Department of Energy Bonneville Power Administration 1520 Kelly Place Walla Walla, Washington 99362 March 26, 2002 In reply refer to: PTS/Walla Walla ### To: People Interested in the Maiden Wind Farm We would like to hear from you about Bonneville Power Administration (BPA) and Benton County's Draft Environmental Impact Statement (EIS) for the Maiden Wind Farm. If you requested a copy of the Draft EIS or Summary, it is enclosed for your review. Comments will be accepted until May 15, 2002. The Draft EIS describes the proposed project, tells why it may be needed, discusses the environmental and social impacts the project could create, and lists the mitigation measures that would lessen or eliminate those impacts. We greatly appreciate your time in reviewing the document and giving us your comments. #### **Public Meeting** Tuesday, April 23, 2002 4:00 - 7:00 p.m. Prosser Senior Citizen Center 1231 Dudley Avenue Prosser, Washington The meeting will be an informal, open house. Come anytime between 4:00 and 7:00, when it is convenient for you. Members of the project team will be available to describe the proposed project and the environmental studies performed, and answer your questions. ### **How to Comment** If you have comments on the Maiden Wind Farm Draft EIS, you can give them to us at the public meeting or submit you comments to either: BPA Communications, KC-7 P.O. Box 12999 Portland, OR, 97212 Prosser, WA 99350 comment@bpa.gov or call toll free at 1-800-622-4519 and record your comments. ### **Proposal** Washington Winds Inc. is proposing to build and operate a new wind energy facility near Sunnyside in Benton and Yakima Counties, Washington. Bonneville Power Administration is proposing to purchase up to 50 average megawatts (aMW) of the electrical output from the project and provide transmission. Benton and Yakima Counties have received applications from Washington Winds for Conditional Use Permits. The facility would generate between 150 and 494 megawatts of power. (A megawatt is an electrical unit of power equal to 1,000 kilowatts.) Washington Winds is considering using turbines ranging from 900-kilowatt (kW) to 2,000-kW output each. Washington Winds has not yet picked a turbine design, or decided how large a project to build, so exact numbers of turbines are not yet known. Power from the project would most likely be interconnected to BPA's existing Midway-Big Eddy 230-kV transmission line that transects the western portion of the project site. #### **Environmental Analysis** BPA, as a Federal agency, must study the environmental impacts of a proposed project before it can take action. This policy is set out in the National Environmental Policy Act (NEPA) of 1969. The Act requires that significant environmental impacts of a proposed action be discussed in an Environmental Impact Statement. Because we are proposing to purchase power from the Maiden Wind Farm, we will prepare an Environmental Impact Statement on the entire proposal. As permitting agencies, Benton and Yakima Counties are required to follow Washington's State Environmental Policy Act (SEPA). Benton and Yakima Counties are cooperating agencies with BPA and the Environmental Impact Statement will provide the analyses needed for both NEPA and SEPA. ### **Process/Schedule** We will read and consider all the comments submitted during the comment period, which ends on May 15, 2002. We expect to publish a Final EIS in summer 2002 (if you received the Draft EIS, you will also receive a Final EIS unless you tell us you do not want a copy). All comments and our responses to those comments will be published in the Final EIS. Also, where appropriate, the Final EIS will be updated with any changes to the proposal or analysis in response to comments. Once we have completed the Final EIS, BPA will issue a Record of Decision outlining whether and how we will proceed with the project. Benton and Yakima Counties will use the EIS in deciding whether to grant CUPs for the proposed project, as well as necessary construction related permits. #### **For More Information** Copies of the Draft EIS or Summary are available by contacting 1-800-622-4520. The document is also posted on BPA's website at *www.efw.bpa.gov* – click on environmental planning/analysis, then on Active Projects. For further information regarding this proposal or the Draft EIS, please contact Sarah Branum at BPA toll-free at 1-800-282-3713, (or direct number 503-230-5115), or *stbranum@bpa.gov*; or contact Mike Shuttleworth at Benton County at 509-786-5612, or *mike.shuttleworth@co.benton.wa.us*. Thank you for your interest in our work. Sincerely, Tom Osborn Project Manager Terry A Marden Benton County SEPA Administrator # Maiden Wind Farm Draft Environmental Impact Statement Cover Sheet Responsible Federal Agency: U.S. Department of Energy (DOE), Bonneville Power Administration (BPA) Responsible Local Agency: Benton County Planning and Building Department Title of Proposed Project: Maiden Wind Farm **Implementation Dates**: Construction is expected to begin in summer 2002; commercial operation is expected to begin in winter 2002-2003. Washington Winds Inc. (the project developer) proposes to construct and operate up to 494 megawatts (MW) of wind generation on privately- and publicly-owned property in Benton and Yakima Counties, Washington. This Draft Environmental Impact Statement (EIS) evaluates the environmental effects of BPA's Proposed Action to execute power purchase and interconnection agreements for the purpose of acquiring up to 50 average megawatts (aMW) (up to about 200 MW) of the project developer's proposed Maiden Wind Farm. This EIS also evaluates the environmental impacts of the No Action Alternative. BPA's preferred alternative is the Proposed Action. This action requires Conditional Use Permits (CUPs) from Benton and Yakima Counties, as well as other state and federal permits. The project would include integration of energy into BPA's existing transmission system. This EIS satisfies the requirements of both the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). The project would be located about 10 miles northeast of Sunnyside in the Rattlesnake Hills and would occupy about 251 acres of land. Except for portions of two sections of land owned by the Washington Department of Natural Resources (DNR), the project would be constructed on privately-owned farm and ranch land in Benton and Yakima Counties. The major facilities of the project include up to 549 wind turbines with small transformers at the base of each turbine tower, underground and overhead collector cables, access roads, up to two substations, up to three operation and maintenance buildings, possibly a 4-mile 230-kilovolt (kV) transmission line, and up to four meteorological towers. During construction, several staging areas and up to two quarries would be developed. Best management practices would be implemented to protect wildlife, limit weeds, erosion, and fire hazard, and ensure public safety, among other purposes. The project could be developed in several phases. The first phase would consist of 50 aMW in the northwestern portion of the project site. The project developer has requested a CUP for up to 494 MW. Although the full 494 MW of power may or may not be constructed, this EIS evaluates impacts from full build-out of the project. Comments on the Draft EIS will be accepted until May 15, 2002. You may access the EIS or find more information about BPA at www.efw.bpa.gov. ### For additional information about the EIS, contact: Sarah T. Branum Environmental Specialist – KEC-4 Bonneville Power Administration P.O. Box 3621 Portland, OR 97208-3621 503-230-5115, or toll-free: 1-800-282-3713 stbranum@bpa.gov Mike Shuttleworth Benton County Planning and Building Dept. 1002 Dudley Avenue Prosser, WA 99350 509-786-5612 mike_shuttleworth@co.benton.wa.us #### To request additional copies of the EIS, contact: Bonneville Power Administration Communications Office – KC-7 P.O. Box 3621 Portland, OR 97208-3621 Toll-free: 1-800-622-4520 ### For information on DOE NEPA activities, contact: Carol M. Borgstrom, Director Office of NEPA Policy and Compliance, EH-42 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Phone: 1-800-472-2756 www.eh.doe.gov/nepa # **Acronyms and Abbreviations** ACHP Advisory Council on Historic Preservation ACOE Army Corps of Engineers ADPA Archaeological Data Protection Act ADT average daily traffic AIRFA American Indian Religious Freedom Act ALE Arid Lands Ecology Reserve aMW average megawatt ARPA Archaeological Resources Protection Act AVO average vehicle occupancy BA biological assessment BCAA Benton Clean Air Authority BGRO Battelle Gravitational Research Observatory BMPs Best Management Practices BNSF Burlington Northern and Sante Fe B.P. Before Present BPA Bonneville Power Administration BPEIS Business Plan Environmental Impact Statement C state or federal candidate species CEC California Energy Commission CFR Code of Federal Regulations CRB Columbia River Basalt CRMMP cultural resources mitigation monitoring plan CRP Conservation Reserve Program CT combustion turbine CUP Conditional Use Permit dB decibel dBA decibel (A-weighted) DNR Washington State Department of Natural Resources DOE U.S. Department of Energy E state or federal endangered species Ecology Washington State Department of Ecology EDNA Environmental Designation for Noise Abatement EIS environmental impact statement EMF electric and magnetic fields EPA U.S. Environmental Protection Agency FAA Federal Aviation Administration FEMA Federal Emergency Management Agency GIS geographic information system GMA Growth Management Act GVW gross vehicle weight JARPA Joint Aquatic Resources Permit Application kV kilovolt kW kilowatt LIGO Laser Interferometer Gravitational-Wave Observatory LOS level of service m meter met meteorological mgd million gallons per day mm
millimeter MM Modified Mercalli mph miles per hour MW megawatt N/A not available NA not applicable NAAQS National Ambient Air Quality Standards NAGPRA Native American Graves Protection and Repatriation Act NEPA National Environmental Policy Act , the NHPA National Historic Preservation Act NPDES National Pollutant Discharge Elimination System NRCS Natural Resource Conservation Service NRHP National Register of Historic Places NWPPC Northwest Power Planning Council O&M operation and maintenance PBL Power Business Line PCB polychlorinated biphenyl PHS Priority Habitats and Species PL Public Law R1 State Review Group 1 plant species RCW Revised Code of Washington RNA raptor nesting area ROD Record of Decision RPEIS Resource Programs Environmental Impact Statement S state sensitive plant species SCS Soil Conservation Service SEPA State Environmental Policy Act SMA Shoreline Management Act SoC federal Species of Concern SMP Site Management Plan SMPT Site Management Plan Team SR State Route SWPPP Stormwater Pollution Prevention Plan T state or federal threatened species TAC Technical Advisory Committee TCP traditional cultural property TMDL total maximum daily load UBC Uniform Building Code USC U.S. Code USDA U.S. Department of Agriculture USFWS U.S. Fish and Wildlife Service USGS U.S. Geological Survey WAC Washington Administrative Code WASHPO Washington State Historic Preservation Office WDFW Washington Department of Fish and Wildlife WNHP Washington Natural Heritage Program LACEDOTE IN 1: 1 Con Day of CE WSDOT Washington State Department of Transportation YRCAA Yakima Regional Clean Air Authority # **Glossary** Anemometers Small devices that measure wind speeds at different heights. They are installed on a meteorological tower. Aquifers Water-bearing rock or sediments below the surface of the earth Attainment When an area meets the National Ambient Air Quality Standards Average megawatt (aMW) The average amount of energy supplied over a specified period of time, in contrast to megawatt (MW), which indicates the maximum or peak output that can be supplied for a short period Avian Of or relating to birds Best Management Practice (BMP) A practice or a combination of practices that are the most effective and practical means of preventing or reducing the amount of pollution generated by nonpoint sources to a level compatible with water quality goals Candidate species (federal or state) Those species being considered by the U.S. Fish and Wildlife Service or Washington Department of Fish and Wildlife for possible addition to the list of endangered and threatened species Conservation Reserve Program (CRP) A national program coordinated by the National Resource Conservation Service designed to take small grain-producing lands on highly erodible soils out of production to reduce erosion and degradation past, present, and reasonably foreseeable future actions Cut-and-fill The process by which a road is cut or filled on a side slope. The term refers to the amount of soil that is removed (cut) or added (filled). Clean Water Act (CWA) A federal law intended to restore and maintain the chemical, physical, and biological integrity of the nation's waters and secure water quality Decibel (dB) A measure of sound intensity, defined as 10 times the logarithm of the ratio of two sound pressures squared Decommissioning The dismantling of the project at the end of its projected life span Electric and magnetic field (EMF) A force field associated with electric charge in motion. It has both electric and magnetic components and contains a specific amount of electromagnetic energy. Emergent Aquatic plant having its stems, leaves, etc. extend above the surface of the water Endangered species (federal or state) Those species officially designated by the U.S. Fish and Wildlife Service, Washington Department of Fish and Wildlife, or Washington Department of Natural Resources as being in danger of extinction throughout all or a significant portion of their range Erosion The wearing away of the land surface by running water, wind, or other processes Floodplain A portion of a river valley adjacent to the stream channel that is covered with water when the stream overflows its banks during flood stage Fugitive dust Dust released to the air through construction, agriculture, or other activities Habitat The environment in which an organism or biological population usually lives or grows Intermittent Occurring periodically, as in water flow in certain creeks or streams Jurisdictional waters Navigable waters (in the traditional sense) and Waters of the U.S. over which the U.S. Army Corp of Engineers has permitting authority Kilovolt (kV) A unit of electric potential and electromotive force, equal to one thousand volts Listed species Any species of fish, wildlife, or plant which has been determined to be endangered or threatened under section 4 of the Endangered Species Act, or by the Washington Department of Fish and Wildlife or the Washington Department of Natural Resources Lithic Of or relating to stone material Megawatt (MW) A unit of power, equal to one million watts Meteorological towers A regular feature of wind power projects. Attached to them are anemometers to measure wind speeds at various heights. Mitigation The step(s) taken to lessen the potential environmental effects predicted for each resource impacted by the project. Mitigation may reduce the impact, avoid it completely, or compensate for the impact. Nacelle The portion of the wind turbine mounted on the top of the turbine tower. It houses the generator, drive train, and gearbox. Nocturnal Active at night Nonattainment When an area does not meet the National Ambient Air Quality Standards Noxious weeds Plants that are injurious to public health, crops, livestock, land, or other property Particulates Fine solid particles that remain individually dispersed in the atmosphere (dust) Passerines Perching birds and songbirds such as jays, sparrows, finches, and warblers Perennial Having year-round water flows, as in certain streams and creeks PM₁₀ Particulate matter smaller than 10 microns; airborne dust created by disturbance of soil on unpaved roads, construction sites, and tilled land Potable water Water considered safe for human consumption Project (the proposed project) The proposed Maiden Wind Farm Project footprint The actual footprint of permanent project facilities, including roads, wind turbines, transmission line structures, substations, meteorological towers, and operation and maintenance buildings Project site The location of all permanent project facilities (the project footprint) in addition to all temporary facilities such as construction staging, laydown and turnaround areas, and quarries Proposed action (for BPA) To execute power purchase and construction and generation interconnection