-capacitive materials

3. Electrolyte

a) Ionic Liquid mixture to decrease T operation (eutectic mixtures?)

Thanks for your attention