agreements to acquire and transmit up to 50 average megawatts (aMW) (up to about 200 MW) of power from the Maiden Wind Farm Proposed action (for Benton and Yakima Counties) To approve Conditional Use Permits and other permits for the construction of the proposed project Proposed project The proposed construction and operation of up to 549 wind turbine generators in Benton and Yakima Counties Raptors Birds of prey such as hawks, eagles, and owls Reclamation The restoration of lands used temporarily during construction (e.g., construction staging areas, access road margins) Revegetation The reestablishment of vegetation on a disturbed site Right-of-way An easement for a certain purpose over the land of another owner, such as a strip of land used for a road, electric transmission line, or pipeline Riparian habitat A zone of vegetation that extends from the water's edge landward to the edge of the vegetative canopy. The term is associated with watercourses such as streams, rivers, springs, ponds, lakes, and tidewater. Roost site A place where birds go to rest or sleep Rotor The hub and blade portion of the wind turbine that turns in the wind to generate power Seismic event An earthquake Sensitive species (state) Any wildlife species native to the state of Washington that is vulnerable and is likely to become endangered or threatened throughout a significant portion of its range within the state without cooperative management or removal or threats Shrub-steppe habitat Habitat composed of various shrubs and grasses such as sagebrush, rabbitbrush, annual grasses, bluegrass, and wheatgrass Species of Concern (federal) Those species for which insufficient data have been gathered, but that show a decline in population Staging areas Areas set up near construction sites to temporarily store equipment and materials during construction String A sequential line of wind turbines Study area The study area is different for each impact analysis. It is the area surveyed or included in the impact analysis. It could include a 100-foot buffer from each project facility or it could include both Yakima and Benton Counties, depending on the nature of the resources being evaluated. The study area is defined under the Study Methodology subsection in each technical section of the EIS. Substation The fenced site that contains the terminal switching and transformation equipment needed at the end of a transmission line Threatened species (federal or state) Those species officially designated by the U.S. Fish and Wildlife Service or Washington Department of Fish and Wildlife as likely to become endangered within the foreseeable future throughout all or a significant portion of their range Topography The physical shape of the land Towers The tubular structures that support the turbine nacelles and rotors Transmission lines Includes the structures, insulators, conductors, and other equipment used to transmit electrical power from one point to another Turbine string A set of wind turbines, generally aligned in a row along a ridge Waters of the U.S. A regulatory term defined in 33 CFR 328.3 to include waters such as lakes,
rivers, streams (including intermittent streams and tributaries), wetlands, sloughs, or natural ponds under the jurisdiction of the U.S. Army Corps of Engineers Wetlands Areas where the soil experiences anaerobic conditions because of inundation of water during the growing season. Indicators of a wetland include types of plants, soil characteristics, and hydrology of the area. Wind turbine A wind-driven generator that produces electricity # MAIDEN WIND FARM Draft NEPA/SEPA Environmental Impact Statement - Summary DOE/EIS-0333 Bonneville Power Administration Benton County, Washington # **Summary** ### Introduction Bonneville Power Administration (BPA) is a federal power marketing agency under the U.S. Department of Energy (DOE) that is responsible for marketing electrical power to utility, industrial, and other customers in the Pacific Northwest, pursuant to the Bonneville Project Act of 1937, the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (Public Law [PL] 96-501, Northwest Power Act), and other statutes. In addition to marketing power from the federal hydro system in the Pacific Northwest, BPA purchases and markets power from other generation sources in the region to adequately serve its customers, as required by statute. BPA also owns and operates over 15,000 miles of high-voltage transmission lines that move power from generation resources to electric utilities and direct service industries. BPA encourages the development of renewable energy resources in the Pacific Northwest to meet customer demand for power, diversify its resource portfolio, and meet its obligations under the Northwest Power Act. Deregulation of the electric industry and subsequent energy supply issues have emphasized the need for new and diverse energy sources in BPA's service area, the Pacific Northwest. Renewable resources like wind would not only help diversify BPA's energy resource portfolio, but are preferred by many consumers concerned about environmental effects of other power sources. BPA has marketed output from renewable power projects as "green power" to satisfy demand from these consumers and to increase the amount of renewable energy resources in the region's power supply. The Northwest Power Planning Council's (NWPPC) Fourth Conservation and Electric Power Plan recommended that Northwest utilities offer green power purchase opportunities as a way to help the region integrate renewable resources into the power system in the future. In February 2001, Washington Winds Inc. (the project developer) submitted a proposal to BPA for a site north of the cities of Sunnyside and Prosser in Washington where wind power facilities could be developed. After considering preliminary information, BPA decided to examine the proposed project and consider purchasing and transmitting power from the project. The project developer also submitted Conditional Use Permit (CUP) applications to Benton and Yakima Counties. Benton County, serving as the lead agency for the State Environmental Policy Act (SEPA), issued a Determination of Significance on June 11, 2001. The National Environmental Policy Act (NEPA) (42 *U.S. Code* [USC] Section 4231 et seq.) requires federal agencies to prepare and make public an EIS for major federal actions or decisions that could significantly affect the quality of the human environment, including the natural and physical environment. Benton County, as the lead agency for SEPA, may adopt environmental analysis prepared under NEPA. The Washington State Environmental Policy Act requires that an environmental impact statement be prepared on proposals for legislation and other major actions having a probable significant, adverse environmental impact. This EIS provides environmental information to the public and to federal, state, and local agencies, officials, and decision-makers regarding the effects of the proposed action. The Final EIS will respond to public and agency comments on this Draft EIS. It may also provide necessary clarifications, elaboration, and revisions to this draft. BPA will consider the information in this EIS, public comments, and other factors when deciding whether to purchase power from the proposed wind project and transmit it over BPA transmission lines. Benton and Yakima County Planning Departments will consider information in this EIS when deciding whether to grant CUPs and allow the proposed project to be developed. BPA's proposed action is the execution of power purchase and construction and generation interconnection agreements to acquire and transmit up to 50 aMW¹ (up to about 200 MW) of output from the proposed Maiden Wind Farm, which would be developed to generate up to 494 MW. Benton and Yakima Counties' proposed action is to grant Conditional Use Permits (CUPs) and other required permits for full build-out of the project, which would require construction of up to 549 wind turbines for a 494-MW project. This EIS evaluates two alternatives—the Proposed Action (which means that part or all of the proposed project would be built) and No Action. BPA would not purchase or transmit power from the project under the No Action Alternative and it is therefore likely that the project would not be constructed. # **Purpose of and Need for the Proposed Action** The need for the proposed action arises primarily from BPA's statutory obligations and planning directives. BPA may need to acquire additional power generation resources in order to meet the projected electric power requirements (i.e., loads) of its customers, as required by the Northwest Power Act. BPA also may need to acquire power from renewable resources in order to comply with the Northwest Power Act, the President's National Energy Policy, and BPA's own planning documents. Finally, BPA may need to specifically acquire power from wind resources to help meet its statutory obligations under the Northwest Power Act and conform with goals in the President's National Energy Policy. The purposes (i.e., objectives) of the proposed action are to: - Acquire wind power to fulfill BPA's obligations under the Northwest Power Act regarding the acquisition of additional power generation resources and development of renewable energy resources - Further the objectives of the President's National Energy Policy to diversify energy sources by making greater use of nonhydroelectric renewable sources such as wind power - Protect BPA and its customers against risk of power outages by diversifying BPA's energy supplies PAGE S-2 SUMMARY Average MW or "aMW" indicates the average amount of energy supplied over a specified period of time, in contrast to "MW," which indicates the maximum or peak output that can be supplied for a short period. Wind projects only generate power when the wind is sufficient to operate the turbines. In general, wind projects operate about one-quarter to one-third of the time (it varies in different locations), so a wind project with a capacity of 150 to 200 MW would generate about 50 aMW. - Meet growing customer demand for energy from renewable energy resources - Ensure consistency with the resource acquisition strategy of BPA's Resource Programs and Business Plan - Further the objective of BPA's PBL Strategic Plan to increase the amount of renewable energy resources under contract and to evaluate issues of integration and operation of wind resources - Respond to the project developer's application to BPA for the purchase and transmission of power generated by wind turbines at the proposed Maiden Wind Farm site. # **Description of Proposed Project** Washington Winds Inc. proposes to construct and operate up to 494 megawatts (MW) of wind generation on privately- and publicly-owned property in Benton and Yakima Counties, Washington. This EIS evaluates the environmental effects of BPA's Proposed Action to execute power purchase and interconnection agreements for the purpose of acquiring up to 50 average megawatts (aMW) (up to about 200 MW) of the project developer's proposed Maiden Wind Farm. The project developer has requested a CUP for up to 494 MW. Although the full 494 MW of power may or may not be constructed, this EIS evaluates impacts from full build-out of the project. The project would be located about 10 miles northeast of Sunnyside in the Rattlesnake Hills and would occupy approximately 251 acres of land. Approximately 1,063 acres would be temporarily occupied during construction by facilities such as staging areas, equipment laydown areas, and rock quarries. Except for portions of two sections of land owned by the Washington Department of Natural Resources (DNR), the project would be constructed on privately-owned farm and ranch land in Benton and Yakima Counties. The major facilities of the project include up to 549 wind turbines with small transformers at the base of each turbine tower, underground and overhead collector cables, access roads, up to two substations, up to three operation and maintenance buildings, a potential 4-mile 230-kilovolt (kV) transmission line, and up to four meteorological towers (see Figure 2.1-2). Construction of the project could begin in summer 2002, with at least partial power generation expected as early as winter 2002-2003. Construction of the full project would take about nine months. #### Wind Turbines Up to 549 wind turbines would be arranged in numerous "strings" for a maximum of about 30 total miles of turbine strings. The height of the turbines would range from about 300 feet to 390 feet, depending on the turbine size selected. The project developer would select a single wind turbine design from a range of turbines that produce 900-kilowatt (kW) to 2,000-kW output each. If 2,000-kW turbines (390 feet high) were used, 247 turbines would be constructed. If 900-kW turbines (about 325 feet high) were used, 549 turbines would be constructed. This EIS evaluates this latter scenario because it represents the maximum number of turbines, and the maximum environmental impact
potential of the project. The turbine type likely to be used is an upwind, dual-speed turbine (i.e., the nacelle would move so that the rotor always faces upwind and turns at one of two speeds, depending on the current wind speed). The typical range of wind speeds for these turbines to operate is 9 to 56 miles per hour (mph). At higher speeds the turbines automatically stop to avoid damage, and remain stationary until the wind slows. Wind turbines consist of the foundation, tower, nacelle, and rotor (hub and three rotor blades). The nacelle is mounted at the top of the tower and houses the gearbox and generator. The rotor attaches to the nacelle. The newer-generation wind turbines have rotors that make one revolution approximately every 3-4 seconds, which increases the blade visibility to birds compared to the old, faster-moving turbine models. Newer turbine models also use tubular towers instead of lattice towers to eliminate perching opportunities for birds. The towers would be painted neutral gray or off-white to be visually less obtrusive. Some of the towers would be furnished with obstruction lighting at the top of the nacelle for aircraft safety. The number of wind turbines with lights and the type of lighting would be determined in consultation with the Federal Aviation Administration (FAA). Wind turbine foundations most likely would be caisson-type but potentially could be a spread footing-type. The type of foundation would be determined based on site geotechnical study information after construction bids are received and evaluated. ## **Electrical System** The project developer would build and maintain one (for a 50 aMW project) or two (for a larger project) fenced substation sites occupying up to 4 acres each. The sites would be gravel except for concrete pads underneath transformer and switching equipment. Transformers would be nonpolychlorinated biphenyl (PCB) oil-filled types. Electric lines would be installed to connect the turbines and turbine strings. The initial stage of the project would be connected through the project's western substation to BPA's existing Big Eddy-Midway 230-kV transmission line that crosses the northwest portion of the study area. The most likely interconnection option for subsequent stages would be to build a new 4-mile 230-kV transmission line from a second substation in the eastern portion of the project site to interconnect with BPA's Big Eddy-Midway 230-kV transmission line. # **Meteorological Towers** Meteorological (met) towers are used to measure wind conditions. They are slender steel towers approximately 165 feet high. These towers usually have 3 or 4 anemometers to record wind speeds at several elevations. There is one met tower currently on the project site and two or three additional met towers would be installed for the project. The met towers would be constructed upwind of turbine strings or groups of turbine strings to monitor wind strengths as part of the process used to confirm turbine performance. #### **Access Roads** The western end of the study area in Yakima County is accessible via Interstate 82, State Route 241, and Lewandowski Road, then via private ranch roads. The eastern portion of the study area in Benton County is accessible via Interstate 82, North Gap Road, and other rural PAGE S-4 SUMMARY roads. The project would include improving existing private roads and constructing new gravel roads on private property to provide access for construction vehicles and equipment. Up to 10.3 miles of existing private roads would need to be improved and up to 44.5 miles of new roads would be constructed. ### Operation and Maintenance Buildings Up to three permanent O&M facilities would be constructed on the project site. Each O&M building would be approximately 20,000 square feet, including an office and workshop area, restroom, and kitchen facility. The O&M buildings, including parking, would be on 4-acre sites. ### **Temporary Staging Areas** During wind turbine installation, several temporary laydown or staging areas would be required. Depending on the size of the project, these areas would include up to two 10-acre main staging areas and up to 14 2-acre intermediate staging areas where tower sections, nacelles, and other components would be temporarily stored as each wind turbine string is constructed. In general, a 2-acre laydown/staging area would be required for each group of 25 to 50 turbines. After construction has been completed, laydown and staging areas would be graded and reseeded to wheat or native grasses as necessary to restore the area as close as possible to its original condition. ### **Quarry Sites/Concrete Batch Plants** Two quarry sites with concrete batch plants would be needed. The eastern quarry pit already exists and the western quarry would need to be developed. The quarries could possibly provide all the gravel supplies for construction of the project. Approximately 8 acres would be needed for each quarry and ancillary facility. The sites would include the quarry, raw material stockpiles (for example, sand and gravel, concrete aggregates), a mobile crusher for the concrete batch plant, a diesel generator, parking, storage, and a settling pond. # **Employment** The project developer anticipates that about 150 workers would be employed for approximately 9 months to construct the facilities. A peak workforce of up to 350 workers would be onsite during an estimated 4-month peak construction period. Construction workers would be employees of various construction and equipment manufacturing companies under contract to the project developer. Up to 15 permanent full-time staff would be employed during operation of the project. Most of the O&M staff would likely be hired locally. One or two supervisors with experience at other wind turbine projects would supervise the O&M staff. ## **Decommissioning** For financial evaluation and contractual purposes, the project is assumed to have a useful life of 20 years. The trend in the wind energy industry has been to "repower" older wind energy projects by upgrading equipment with more efficient turbines. It is likely that the project would be upgraded with more efficient equipment and could have a useful life far longer than 20 years. BPA would have the option to extend its power purchase agreement at that time. If the project were terminated, the project developer would request the necessary authorizations from the appropriate regulatory agencies and landowners to decommission the facilities. All facilities would be removed to a depth of 3 feet below grade and unsalvageable material would be disposed of at authorized sites. The soil surface would be restored as close as possible to its original condition, or to match the current land use. Reclamation procedures would be based on site-specific requirements and techniques commonly employed at the time the area would be reclaimed. ## **No Action Alternative** Under the No Action Alternative, BPA would not purchase or transmit power from the proposed project. Therefore, it is likely that the project would not be constructed or operated, and the potential environmental impacts associated with the proposed project would not occur. However, it also is likely that the region's need for power would be addressed through the development of other generation to provide up to 494 MW (about 150 aMW) of capacity that would have been provided by the proposed project. ## **Preferred Alternative** BPA's preferred alternative is the proposed action to execute power purchase and construction and interconnection agreements to acquire and transmit up to 50 aMW of output from the project developer's proposed Maiden Wind Farm. The proposed project is the only alternative that meets the underlying need for the action and best meets the purposes of the action. # **Potential Impacts and Mitigation Measures** Table S-1 provides a summary of the potential environmental impacts of constructing, operating, and decommissioning the proposed Maiden Wind Farm. Mitigation measures are included and, in most cases, implementation of these measures, or other standard design and construction practices, would reduce the potential impacts of the project to a low level. Significant and unavoidable adverse impacts have been identified for 1) visual resources due to the change in the visual environment resulting from wind turbines being placed along the ridgetops of the Rattlesnake Hills; 2) ferruginous hawk, a federal species of concern and state threatened species, if this species were to be harmed by operation of the wind turbines; and 3) land use conflicts with sensitive research facilities on the Hanford Reservation, if operation of the project caused enough seismic vibration and acoustic noise to disrupt the facilities. PAGE S-6 SUMMARY TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✓) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | |---|---|---
--| | 1. Land Use and Recreation | | | | | Construction | | | | | During construction, about 1,063 acres of land would be altered temporarily, interfering with existing agricultural uses. | Moderate | A. Coordinate construction activities with landowners to minimize interference with agricultural uses. Regrade and reseed all areas impacted by temporary project facilities such as quarries, laydown areas, and staging areas to restore them as close as possible to their original condition and land uses. (✓) | Low to
Moderate | | Existing land use on the proposed 8-acre quarry site would be altered until the land recovered. | Low | B. The Benton County Mineral Resources ordinance requires that the quarry site be compatible with existing land uses and that the site be restored as close as possible to its original condition when the quarry is closed. (✓) | Low | | The science program operations of the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Battelle Gravitational Research Observatory (BGRO) on the Hanford Site could potentially be adversely impacted by project construction activities (e.g., blasting for foundations and quarry operations), estimated to last about one-half of the construction period. | Moderate
to High | C. Notify the facilities in advance of construction activities with the potential to cause significant vibration or noise. (*) | Low | | No designated public recreational facilities exist in the study area. Limited temporary impacts to private landowner-approved activities such as hunting or photography could occur during project construction. | Low | None necessary. | Low | | Operation and Maintenance | | | | | Project facilities (including roads) would result in permanent change in land use of about 251 acres of land from agriculture to energy production. | Low | None necessary. | Low | | Landowners, including Washington State Department of Natural Resources (DNR), would receive compensation for the use of their property through a lease agreement with the project developer. | Low | None necessary. | Low | | Less than 100 acres of Conservation Reserve Program (CRP) contracts would be terminated where permanent project facilities would be located. | Low | D. Proposed mitigation measures for vegetation and wildlife impacts include enhancing, protecting, and creating additional natural habitat on existing private lands, particularly CRP land, near the project site. See 2.A. below. (*) | Low | **TABLE S-1**Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | | | | |--|---|---|--| | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✔) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | | There is a slight possibility that placement of wind turbines or operation of the electronic equipment associated with the wind turbines could adversely affect several radio towers and communication facilities located along the ridgetop of the Rattlesnake Hills. | Low to
High | E. Site wind turbines out of the signal paths of existing radio and
telecommunications towers. (*) | Low | | The scientific programs at the LIGO and BGRO facilities on the Hanford Site could potentially be adversely impacted by seismic vibrations and acoustic noise from operation of the wind turbines. Such an impact is not expected due to the expected low levels of vibration that would be generated by the project and the distance between the project and these facilities. | Low
to High | F. A seismic study will be completed in consultation with the facilities prior to construction to determine whether operation of the proposed project would disrupt the research facilities. Results of the study will be discussed in the Final EIS. (*) | Low
to High | | Beneficial impacts could occur from increased access provided by roads constructed or improved for the project. | Low | None necessary. | Low | | No designated public recreational facilities exist in the study area. Minor temporary modifications of activities allowed at landowner discretion, such as hunting or photography, could occur during project operation. | Low | None necessary. | Low | | Decommissioning | | | | | No land use or recreation impacts would result from decommissioning the project. Acreage containing project facilities could be returned to pre-project agricultural uses. | None | None necessary. | None | | 2. Vegetation | | | | | Construction | | | | | Approximately 57.5 acres of priority shrub-steppe habitat would be permanently displaced by project facilities and 174.4 acres would be temporarily impacted by project construction activities. | Low to
Moderate | A. Total acres of steppe habitat types impacted would be replaced or enhanced in similar proportions at a ratio of 3:1 by either enhancing local CRP lands to facilitate their recovery to high-quality steppe habitat, or by creating steppe habitat from nearby | Low | | Approximately 12.2 acres of priority lithosol habitat would be permanently impacted and 50.9 acres temporarily impacted by project facilities. | High | agriculture lands by reclaiming them with native grass and shrub species. In selecting mitigation areas, priority may be given to areas with remnant lithosol habitat, as lithosol is extremely difficult to replicate, as well as areas that would best enhance reproductive rates of wildlife species likely to be impacted by the project. Any enhanced or replacement acres would be protected for the life of the project from development, grazing, or conversion to other habitat types. (*) | Moderate | PAGE S-8 SUMMARY TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✔) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | |---|---|---|--| | Improvements to the existing access road along Sulphur Creek would impact less than 5 percent of the priority riparian habitat in the study area. | Low | B. Prior to the start of construction, convene a Site Management Plan Team (SMPT) to prepare a Site Management Plan (SMP). The SMPT would include representatives from the U.S. Fish and Wildlife Service (USFWS), Washington Department of Fish and Wildlife (WDFW), Washington Department of Natural Resources (DNR), BPA, county representatives, landowners, and the project developer. The role of the SMPT would be to 1) protect the natural and agricultural resources identified in this EIS during construction by minimizing the areal extent and pattern of construction activities to that necessary for the efficient conduct of construction operations; 2) protect sensitive and unique species and habitats; and 3) assure the effective implementation of the standard design and construction measures proposed as part of the project, as well as mitigation measures included both during and post-construction. (*) | Low | | | | The SMP would include provisions for: | | | | | the siting of towers to minimize impacts on lithosol and rare plant communities; the design and implementation of a fire management and erosion control
program/procedures; the location and physical marking of the boundaries of project storage and staging areas and soil deposition sites; procedures to keep the site clean daily of unconstrained project waste and toxics (petroleum products, paper, cans, materials remnants etc.) designate areas, and provide facilities and procedures for safe storage of toxic and hazardous substances; minimizing the extent of construction related roads and access routes; methods of delineation and marking (i.e. fencing, taping flagging) off-limit areas such as sensitive plant communities; size, location, and type of off-site habitat enhancement / replacement for the estimated 57.5 acres of shrub steppe and 12.2 acres of lithosol permanently impacted by the project; selecting recipient sites, restoration plans, and protocols for the estimated 174.4 acres of shrub-steppe and 50.9 acres of lithosol habitat that would be temporarily impacted by project construction activities; | | TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✓) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | |------------------|---|---|--| | | | route project access roads to avoid, where possible, adverse impacts to sensitive vegetation, including wetlands; education of the construction work force relative to respecting and adhering to the physical boundaries, off-limit areas, fire and weed prevention measures etc., of the SMP; a weed control plan with protocols and procedures, vehicle cleaning and parking locations, etc., for minimizing the introduction of weed species to the construction site; a complete site plan for the SMP would be laid out (fenced, flagged, taped with use areas designated) on the ground prior to the start of construction of any phase of the project. | | | | | C. At the start of construction, the SMPT would be superceded by an SMP monitor who would be at the project site daily during construction activities. The monitor would be approved by the SMPT and contracted by Benton County with funds provided by the project developer. The monitor's principal role would be to ensure adherence to the provisions of the SMP and keep a daily record of activities, decisions, etc. relating to that objective. SMP issues that arise during construction that cannot be resolved on site (e.g., interpretation, unforeseen problems, adjustments of boundaries) would be resolved between the county and the project developer with technical expertise from the appropriate SMPT representative when needed. (*) | | | | | D. During project construction, Best Management Practices (BMPs) would be employed to reduce impacts to adjacent vegetation and habitats and to minimize the construction footprint to the extent possible. (✓) | | | | | E. Final facility design would be reviewed prior to construction, and
any proposed disturbance areas that lie outside of the vegetation
survey corridors would be surveyed for rare plants during the
appropriate season. (✓) | | PAGE S-10 SUMMARY TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential impacts and Milligation of the Proposed Maiden Wind Farm | | | 1 | |--|---|---|--| | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✓) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | | The introduction of new noxious weed species could occur from construction equipment, vehicles, and worker's boots transporting seeds onto the project site. Once established in an area, negative impacts can include the following: | Low to
High | F. Prior to construction, a noxious weed control plan would be developed in consultation with local county weed control boards. The plan would be implemented over the life of the project. The plan would include specific measures such as the following: | Low to High | | Loss of wildlife habitat Alteration of wetland and riparian functions Reduction in livestock forage and crop production Displacement of native plant species Reduction in plant diversity Changes plant community functions Increased soil erosion and sedimentation Control and eradication costs to local communities Reduction in land value. | | Clean construction vehicles prior to bringing them to the project site. Revegetate habitats temporarily disturbed as quickly as practicable with native species to minimize habitat (disturbed areas) for noxious weed invasion. Actively control noxious weeds that have established themselves. Coordinate with the local county weed control boards regarding what control measures are most effective and coordinate with the appropriate agencies on how to avoid impacts to special status plants as a result of weed control measures. (*) | | | Ground disturbance would cause direct adverse impacts to about 8 percent of the total individuals contained in three Columbia milkvetch populations, a federal species of concern and Washington threatened species. Indirect impacts from changes in noxious weed densities and fire frequency patterns could also occur. | | G. As required by the SMPT, prior to construction, the population boundaries of special status plants would be flagged or fenced to facilitate avoidance, and construction personnel would be instructed to completely avoid these marked areas wherever possible. During construction, the SMP monitor would inspect the populations to confirm that flagging and/or fencing is intact, and that construction activities avoid these sites to the extent possible. (*) | Low | | Ground disturbance would cause direct adverse impacts to about 28 percent of the Snake River cryptantha, a Washington sensitive species, in the study area. If noxious weed densities were increased, an indirect adverse impact to this species could occur. | Low | None specifically, but implementation of measures described above would reduce impacts. | Low | | Ground disturbance would cause direct adverse impacts to about 11 percent of the predicted population of Rickard's Idaho milkvetch, a Washington Review Group 1 species. | Low | None specifically, but implementation of measures described above would reduce impacts. | Low | | Ground disturbance related to construction would likely directly impact two state watch list species—rosy balsamroot and curvepod milkvetch. | Low | None specifically, but implementation of measures described above would reduce impacts. | Low | | Operation and Maintenance | | | | | Vehicles and workers could introduce and/or spread noxious weeds in the study area. | Low to
High | Implement the noxious weed control plan described in 2.F., above. | Low to High | TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✓) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation |
---|---|---|--| | Decommissioning Decommissioning impacts would be similar to construction impacts but lower, assuming that all access roads remain in place. Vehicles would travel on established roadways, which would not impact vegetation, except for the possible introduction and/or spread of noxious weeds. Vegetation around facilities to be removed would likely be impacted to the same extent as described for construction. | Low | H. Remove facilities to a depth of 3 feet below grade and restore the soil surface as close as possible to its original condition, or to match the current land use. Reclamation procedures would be based on site-specific requirements and techniques commonly employed at the time the area would be reclaimed, and would likely include regrading, adding topsoil, and revegetating all disturbed areas. Roads would be reclaimed or left in place based on landowner preference. (✓) | | | 3. Wildlife | | | | | Construction | | | | | Approximately 414 acres of native habitat (nonagricultural land) would be temporarily removed or damaged during project construction. See Vegetation section, above, for specific mitigation. | Low to
High | A. As discussed in 2.B. above, prior to the start of construction, convene a Site Management Plan Team (SMPT) to prepare a Site Management Plan (SMP). The SMP would include provisions for: | Low to
Moderate | | Bald eagle, a federal- and state-threatened species, is a possible rare migrant in the study area but has not been documented and is not expected to occur in the study area on a regular basis. | Low | placement of towers the minimum distance from raptor nesting sites according to WDFW Management Plan criteria; maintaining reasonable driving speeds so as not to harass or | Low | | Peregrine falcon, a federal species of concern and Washington endangered species, is a rare migrant through the study area. Only two individuals were observed in the study area during surveys. | Low | accidentally strike wildlife; 3) methods of delineation and marking (i.e. fencing, taping flagging) off-limit areas such as sensitive plant communities and raptor nest sites; | Low | | Golden eagle, a Washington candidate species, is a rare migrant and possible winter resident in the study area. One golden eagle was observed in the study area during fall surveys. They have also been documented on the nearby ALE during the winter in low numbers. They are not expected to occur in the study area on a regular basis. | Low | 4) if any new nesting, denning, or otherwise sensitive wildlife sites are located during construction, these areas would be mapped, marked, and included in the off-limit areas; 5) seasonal timing of construction to avoid, as best practicable, the courting, nesting and breeding season of sensitive avifauna; | Low | PAGE S-12 SUMMARY TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✔) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | |--|---|--|--| | One merlin, a Washington candidate species, was observed in the study area in April 2001, and was likely a migrant. Merlins are considered an uncommon migrant and winter resident on the ALE, and occupy riparian areas or migrate along Rattlesnake Ridge. There is no suitable nesting habitat in the study area and they are considered a rare migrant and/or unlikely winter resident. | Low | 6) a complete site plan for the SMP would be laid out (fenced, flagged, taped with use areas designated) on the ground prior to the start of construction of any phase of the project. (*) B. As discussed in 2.C. above, an SMP monitor would be at the project site daily during construction activities to ensure adherence to the provisions of the SMP and keep a daily record of activities, decisions, etc. relating to that objective. (*) C. Results of the baseline avian surveys would be used to help with final project design, turbine siting, and mitigation planning via the | Low | | Loggerhead shrike (federal species of concern; Washington candidate species), and sage thrasher and sage sparrow (Washington candidate species) were observed during surveys and are likely breeding residents in the study area. | Low | SMP. (✓) D. Big sagebrush stands near construction areas that are suitable for nesting by loggerhead shrikes, sage thrashers, and sage sparrows would be flagged and designated as no disturbance zones. These areas would be flagged as off-limits to disturbance by construction personnel. (*) | Low | | Ferruginous hawk, a federal species of concern and Washington threatened species, is a breeding resident of the study area, and has been observed during surveys. Four active nests were located within 5 miles of the project site, including one within 0.25 mile of a proposed turbine string. Project construction could affect breeding ferruginous hawks through disturbance if construction were to occur near an active nest. Nesting and foraging habitat could potentially be reduced if ferruginous hawks avoid the area during and after project construction. | Moderate | E. The ferruginous hawk nest near the project site would be monitored by a wildlife biologist prior to construction to determine occupancy and the need for possible construction timing restrictions. If the nest is active, a buffer of at least 0.6 miles, as recommended by the Washington State Recovery Plan for Ferruginous Hawk (Richardson, 1996), would be established around the nest where no construction activity would occur until the nest was no longer active. This area would be flagged as off-limits to disturbance by construction personnel. (*) | Low | | Two other raptor nests (red-tailed hawk and prairie falcon) within 0.25 mile of proposed project facilities could be subject to disturbance-related impact if they were active during the construction period. | Low | F. If other raptor nests are found to be active during the construction period, a no-disturbance buffer of 1,000 feet would be marked and maintained until the nest was no longer active. (*) | Low | | Temporary loss of elk and mule deer habitat during project construction would be approximately 114 acres. Elk and mule deer could also be displaced from the project site due to the influx of humans and heavy construction equipment and associated disturbance. | Low | None, but implementation of mitigation measures for general wildlife species as discussed above would ensure that potential impacts would be reduced to the extent possible. | Low | TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✓) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | |---|---
---|--| | Construction activities could affect reptiles on the project site through loss of habitat and direct mortality of individuals located in construction zones. Excavation for turbine pads, roads, or other facilities could kill individuals in underground burrows. | Low | None, but implementation of mitigation measures for general wildlife species as discussed above would ensure that potential impacts would be reduced to the extent possible. | Low | | Construction activities in spring could affect birds by causing the destruction of a nest with eggs or young (for ground- and shrubnesting species). Construction activity near an active nest or primary foraging area could cause birds to be temporarily displaced. Breeding effort could also be disturbed and foraging opportunities temporarily altered during the construction period. | Low | None, but implementation of mitigation measures for general wildlife species as discussed above would ensure that potential impacts would be reduced to the extent possible. | | | Operation and Maintenance | | | | | Approximately 128 acres of native habitat would be permanently removed for project facilities. This area may currently support wildlife by providing food, cover, or space for a variety of species. | Low to
High | See 2.A. and 2.B., above, for specific mitigation. | Low to
Moderate | | Ferruginous hawk, a federal species of concern and Washington threatened species, is a breeding resident of the study area. The project could result in about one death per year. | High | G. Ferruginous hawk nesting opportunities, as identified by the Washington State Recovery Plan for Ferruginous Hawk, would be constructed or created in areas of native habitat more than 5 | Moderate to
High | | Peregrine falcon, a federal species of concern and Washington endangered species, is a rare migrant through the study area but has a potential risk of collision with wind turbines. | Low | miles away from the proposed project and any other proposed wind plants in the area. At least three nesting opportunities would be created, monitored, and maintained for a minimum of 5 years for each nest impacted by construction of the project. The | Low | | Golden eagle, a Washington candidate species, is a rare migrant and winter resident in the study area and may be at risk of collision | Low | location, type of nesting opportunities, and monitoring program would be approved by the WDFW. (*) | Low | | with wind turbines. Expected mortality of golden eagle could be as high as one per year. | | H. Long term impacts of wind turbines on other raptor nesting/
foraging areas would be mitigated by: 1) avoiding placement of | | | Loggerhead shrike (a federal species of concern and Washington candidate species), sage thrasher, and sage sparrow (Washington candidate species) have been observed in spring and summary surveys and are likely breeding residents in big sagebrush stands in | Low | any facilities within 0.6 mi. of any nest; or 2) placing additional nesting structures (3 per existing nest within 0.6 mile of wind turbines) in suitable nesting areas at least 1 mile away from any wind turbines. (*) | Low | | the project area. They could be at risk of collision with wind turbines; however, use estimates for these species are relatively low. | | Raptor anti-perching devices would be installed on all new
overhead power line poles within 1 mile of turbine strings to limit
potential raptor use near the wind turbines. All power lines would | | PAGE S-14 SUMMARY TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential impacts and mitigation of the Proposed Maiden wind Farm | 1 . | Dunnand Miking the Manager | | |---|---|--|--| | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✔) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | | With full build-out of the proposed project, a range of 0-9 raptor fatalities per year would be expected. The range of potential bird mortality for passerines would be expected to fall between approximately 360 and 1565 birds per year. The per turbine mortality rate for all birds would be expected to be between 0.6 and 2.8 birds per turbine per year. | Low to
Moderate | be constructed following Suggested Practices for Raptor Protection on Power Lines: The State of the Art in 1996 (APLIC, 1996); specifically, conductors would be spaced as recommended by the study to minimize the potential for bird electrocution. (✓) J. A post-construction monitoring program would be developed in coordination with the SMPT. The program would monitor avian use of the site and avian and bat mortality using standardized carcass searches, and scavenging and searcher efficiency trials during the first year of operation of the project. (★) Other mitigation may be implemented if identified through Section 7 consultation with the USFWS. (★) | Low to
Moderate | | Displacement effects may occur to the grassland- and shrub-steppe avian species occupying the study area. | Low to
Moderate | See 2.A., above. | Low to
Moderate | | Operations would not affect raptor nests unless there were displacement effects that caused raptors to not return to the nests close to the project site. | Low | See 2.H-I, above. | Low | | Migratory bat species are at risk of collision with wind turbines, most likely during migration periods. Full build-out of the proposed project could result in approximately 400 bat fatalities per year. Both hoary bats and silver-haired bats, two common fatalities at other wind plants, have been recorded on the nearby ALE and are expected to migrate through the study area. No federal or state endangered or threatened bats would potentially be affected by the project. | Low | | Low | | Vehicle traffic could periodically displace elk and mule deer. The level of use of the project site could be lower during the first few years of operation; however, it is likely that over the long-term, elk and deer would become accustomed to the project facilities and would continue to use the project site. | Low | | Low | TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | | | | | | |--|---|---|--|--|--| | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✔) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | | | | Decommissioning | | | | | | | Impacts would be similar to construction impacts but lower, assuming that all access roads remain in place. Vehicles would travel on established roadways, which would not impact wildlife habitat. Habitat around facilities to be removed would likely be impacted to the same extent as described for construction. | Low | Mitigation for impacts to wildlife would follow procedures in use at the time of decommissioning. | Low | | | | 4. Visual Resources | 1 | | | | | | Construction | | | | | | | Visual impacts resulting from construction activities would be limited to the sight of vehicles and equipment used in project construction and dust from construction activities. | Low | A. Keep vehicles and equipment on the site and not parked near
residential or public access areas. Store equipment and supplies
out of sight (if practical),
and remove damaged or unusable
equipment. Control dust by watering. (✓) | Low | | | | Operation and Maintenance | | | | | | | Substantial alteration to the existing visual character and quality of the study area would result from installation of the wind turbines along the ridgeline and down the slopes of the Rattlesnake Hills. | Low to
High | None available. | Low to High | | | | The Federal Aviation Administration (FAA) could require as many as 125 to 175 flashing red (nighttime) and white (daytime) lights on top of the wind turbines for aircraft safety. Although these lights are meant to be visible from aircraft and less visible from ground level, the presence of these lights could create a substantial change in daytime views and the night sky from residential areas and roadways, and would add a new source of light and glare. | Low to
High | B. Among the FAA approved lighting devices available, use those that are designed to be least visible from the ground level of the surrounding landscape. (*) | Low to High | | | | In the eastern portion of the study area, residents would view the wind turbines and associated facilities frequently and for long periods of time and could perceive the visual character of the study area to be substantially altered, both during the day and at night. | High | None available. | High | | | | Decommissioning | | | | | | | Visual impacts would be similar to those described for construction and would consist primarily of the sight of construction vehicles and dust. The landscape would no longer be impacted by the presence of wind turbines and other facilities after the project was decommissioned. | Low | Implement mitigation in use at the time of decommissioning, likely to be similar to that recommended for construction. | Low | | | PAGE S-16 SUMMARY TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✔) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (*) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | |---|---|--|--| | 5. Cultural Resources | | | | | Construction | | | | | Many of the cultural resources in the study area could be significantly and adversely affected by project construction. However, most archaeological sites in the study area are small in size and appear to be avoidable with careful siting of project facilities. Cultural resources other than archaeological features, such as traditional cultural properties (TCPs), may also be present within or adjacent to the project site and could be adversely impacted. Information provided by the Wanapum elders is strongly suggestive that a TCP is present on the ridgetops of the Rattlesnake Hills; however, formal oral history investigations with the Yakama Nation and Wanapum Band have not yet occurred. | High | A. Mitigation measures would follow procedures outlined in 36 Code of Federal Regulations (CFR) 800 and could include preconstruction data recovery collections and excavations, and monitoring of earth-disturbing construction operations by one or more qualified archaeologists and representatives of the affected tribes (for areas where buried cultural deposits could be present). BPA would adopt mitigation measures in its Record of Decision and would develop contracts as necessary to establish a binding commitment to implement the mitigation measures. (*) B. A cultural resources mitigation monitoring plan (CRMMP) could be prepared in consultation with the affected tribes, BPA, Benton County, and the Washington State Historic Preservation Office (SHPO). It would provide a detailed plan to guide the archaeological and tribal monitoring of earth-disturbing construction and would outline specific procedures to be followed if unanticipated discoveries were made during construction. The CRMMP would include procedures for issuing stop-work orders to construction contractors if discoveries were made and would also outline possible mitigation measures (treatment plans) to be employed in the event that significant cultural resources were discovered. The CRMMP would include procedures to deal with the unanticipated discovery of Native American skeletal remains consistent with all applicable state and federal laws and regulations. (*) | Low | | | | C. If TCPs are determined to be present, mitigation measures would be developed in consultation with the Yakama Nation and Wanapum Band. (*) | | | Indirect impacts to cultural resources could occur due to vandalism. | Low | D. The project site is located primarily on fenced private property
and new access roads would have locked gates and "No
Trespassing" signs. (✓) | Low | **TABLE S-1**Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✓) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (**) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | |---|---|---|--| | Operation and Maintenance | | | | | Assuming that resources were identified but significant adverse effects were successfully avoided during construction, it is unlikely that operation and maintenance activities would result in harm to the avoided cultural resources. | Low | None necessary because implementation of a carefully conceived CRMMP would further reduce the potential for harmful effects of project operation and maintenance. | Low | | Decommissioning | | | | | Impacts could be the same as those for construction. | Low | Implement mitigation in use at the time of decommissioning, likely to be similar to that recommended for construction. | Low | | 6. Noise | | | | | Construction | | | | | Pile driving and blasting, if required, would result in temporary loud noise in the study area. There also would be increased noise from rock quarry activities such as crushing; however, the nearest residence to a proposed rock quarry is over 2 miles away. Construction vehicles traveling on State Route 241 and along Lewandowski, Gap, Snipes, Crosby, Crooks, Bennett, and other nearby roads would temporarily increase noise levels. While temporary construction noise may be audible and exceed current levels, it is exempt from noise limits during daytime hours when construction
would take place. | Low | A. Limit construction activities within 1 mile of any residence to the hours between 7:00 a.m. and 7:00 p.m. (*) B. Notify nearby residents of planned unusually noisy construction activities (particularly blasting and pile driving) and provide them with a contact phone number for the project. (*) | Low | | Operation and Maintenance | | | | | The predicted noise levels from the 900-kW wind turbines proposed in the eastern portion of the study area would affect five residences. | High | C. Remove from the proposed project layout all wind turbines within
1,000 feet of an existing residence. (*) | Low | | Nighttime noise levels would increase over existing conditions (in a range of 21 to 31 dBA). Nighttime noise levels at one residence would also exceed the WAC standard. Daytime noise levels generated by the wind turbines would not be expected to exceed the daytime WAC standard of 60 dBA at any of the residences. Noise levels during the daytime would increase over ambient levels from zero up to 27 dBA at residence 5. | Low to
High | D. Conduct an acoustical analysis of the final turbine layout for all wind turbines to be located within 1 mile of an existing residence, prior to obtaining construction permits from Benton County. The analysis would be conducted using noise level data for the final turbine type, size, and layout, and would demonstrate compliance with the 10-dBA increase criteria established by the county. Additional noise mitigation may require additional setbacks for the wind turbines. (*) | Low | PAGE S-18 SUMMARY TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✓) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | |---|---|---|--| | Decommissioning | | | | | Noise impacts from decommissioning of the project would be similar to those during construction. If roads are left in place, the duration of decommissioning noise would be significantly shorter than the construction period. No blasting or pile driving would be required, resulting in lower noise levels than for construction. | Low | Implement mitigation in use at the time of decommissioning, likely to be similar to that recommended for construction. | Low | | 7. Water Resources and Wetlands | | | | | Construction | | | | | Surface Water Hydrology: Construction activities have the potential to create temporary and localized alterations to natural drainage patterns. Fourteen access road crossing sites in the study area involve Waters of the U.S. Thirteen road crossings occur at intermittent/ephemeral drainages, and one crossing occurs at the perennial section of Sulphur Creek. Water Quality: Erosion from earthwork could subsequently create sedimentation in surface drainages. Heavy machinery use may increase the risk of gasoline or oil spills, which could also pollute waters in the area. | Low to Moderate Low to Moderate | A. Use culverts or hardened ford crossings at all drainage crossings. (✓) B. Maintain natural drainage patterns to the extent practicable. Restore slopes and vegetation post-construction. Locate utility crossings to avoid natural drainages to the extent practicable. (✓) C. Comply with federal, state, and local requirements and ordinances and implementing BMPs during construction. The developer would obtain a NPDES General Permit for Stormwater Discharges associated with Construction Activities from Ecology and develop and implement a Stormwater Pollution Prevention Plan (SWPPP) that would include a variety of BMPs. BMPs include standard approved construction practices and erosion management techniques to prevent and control erosion, as follows: Minimize vegetation removal. Avoid construction on steep slopes or areas designated as having a high susceptibility of erosion. Properly design cut-and-fill slopes. Install roadway drainage to control and disperse runoff; ensure that access roads are gravel. Apply erosion control measures such as silt fencing, straw mulch, straw bale check dams, and soil stabilizers; reseed disturbed areas as required. | Low | TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✓) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | |---|---|--|--| | | | Apply stabilization measures such as temporary seeding, permanent seeding, vegetative buffer strips and other appropriate practices, and structural measures such as silt fences, sediment traps, and drainage swales. Minimize construction and increase gravel cover on roads during wet weather to reduce potential rutting and soil loss. (✓) | | | Water Use: Water would be transported in 5,000-gallon water trucks to the project site. Sources of water for the project have not been finalized but include soliciting a holder of an irrigation water right to obtain a temporary transfer, and soliciting a well owner with an approved water right to apply for a Short-term Use of Water for a nonrecurring project. Other nearby municipal sources of water are being evaluated, and appear to be available from the City of Sunnyside. | Low | None necessary. | Low | | Wetlands: Improvements to the western access road, including installation of a culvert or upgrade to the existing ford, would impact the fringe wetland associated with Sulphur Creek (a Category III emergent wetland). Installation of a culvert would disturb approximately 180 square feet (0.004 acre) of wetland. | Moderate | D. A permit to fill the Sulphur Creek wetland and Waters of the U.S. would be required from ACOE, Ecology, and Yakima County, and replacement wetlands or restoration of existing wetlands would be provided as specified by these agencies. A mitigation plan describing proposed replacement/restoration would be prepared and submitted to the U.S. Army Corps of Engineers (ACOE), the state of Washington, and Yakima County for their approval, and this mitigation plan would be implemented. (*) | Moderate | | Operation and Maintenance | | | | | Surface Water Hydrology: New permanent structures such as tower foundations and operation and maintenance (O&M) buildings would slightly increase the amount of impervious surface area and alter runoff rates and patterns. | Low | E. Construct permanent drainage and erosion control facilities, as necessary, to allow permanent stormwater passage without damaging the roads or adjacent areas
and without increasing sedimentation and runoff to intermittent streams that flow to the Yakima River. (✓) | Low | | Water Quality: The O&M buildings would provide potable drinking water and restrooms. An onsite septic field would be developed for each facility and would be located according to guidelines provided by the county. | Low | F. Develop an onsite septic field for each operation and
maintenance facility and locate according to guidelines provided
by the county. (✓) | Low | PAGE S-20 SUMMARY TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✓) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | |---|---|---|--| | Water Use: The only water normally required for project operation would be a maximum of 5,000 gallons per day for all three O&M facilities for lavatory and kitchen uses by maintenance employees. Occasional turbine blade washing might be conducted. | Low | None necessary. | Low | | Wetlands: Road maintenance activities, such as periodic grading, are not anticipated to have a measurable effect on Sulphur Creek. | Low | See 7.C., above. | Low | | Decommissioning | | | | | Impacts would be similar to those described for construction impacts; however, existing roads would be used for decommissioning activities, thereby reducing soil-disturbing activity. Less water would be used because concrete foundations would not be constructed and access roads would likely remain in place. Up to 5,000 gallons of water used per day at the O&M facilities would be abandoned. | Low | See 2.H., above. Implement mitigation in use at the time of decommissioning, likely to be similar to that recommended for construction. | Low | | 8. Transportation and Traffic | II. | | | | Construction | | | | | Some vehicles would likely have a gross vehicle weight (GVW) of more than 80,000 pounds (maximum legal load limit) when fully loaded. Construction vehicles would use Benton County paved roads (Gap, Hinzerling, Snipes, and Crosby), in addition to portions of Rothrock, Bennett, Rotha, Crooks, Jones, and Missimer Roads, which are all gravel. None of these county roads were built to withstand the proposed loads. Some or all of these roads may need to be upgraded to support construction vehicles. | Moderate
to High | A. Prior to construction, the project developer would coordinate with Yakima and Benton Counties to determine road capacity limits, obtain any necessary overweight permits, and agree on other steps to accommodate overweight loads or avoid road damage. (✓) B. Prior to construction, the project developer and a representative of the County Public Works Department would videotape any county roads proposed to be used. A written agreement would be established between both Benton and Yakima Counties and the project developer and construction contractor stating that all roads would be restored to the same or better condition than they were before construction. (*) | Low | **TABLE S-1**Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | | | | |--|---|--|--| | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✔) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | | The total number of one-way construction vehicle trips would be no more than 100 trips per day estimated to be divided between the western and eastern entrances to the project site (State Route [SR] 241 to the west and Gap Road to the east). Using an estimated 1.3 persons per vehicle average automobile occupancy rate, 538 daily trips and 269 p.m. peak hour trips would be generated by the construction workforce during the 4-month peak period. Level of service (LOS) C and better is the estimated level of service for a peak hour impacting the local roadways. | Low | C. The project developer and/or construction contractor would prepare a construction traffic control plan and construction management plan to address timing of heavy equipment and material deliveries, signage, lighting, traffic control device placement, dust and noise control, and the establishment of work hours outside of peak traffic periods. Methods for mitigating potential traffic impacts could include such activities as stationing flag persons at the access roads into the site, and placing advance warning flashes, flag persons, and signage along the roadways. (✓) | Low | | Operation and Maintenance | | | | | Assuming that each employee drove a personal vehicle to the project site every day, there would be approximately 30 daily trips, 15 of which would occur during the peak time periods. | Low | None necessary due to minimal operation traffic. | Low | | The new access roads on private land could provide a long-term benefit to landowners and would provide increased access for emergency vehicles. | Low | None necessary. | Low | | Decommissioning | | | | | Impacts would be similar to those for construction; however, assuming that the roadways would remain in place, heavy vehicle trips would consist primarily of transporter trucks carrying wind turbines and transformers and the resulting workforce and vehicle trips would be considerably smaller. | Low | Implement mitigation in use at the time of decommissioning, likely to be similar to that recommended for construction. | Low | | 9. Geology, Seismicity, and Near-Surface Soils | | | | | Construction | | | | | Geologic Formations: Construction of the project would alter the landscape with cuts-and-fills for roadways, installation of underground power lines, and leveling for turbine foundations. | Low | A. Use of standard engineering practices in accordance with the <i>Uniform Building Code</i> (UBC) (as discussed below for impacts to near-surface soils) would reduce impacts to a low level. (✓) | Low | | The use of an existing quarry and development of a new quarry would temporarily alter the topography at these sites. | Low to
Moderate | No additional mitigation beyond requirements of land use permit and reclamation plan. | Low | | Slope Stability: Steep slopes and landslide-prone areas are present in the study area. Historical landslide activity has been identified in localized areas in the greater project vicinity. | Low | None necessary because project facilities would not be located in historical or potential landslide locations. | Low | PAGE S-22 SUMMARY TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential impacts and Mitigation of the Proposed Maiden Wind Farm | | | | | | |--|---
---|--|--|--| | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✔) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | | | | Near-Surface Soils: Erosion potential in the study area is typically moderate to high with the presence of existing vegetation. Due to steady, high wind speed, areas of vegetation removal would expose soils to accelerated water and wind erosion until stabilized. Repeated equipment and haul truck traffic could cause soil compaction over a limited area. | Low to
Moderate | C. Roads would be designed by a licensed professional engineer and the turbine foundations would be designed and engineered according to the Uniform Building Code. Standard approved construction practices and erosion management techniques (also addressed in 7.C., above) would be employed to prevent and control erosion, including: | Low | | | | | | Minimizing vegetation removal Avoiding construction on steep slopes or areas designated as having a high susceptibility of erosion Properly designing cut-and-fill slopes Installing roadway drainage to control and disperse runoff; ensuring that access roads contain pervious, gravel surfaces Applying erosion control measures such as silt fencing, straw mulch, straw bale check dams, and soil stabilizers, as well as reseeding disturbed areas as required Apply stabilization measures such as temporary seeding, permanent seeding, vegetative buffer strips and other appropriate practices, and structural measures such as silt fences, sediment traps, and drainage swales. Minimizing construction and increasing gravel cover on roads during wet weather to reduce potential rutting and soil loss. | | | | | | | In addition, haul truck traffic would be limited to improved road surfaces, minimizing soil compaction and disturbances. The project developer would comply with all land use permit requirements. (✓) | | | | | Gravel Resources: Impacts from gravel production at each quarry site would include temporary disturbance of land within the 8-acre area. Specifically, areas in the vicinity of the batch plant, crusher, stockpiles, and along access roads would be disturbed. Other impacts would include increased soil compaction potential due to haul trucks, and dust production from the crusher operation and truck traffic. | Low to
Moderate | D. Reclaim (restore) all disturbed areas at quarry sites at the completion of construction activities as outlined in a DNR/Benton County-approved reclamation plan (*) | Low to
Moderate | | | | | | E. Use water trucks to control construction dust at the quarry sites. (✔) | | | | | Operation and Maintenance | | | | | | | Slightly increased runoff water would be produced due to the addition of up to 44.5 miles of gravel access roads and new impervious area from turbine pads and operation and maintenance buildings. | Low | Same as 7.C., above. | Low | | | TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✔) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (*) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | |---|---|---|--| | The project would operate in an area with potential for earthquake events that are considered of low risk. Landslides in steeply-sloped areas could be triggered during an earthquake due to ground shaking and could potentially impact the project facilities. However, the area is considered to have low to moderate potential for such events. No project facilities would be constructed on historical landslide locations. | Low | F. Design all facilities to current seismic standards for the 1997 UBC seismic zone 2B. (✓) G. Identify slope stability hazards and incorporate into the facility design as necessary. (✓) | Low | | Decommissioning | | | | | Impacts would be similar to those described for construction. Due to steady, high wind speed, areas of project facility removal would expose soils to accelerated water and wind erosion until stabilized. Repeated equipment and haul truck traffic would cause negligible soil compaction. | Low | See 2.H., above. Base reclamation procedures on site-specific requirements and techniques commonly used at the time of decommissioning, and likely to include regrading, topsoiling, and revegetation of all disturbed areas. (✓) | Low | | 10. Socioeconomics and Public Services | | | | | Construction | | | | | Local hiring would depend upon the availability of workers with appropriate skills, but up to half of the projected peak construction workforce of 350 workers could be local. | Beneficial | None necessary. | Beneficial | | Increased purchase of goods and services and increased property tax revenues could result from a slight increase in local population if workers outside the area were hired. | Beneficial | None necessary. | Beneficial | | There would be no human health or environmental impacts on minority and low-income populations because the project would be located on private property and not in the vicinity of any low-income or minority populations. These individuals could experience a beneficial impact from construction of the project if they became part of the workforce. | No Impact | None necessary. | No Impact | | Up to 88 temporary housing units could be required if up to 50 percent of construction workers were hired locally. | No Impact | None. Adequate housing is available in the local communities for temporary workers. | No Impact | | The need for medical and police services at the project site could increase during construction as a result of the number of vehicles and employees on the site. | No Impact | None. Adequate public services are available in the greater project vicinity. | No Impact | PAGE S-24 SUMMARY TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | | B 1880 | | |--|---|--|--| | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✓) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (*) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | | Construction activities could increase the potential for fires due to typical construction activities such as installation of electrical equipment, increased traffic, and use of vehicles on the project site. Portions of the project site are not located in a fire protection district. | No Impact | A. Firefighting services would be provided primarily by the project developer so additional firefighting services would not be required. A fire emergency plan would be developed and submitted to Benton and Yakima County fire marshals for approval and shared with the Hanford Fire Department prior to project construction. See Public Health and Safety Section 12.B. below for more information. (✓) | No Impact | | Operation and Maintenance | | | | | Up to 15 full-time O&M staff would be permanently employed at the project site and most would be hired
locally. | Beneficial | None necessary. | Beneficial | | There would not be human health or environmental impacts on minority and low-income populations because the project would be located on private property and not in the vicinity of any low-income or minority populations. These individuals could experience a beneficial impact from operation of the project if they became part of the workforce. | · | None necessary. | No Impact | | DNR would receive lease payments from the project developer for that portion of the project on DNR lands. This would result in a beneficial impact to local school districts because they would receive the income from lease payments. | Beneficial | None necessary. | Beneficial | | The assessed value of affected properties would increase when project facilities are added, leading to an increased tax base for Yakima and Benton Counties. | Beneficial | None necessary. | Beneficial | | Full build-out of the project would add about \$44 million to the local economies of Benton and Yakima Counties in the form of goods and services purchased as part of project construction. | Beneficial | None necessary. | Beneficial | | The proposed project would require electricity, water, telephone, and sewer services, none of which are currently available on the project site but are readily available in the greater project vicinity. | No Impact | None Necessary. | No Impact | | Impacts to fire, medical, and police services would be similar to those described for construction of the proposed project. | No Impact | None necessary. | No Impact | | Decommissioning | | | | | Up to 15 full-time jobs created as part of the project would be eliminated. | Adverse | None necessary. | Adverse | SUMMARY PAGE S-25 TABLE S-1 Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✓) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | |---|---|---|--| | Property tax revenues would decrease. | Adverse | None available. | Adverse | | Decommissioning activities would result in temporary construction employment similar to that projected for facility construction. | Beneficial | None necessary. | Beneficial | | 11. Air Quality | 11 | | | | Construction | | | | | Vehicle emissions would occur from construction vehicles such as trucks, bulldozers, and portable cement mixers. Fugitive dust emissions would be caused by disturbing the land for construction of project facilities. | Low | A. Prior to construction, submit a dust control plan for approval by the Yakima Regional Clean Air Authority (YRCAA) and the Benton Clean Air Authority, in accordance with their regulations. Implement the plan to reduce the impact of construction dust, including watering gravel roads to suppress nuisance levels of dust, as appropriate. (() | Low | | Operation and Maintenance | | | | | During operation of the project, limited amounts of fugitive dust emissions would be caused by traveling on the gravel access roads. | Low | No additional mitigation necessary. | Low | | Decommissioning | | | | | Impacts would be similar to those described for construction. | Low | Implement mitigation in use at the time of decommissioning, likely to be similar to that recommended for construction. | Low | | 12. Public Health and Safety | 1 | | | | Construction | | | | | Potential health and safety risks to workers include risk of electric shock from electrical equipment and power lines; fire hazards; hazardous materials spills (for example, fuel tanks); and injury associated with the use of heavy equipment and installation of elevated structures. | Low to
Moderate | A. Prior to construction, require all onsite construction contractors to prepare a site health and safety plan before initiating construction activities. The plan would inform employees and others on site what to do in case of emergencies, and would include the locations of fire extinguishers and nearby hospitals, important telephone numbers, and first aid techniques. The plan would be maintained during the life of the project. Accidental injury would be minimized by: Maintaining fencing and access gates around dangerous equipment or portions of the site as feasible Posting warning signs near high-voltage equipment Offering specific job-related training to employees, including cardiopulmonary resuscitation, first aid, tower climbing, rescue techniques, and safety equipment inspection | Low | PAGE S-26 SUMMARY **TABLE S-1**Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✓) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts Resid Impact Mitigation proposed to further reduce potential impacts | |--|---|--| | | | Assigning safety officers to monitor construction activities and methods during each work shift Ensuring that workers on each shift are certified in first aid Ensuring that a well-stocked first-aid supply kit is accessible on site at all times and that each worker knows its location Conducting periodic safety meetings for construction and maintenance staff. | | | | B. If indicated, additional prevention measures such as briefings with local hospitals and emergency service providers, identification of an emergency helicopter or aircraft landing area, and coordination with local fire officials, could be included. (✓) | | Construction of the proposed project could increase the potential for brush fires due to typical construction activities such as installation of electrical equipment, increased traffic and use of vehicles on the project site, and the addition of up to 350 employees accessing the site during construction. | Low to
Moderate | C. Because a significant portion of the proposed project site is not currently located within a county fire protection district, a fire emergency plan would be developed and submitted to Benton and Yakima County fire marshals for approval and shared with the Hanford Fire Department prior to project construction. This plan would outline onsite fire prevention and suppression methods that would be used during the construction period. The plan would require onsite water tanks containing sufficient water to fight grass fires (as determined by the fire districts). Workers would be instructed in basic fire suppression techniques. Vehicle traffic would be allowed only inside vehicles. (✔) | | Construction activities could result in potential health and safety risks to landowners and to the general public (if present) during construction. | Low | D. Coordinate construction activities with landowner schedules. Unauthorized visitors would be discouraged during construction hours by the presence of construction workers, warning signs, and gates. (✔) | | Operation and Maintenance | | | | Potential risks during operation and maintenance include electric shock to workers in the vicinity of electrical equipment and power lines; injury related to maintenance of elevated structures such as transmission towers that are accessed with ladders or cranes; and fire resulting from maintenance activities. | Low to
Moderate | E. Maintain a detailed safety manual and frequent safety meetings for operation and maintenance workers. Avoid contact
with electrical equipment through facility compliance with building codes. (✓) | | me researing from maintenance activities. | | F. To prevent unauthorized access to the wind turbines, turbine tower doors would be locked and there would be no outside ladders on the towers. The substations would be fenced and locked. (✓) | SUMMARY PAGE S-27 **TABLE S-1**Potential Impacts and Mitigation of the Proposed Maiden Wind Farm | Potential Impact | Impact
Level
Prior to
Mitigation | Proposed Mitigation Measures (✓) = Standard design and/or construction measures proposed as part of the project to reduce potential impacts (★) = Additional mitigation proposed to further reduce potential impacts | Residual
Impacts
After
Mitigation | |---|---|--|--| | | | G. Accidental grass or crop fires during operation of the project would be avoided by prevention measures including avoiding idling vehicles in grassy areas, and keeping cutting torches and similar equipment away from grass. Similar to the plan prepared for construction, a fire emergency plan specifically for operation of the project would be developed and submitted to Benton and Yakima County fire marshals for approval and shared with the Hanford Fire Department. (✔) | | | Small amounts of fuels (diesel and/or gasoline), lubricating or other oils, and possibly small amounts of solvents would be stored onsite during operation for use in refueling and maintaining vehicles and maintaining wind turbines. In the event of an accidental hazardous materials release, possible impacts to soils, surface and groundwater resources, and wildlife could result. | Low | H. Any spills or releases would be cleaned up, and disposed of or
treated according to applicable regulations. Accidental releases
of hazardous materials to the environment would be prevented or
minimized through the proper containment of oil and fuel in
storage areas and by locating these facilities away from
drainages or sensitive resources. (✓) | Low | | Wind turbines up to 390 feet high could potentially interfere with military training flight routes from the Yakima Training Center and the Naval Air Station at Whidbey Island. | Low | I. The project developer would submit to the FAA a Notice of
Proposed Construction or Alteration (Form 7460-1) to determine
whether the wind turbines could be permitted as airspace
obstructions. Lighting of the facilities likely would be required by
the FAA for aircraft safety. The FAA may notify responsible
military branches and request that routes be adjusted. (✓) | Low | | Power generated by the project would not raise background electric and magnetic field (EMF) to levels that would be substantially different from existing levels. | No Impact | None necessary. | No Impact | | Decommissioning | | | | | Impacts would be similar to those described for construction. | Low | Implement mitigation in use at the time of decommissioning, likely to be similar to that recommended for construction. | Low | PAGE S-28 SUMMARY # Purpose of and Need for the Proposed Action # 1.1 Introduction Bonneville Power Administration (BPA) is a federal power marketing agency under the U.S. Department of Energy (DOE) that is responsible for marketing electrical power to utility, industrial, and other customers in the Pacific Northwest, pursuant to the Bonneville Project Act of 1937, the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (Public Law [PL] 96-501, Northwest Power Act), and other statutes. In addition to marketing power from the federal hydro system in the Pacific Northwest, BPA purchases and markets power from other generation sources in the region to adequately serve its customers, as required by statute. BPA also owns and operates over 15,000 miles of high-voltage transmission lines that move power from generation resources to electric utilities and direct service industries. BPA encourages the development of renewable energy resources in the Pacific Northwest to meet customer demand for power, diversify its resource portfolio, and meet its obligations under the Northwest Power Act. Deregulation of the electric industry and subsequent energy supply issues have emphasized the need for new and diverse energy sources in BPA's service area, the Pacific Northwest. Renewable resources like wind would not only help diversify BPA's energy resource portfolio, but are preferred by many consumers concerned about environmental effects of other power sources. BPA has marketed output from renewable power projects as "green power" to satisfy demand from these consumers and to increase the amount of renewable energy resources in the region's power supply. The Northwest Power Planning Council's (NWPPC) Fourth Conservation and Electric Power Plan recommended that Northwest utilities offer green power purchase opportunities as a way to help the region integrate renewable resources into the power system in the future. In February 2001, Washington Winds Inc. (the project developer) submitted a proposal to BPA for a site north of the cities of Sunnyside and Prosser in Washington where wind power facilities could be developed. After considering preliminary information, BPA decided to examine the proposed project and consider purchasing and transmitting power from the project. The project developer also submitted Conditional Use Permit (CUP) applications to Benton and Yakima Counties. Benton County, serving as the lead agency for the State Environmental Policy Act (SEPA), issued a Determination of Significance on June 11, 2001. The National Environmental Policy Act (NEPA) (42 *U.S. Code* [USC] Section 4231 et seq.) requires federal agencies to prepare and make public an EIS for major federal actions or decisions that could significantly affect the quality of the human environment, including the natural and physical environment. The Washington State Environmental Policy Act requires that an environmental impact statement be prepared on proposals for legislation and other major actions having a probable significant, adverse environmental impact. This EIS provides environmental information to the public and to federal, state, and local agencies, officials, and decision-makers regarding the effects of the proposed action. The Final EIS will respond to public and agency comments on this Draft EIS. It may also provide necessary clarifications, elaboration, and revisions to this draft. BPA will consider the information in this EIS, public comments, and other factors when deciding whether to purchase power from the proposed wind project and transmit it over BPA transmission lines. Benton and Yakima County Planning Departments will consider information in this EIS when deciding whether to grant a CUP and allow the proposed project to be developed. # 1.2 Need for Action The action proposed by BPA is to: (1) execute a 20-year power purchase agreement with the project developer for up to 50 average megawatts (aMW¹) (up to about 200 megawatts [MW]) of electrical energy from the proposed Maiden Wind Farm; and (2) execute construction and generation interconnection agreements with the project developer to integrate the power generated by the proposed Maiden Wind Farm into BPA's transmission system. The need for the proposed action arises primarily from BPA's statutory obligations and planning directives. BPA may or may not ultimately execute agreements for this project, depending on considerations described below. BPA may need to acquire additional power generation resources. As used in this EIS, the term "acquiring resources" means the same as acquiring power from generation resources. Because BPA does not actually have the authority to construct or own generation resources, BPA's "acquisition of resources" is limited to acquiring power from generation resources. Use of this term in this manner is consistent with the use of this term in the Northwest Power Act and other relevant statutes. In order to comply with the Northwest Power Act, the President's National Energy Policy, and BPA's own planning documents, BPA may need to acquire wind and other renewable power resources. The proposed action would respond to three basic needs as described in the following sections. #### 1.2.1 Need for Additional Power Generation Resources The Northwest Power Act directs BPA to acquire sufficient resources to meet the electric power requirements (i.e., loads) of its customers (16 USC Section [§] 839d[a][2]). BPA expects its regional load obligations will grow over the next ten years, but the extent to which this occurs depends on several factors. For example, the amount of load that direct service industries (mainly aluminum plants) will place on BPA in the future is uncertain. Another major factor will be the result of a Pacific Northwest "Regional Dialogue" regarding the role BPA should play in acquiring power from the market to meet federal loads. BPA's most recently published load and generation forecasts project that there will be a firm load of about
9,360 aMW on the federal system in the Pacific Northwest by 2010, based on a medium forecast of electricity consumption. At the same time, it is projected that about _ ¹ Average MW or "aMW" indicates the average amount of energy supplied over a specified period of time, in contrast to "MW," which indicates the maximum or peak output that can be supplied for a short period. Wind projects only generate power when the wind is sufficient to operate the turbines. In general, wind projects operate about one-quarter to one-third of the time (it varies in different locations), so a wind project with a capacity of 150 to 200 MW would generate *about* 50 aMW. 8,090 aMW of power generation from federal system firm resources (after subtracting transmission losses) will exist by 2010 for BPA to serve this load, which results in a projected federal firm energy deficit of approximately 1,270 aMW by 2010. On a region-wide basis, it is projected that there will be a firm load of about 23,870 aMW by 2010, again based on a medium forecast of electricity consumption. Because it is projected that there will be about 19,690 aMW of regional firm resources (after subtracting transmission losses) by 2010, BPA projects that there will be a regional firm energy deficit of approximately 4,180 aMW by 2010 (BPA, *Pacific Northwest Loads and Resources Study*, 1999). In addition, the NWPPC has forecasted that an additional 3,000 MW of electrical capacity will be required in the Pacific Northwest power system by 2003 for BPA to adequately serve its customers (NWPPC, 2000). Furthermore, BPA's existing energy resource base, which consists primarily of hydroelectric power, is facing increasing constraints as operations are being altered to incorporate long-term goals of salmon recovery in the Columbia River Basin. To meet the congressional mandate of the Northwest Power Act, BPA may need to acquire additional non-hydroelectric power generation resources. #### 1.2.2 Need for Acquisition of Power from Renewable Resources In the Northwest Power Act, Congress established that development of renewable resources should be encouraged in the Pacific Northwest (16 USC § 839[1][B]). The Act directs the BPA Administrator to acquire renewable resources to the maximum extent practicable (§ 839d[e][1]). Wind power is defined as a renewable resource by the Act (§ 839a[16]). The Act also requires that acquisition of new power resources by BPA be consistent with the NWPPC's Northwest Power Plan (§ 839b[d][2]) unless BPA's Administrator finds that acquiring a resource inconsistent with the Plan is needed to meet the Administrator's obligations under the Northwest Power Act (§ 839d[c][3][A]). The purpose of this Plan is to "set forth a general scheme for implementing conservation measures and developing resources" (§ 839b[e][2]). The Plan gives priority first to conservation, second to renewable resources, and then to other resources such as combustion turbine generation (§ 839b[e][1]). The proposed action may be needed to ensure consistency with these congressional directives. It is important to note that the NWPPC is presently embarking on an effort to update and revise the Power Plan, and this may result in a change of direction regarding new resources. In addition, the proposed action is consistent with the goals of the President's National Energy Policy. A primary goal of that policy is to add power supply in the U.S. from diverse energy sources (National Energy Policy Development Group, May 2001). The Policy clearly states that making greater use of non-hydroelectric renewable sources (e.g., wind, biomass, and geothermal) is needed to meet this goal. Furthermore, the proposed action may be needed to implement the renewable resource goals of BPA's Resource Programs, Business Plan, and Power Business Line (PBL) Strategic Plan. The BPA Administrator has chosen to implement the Emphasize Conservation Alternative from BPA's Resource Programs EIS (RPEIS) (BPA, 1993). This alternative contemplates development of 480 aMW of energy from new renewable resources by 2010, in addition to acquiring conservation and efficiency improvements. For the Business Plan, the BPA Administrator has chosen to implement the Market-Driven Alternative from BPA's Business Plan EIS (BPEIS) (BPA, 1995). This alternative was chosen for BPA's Business Plan in part to best meet BPA's expected long-term load obligations. Although the Business Plan emphasizes spot market power purchases to meet short-term obligations, the Plan supports the acquisition of renewable resources, and lays the foundation for subsequent decisions by BPA to foster the development of renewable resources to meet long-term power demand (BPA, *Business Plan 1995*, *DOE/BP-2664*, Aug. 1995). Finally, in response to its obligations under the Northwest Power Act and customer demand for "green" power, BPA's PBL Strategic Plan Update identifies an objective of increasing the amount of wind and other renewable energy resources in BPA's renewable energy portfolio (BPA, 2002). The amount of additional wind that BPA ultimately acquires will depend on the market price of alternative resources; the operational ability of the federal power system to absorb wind resources; transmission cost and physical restraints; costs of shaping wind energy to meet loads; net revenue from green power sales; and other factors. Thus, the proposed action may be needed to ensure consistency with these planning documents. #### 1.2.3 Need for Acquisition of Power from Wind Resources Acquisition of wind power may be needed to comply with BPA's statutory obligations under the Northwest Power Act. As discussed above, BPA must act consistently with the NWPPC's Northwest Power Plan, which gives priority first to conservation, second to renewable resources, and then to other resources (§ 839b[d][2]; § 839b[e][1]). Over the last decade, plans have been put in place to maximize conservation efforts in the Pacific Northwest. It is therefore necessary to now give priority to renewable resources. Geothermal power, biomass, and other renewables other than wind power have been or are being acquired to the maximum extent practicable, and BPA may need to acquire wind power resources to be consistent with the Northwest Power Plan. In addition, the President's National Energy Policy identifies diversification of the nation's power supply as a primary goal. Acquisition of power from wind resources conforms with this direction. # 1.3 Purposes of Action The purposes (i.e., objectives) of the proposed action are to: - Acquire wind power to fulfill BPA's obligations under the Northwest Power Act regarding the acquisition of additional power generation resources and development of renewable energy resources - Further the objectives of the President's National Energy Policy to diversify energy sources by making greater use of non-hydroelectric renewable sources such as wind power - Protect BPA and its customers against risk of power outages by diversifying BPA's energy supplies - Meet growing customer demand for energy from renewable energy resources - Ensure consistency with the resource acquisition strategy of BPA's Resource Programs and Business Plan - Further the objective of BPA's PBL Strategic Plan to increase the amount of renewable energy resources under contract and to evaluate issues of integration and operation of wind resources - Respond to the project developer's application to BPA for the purchase and transmission of power generated by wind turbines at the proposed Maiden Wind Farm site. # 1.4 Decisions to be Supported by the EIS This EIS will be used to support decisions by the lead agencies concerning the proposed Maiden Wind Farm. BPA, the federal lead agency, will use the EIS to assist in its decision whether to: (1) execute a 20-year power purchase agreement for up to 50 aMW of electrical energy from the proposed project; and (2) execute construction and generation interconnection agreements to integrate power into BPA's transmission grid. Benton County Planning and Building Department, the state lead agency, will use the EIS in deciding whether to grant a CUP for the proposed project, as well as necessary construction-related permits. Because a portion of the proposed project is located in Yakima County, the project developer has applied for a CUP from Yakima County as well. The EIS may be used by Yakima County in deciding whether to grant this permit. This EIS may also be used by other responsible agencies in making decisions whether to issue necessary permits and approvals for the proposed project. Permits and approvals required for the Maiden Wind Farm to be built are listed in Table 1.4-1. **TABLE 1.4-1**Permits and Approvals Required for the Proposed Project | Agency | Permit | Reason for Permit | |---|--|--| | U.S. Army Corps of Engineers | Clean Water Act
Section 404
Nationwide Permit | Installation of road and underground cable crossings of intermittent streams | | Federal Aviation Administration | Notice of Construction or Alteration | Review of turbine height and lighting | | Washington State Department of Ecology | National Pollutant Discharge
Elimination System Stormwater
General Permit 1200-C | Erosion control | | Washington State Department of Ecology | Water Quality Certification | Issued in conjunction with U.S. Army Corps of Engineers Nationwide Permit through the Joint Aquatic Resources Permit Application (JARPA) | | Washington State Department of Ecology | Sand and Gravel Permit | Development of quarry sites | | Washington State Department of
Natural Resources | Lease Agreement | Construction and operation of project on land owned by the state | |
Washington State Department of
Natural Resources | Surface Mining Permit | Development of quarry sites | **TABLE 1.4-1**Permits and Approvals Required for the Proposed Project | Agency | Permit | Reason for Permit | |---|------------------------------------|---| | Benton County Planning and Building Department | Conditional Use Permit | Construction and operation of project on land zoned for Growth Management Act (GMA) Agriculture and development of quarry sites | | Benton County Planning and Building Department | Mineral Resource Extraction Permit | Development of quarry sites | | Benton County Department of
Public Works | Encroachment Permit | Access from new private roads onto county roads | | Benton County Department of
Public Works | Franchise Agreement | Installation of underground cable within county right-of-way | | Benton County Planning and Building Department | Building Permit | Construction of turbines, substations, and operation and maintenance (O&M) buildings | | Benton Clean Air Authority | Notice of Construction | Construction of turbines, substations, O&M buildings, and quarries | | Benton-Franklin District Health Department | Septic System Permit | Construction and operation of O&M building septic system | | Yakima County Planning
Department | Conditional Use Permit | Construction and operation of project on land zoned for Agriculture | | Yakima County Public Works
Department/Permit Services Office | Building Permit | Construction of turbines, substations, and O&M buildings | | Yakima County Public Works
Department/Permit Services Office | Road Approach Permit | Access from new private roads onto county roads | # 1.5 Relationship to Other Environmental Documents This EIS is tiered to BPA's RPEIS and BPEIS, both of which are broader, programmatic documents. The RPEIS evaluates the environmental impacts and trade-offs of alternative combinations of generic resource types that could be developed, while the BPEIS addresses the environmental effects of alternative policies for implementing BPA's Business Plan. Tiering of this EIS to the RPEIS and BPEIS is consistent with 40 *Code of Federal Regulations* (CFR) 1502.20 and 1508.28, and with the strategy for tiering environmental analyses for site-specific actions such as the proposed Maiden Wind Farm that is documented in both the RPEIS and BPEIS. As discussed in Section 1.2 of this EIS, the BPA Administrator has chosen to implement the Emphasize Conservation Alternative from the RPEIS and the Market-Driven Alternative from the BPEIS. The proposed action for this EIS is a site-specific action that is consistent with the alternatives adopted by BPA in its Records of Decision (RODs) for the Resource Programs and Business Plan. Pursuant to 40 CFR 1502.20, this EIS focuses on the issues specific to the Maiden Wind Farm; broader issues (such as developing alternative power resources) were addressed in the programmatic documents and thus are not the subject of this EIS. Because this EIS is tiered to the RPEIS and BPEIS, this EIS incorporates by reference relevant information from these programmatic EISs and summarizes this information as appropriate. Both the RPEIS and BPEIS are available for review at BPA's headquarters in Portland, Oregon. # 1.6 Scoping and Major Issues On June 12, 2001, BPA published a Notice of Intent to prepare an EIS and to conduct public scoping for the proposed project. Scoping is a process in which the public is invited to express opinions on which issues should be considered in an EIS. BPA developed a mailing list of persons, agencies, and organizations that would likely be interested in or affected by the proposed project. On June 11, 2001, letters were mailed to everyone on the mailing list describing the project, the environmental analysis process, and how to participate. A public scoping meeting was held on June 26, 2001, at the Prosser Senior Center in Benton County. Written and verbal comments were collected from those who attended the meeting. Many issues were raised during the scoping process. The primary concerns were related to the following issues: - Impacts to birds, other wildlife, and vegetation, including the introduction of noxious weeds and the loss of shrub-steppe habitat - How this project would impact the overall need for and cost of power in the region - The impact of the project on the view of the hillside. Comments received during scoping were considered by resource scientists and specialists throughout preparation of the environmental impact analyses and are addressed in this EIS. Everyone on the mailing list will receive notice when the Draft EIS is available, including instructions on how to comment on the EIS. Everyone on the list also will receive notice when the Final EIS and ROD are available. Appendix A of this EIS provides public involvement documentation related to the proposed project. Appendix B provides agency correspondence related to the proposed project. # **Proposed Action and Alternatives** BPA's proposed action is the execution of power purchase and construction and generation interconnection agreements to acquire and transmit up to 50 aMW (up to about 200 MW) of output from the proposed Maiden Wind Farm, which would be developed to generate up to 494 MW¹. Benton and Yakima Counties' proposed action is to grant Conditional Use Permits (CUPs) and other required permits for full build-out of the project, which would require construction of up to 549 wind turbines for a 494-MW project. This EIS evaluates two alternatives — the Proposed Action (which means that part or all of the proposed project would be built) (Section 2.1) and No Action (Section 2.2). BPA would not purchase or transmit power from the project under the No Action Alternative and it is therefore likely that the project would not be constructed. Section 2.3 describes several alternatives that were considered but eliminated from detailed evaluation in this EIS. # 2.1 Proposed Project #### 2.1.1 Overview Washington Winds Inc. (the project developer) proposes to construct and operate up to 494 MW of wind generation at the proposed Maiden Wind Farm site in Benton and Yakima Counties, Washington (see Figure 2.1-1). Development of the proposed project likely would occur in stages. The initial stage would likely involve the installation and operation of up to 50 aMW (up to about 200 MW) of wind turbines. Subsequent stages, which may or may not be undertaken, could develop all or part of the remaining MWs at the Maiden Wind Farm site. Although the full 494 MW of power may not be constructed, this EIS evaluates impacts of the proposed project at full build-out conditions of 494 MW. The permanent project footprint (for the life of the project) would occupy approximately 251 acres for wind turbines, access roads, substations, and other facilities. Approximately 1,063 acres would be temporarily occupied during construction by facilities such as staging areas, equipment laydown areas, and rock quarries. Up to 549 wind turbines would be arranged in numerous "strings" for a maximum of about 30 total miles of turbine strings (see Figure 2.1-2). The height of the turbines would range from about 300 feet to 390 feet, depending on the turbine size selected. To access and service the wind turbines and other facilities at the site, up to 10.3 miles of existing private roads would be improved, and up to 44.5 miles of new access roads would be constructed. Up to three operations and maintenance (O&M) buildings, each approximately 20,000 square feet on 4-acre sites, would be constructed at the site. ¹ Washington Winds Inc. has submitted a request to BPA for up to 400 MW of transmission services, yet has submitted Conditional Use Permit applications to Benton and Yakima Counties for a project that could generate up to 494 MW. For the purposes of this EIS, 494 MW is considered the maximum amount of power that could be generated by the proposed project. FIGURE 2.1-1 **Proposed Project Location** Electric lines would be installed to connect the turbines and strings (see Figure 2.1-2). Lines connecting individual turbines in each string would be located underground, and lines connecting the strings would be either underground or overhead. The initial stage of the project would be connected through the project's western substation to BPA's existing Big Eddy-Midway 230-kilovolt (kV) transmission line that crosses the northwest portion of the study area. The most likely interconnection option for subsequent stages (and the option analyzed in this EIS) would be to build a new 4-mile 230-kV transmission line from a second substation in the eastern portion of the project site (see Figure 2.1-2) to interconnect with BPA's Big Eddy-Midway 230-kV transmission line. Other options for interconnecting subsequent stages are discussed briefly in Section 2.1.2.2. Construction of the project could begin in summer 2002, with at least partial power generation expected as early as winter 2002-2003. The project could potentially be developed in multiple phases. Because it is not certain if subsequent phases of the project (after the initial 50-aMW project is built) would be developed, it would be speculative at this time to provide an estimated schedule for these subsequent phases. However, if the full project were to be built all at once, it would take approximately 9 months to construct. #### 2.1.2 Facilities The project would be located primarily on privately-owned agricultural land pursuant to leases negotiated between the landowners and the project developer. These leases would allow construction and operation of wind facilities for a negotiated term. In exchange, each landowner would receive financial compensation. Landowners could continue their ranching and farm
operations around the wind turbines and other facilities. The project developer has several leases already signed with landowners. All landowners in the study area have agreed to allow environmental studies to take place on their land. The project would consist of wind turbines, associated electrical systems, meteorological towers, access roads, and operation and maintenance buildings (see Figure 2.1-2). Each wind turbine in a string would be connected by underground electrical lines. Between strings, power would be collected by underground or overhead lines that would connect to the project substations. The following subsections provide more information about project facilities. Tables 2.1-1 and 2.1-2 summarize the proposed project facilities and the total area that would be permanently and temporarily occupied by each project facility. **TABLE 2.1-1**Area Permanently Occupied by Maiden Wind Farm Facilities | Proposed Facility | Number of
Facilities | Square Feet per Unit | Total Acres | |---|-------------------------|--------------------------|-------------| | Turbine Pads/Towers ¹ | 549 | 2,500 | 31 | | Access Roads ² | | | | | Existing improved roads | 10.3 miles | 158,400 per mile of road | 37 | | New roads | 44.5 miles | 158,400 per mile of road | 161 | | Overhead Collector Line ³ Structures | 120 | 30 | <0.1 | | Transmission Line Structures ³ | 26 | 30 | <0.1 | | Substation Sites | 2 | 174,240 | 8 | | Operation and maintenance Buildings | 3 | 174,240 | 12 | | Meteorological Towers | 4 | 24,025 | 2.2 | | Total Permanently Occupied Area | | | 251 | #### Notes: - 1. Area of foundations, transformer, and cleared area for each tower is 50 feet by 50 feet, excluding access road - 2. Assumes 20 feet of travel lanes and up to 5 additional feet for each shoulder. - 3. Occupied area around each pole. The total acres occupied could be less than shown above because some project facilities overlap. For example, because underground cable lines and overhead power lines would overlap roadway shoulders to some degree, the area to be occupied would be less than the total acreage of these three facilities. **TABLE 2.1-2**Area Temporarily Occupied by Maiden Wind Farm Facilities During Construction | Proposed Facility | Number of
Facilities | Square Feet per Unit | Approximate
Total Acres | |--|-------------------------|--------------------------|----------------------------| | Turbine Construction/Laydown Areas | · | | | | Main staging areas | 2 | 435,600 | 20 | | Intermediate staging areas | 14 | 87,120 | 28 | | Laydown areas at each turbine site ¹ | 549 | 62,500 | 788 | | Turnaround areas at each turbine string ² | 30 | 32,400 | 22 | | Meteorological towers | 4 | 10,000 | 1 | | Roads | | | | | Temporarily disturbed area during road construction ³ | 54.8 miles | 105,600 per mile of road | 133 | | Quarries | 2 | 348,480 | 16 | | Electrical System Laydown Areas | | | | | Laydown areas for overhead transmission structures | 26 | 10,000 | 6 | | Laydown areas for overhead collector structures | 120 | 10,000 | 28 | | Conductor stringing site | 3 | 40,000 | 3 | | Underground collector cable area | 30 miles | 26,400 per mile of road | 18 | | Total Temporarily Occupied Area* | | | 1,063 | #### Notes: - 1. Assumes 250 by 250-foot area for each tower. - 2. Assumes 180 by 180-foot turnaround area for each turbine string. - 3. Assumes 10 feet on each side of 30-foot roadway. The total acres occupied by temporary facilities could be less than shown above because some facilities would overlap. For example, because laydown areas for collector structures would likely overlap laydown areas for turbine sites to some degree, the area to be occupied would be less than the total acreage of these two facilities. #### 2.1.2.1 Wind Turbines The project developer would select a single wind turbine design from a range of turbines that produce 900-kilowatt (kW) to 2,000-kW output each. The height of the turbines could range from about 300 feet to 390 feet (depending on the final turbine type selected) as measured with a rotor blade in the vertical position. Larger wind turbines produce more kilowatts. Consequently, if 2,000-kW turbines (390 feet high) were used, 247 turbines would be constructed instead of 549 turbines using 900-kW turbines. The wind turbines would be grouped in strings of 5 to 100 turbines, each spaced approximately 250 to 450 feet from the next (about 1.5 times the rotor diameter). Approximately 30 miles of turbine strings would be constructed at full build-out using 900-kW turbines. The project developer is considering six different wind turbine sizes for the project. Figure 2.1-3, as an example, shows the configuration of an NEG Micon 900/52 900-kW wind turbine and tower. Figure 2.1-4 is a photograph of the type of turbine that would likely be ^{*} Does not include area to be occupied by permanent facilities. used. Other types of wind turbines are of similar appearance but tower height and rotor diameters may differ. Table 2.1-3 lists the kW output of various turbines, the maximum height (with a rotor blade in the vertical position), and the number of turbines that would be needed for a 200-MW and 494-MW project. **TABLE 2.1-3**Wind Turbine Sizes Considered for Maiden Wind Farm | kW Output | Maximum Height | Quantity for
200-MW Project | Quantity for
494-MW Project | |-----------|----------------|--------------------------------|--------------------------------| | 900 | 322 | 222 | 549 | | 1,000 | 298 | 200 | 494 | | 1,300 | 299 | 154 | 380 | | 1,500 | 389 | 133 | 330 | | 1,800 | 351 | 111 | 275 | | 2,000 | 387 | 100 | 247 | The turbine type likely to be used is an upwind, dual-speed turbine (i.e., the nacelle would move so that the rotor always faces upwind and turns at one of two speeds, depending on the current wind speed). The typical range of wind speeds for these turbines to operate is 9 to 56 miles per hour (mph). At higher speeds the turbines automatically stop to avoid damage, and remain stationary until the wind slows. The turbines are designed to withstand wind speeds of up to about 119 mph. Wind turbines consist of the foundation, tower, nacelle, and rotor (hub and three rotor blades). The nacelle is mounted at the top of the tower and houses the gearbox and generator. The rotor attaches to the nacelle. The newer-generation wind turbines have rotors that make one revolution approximately every 3-4 seconds (15-20 rotations per minute), which increases the blade visibility to birds compared to the old, faster-moving turbine models. Newer turbine models also use tubular towers instead of lattice towers to eliminate perching opportunities for birds. #### Foundations. Foundations most likely would be caisson-type but potentially could be a spread footing-type. The type of foundation would be determined based on site geotechnical study information after construction bids are received and evaluated. Foundations would be designed in accordance with state and county building requirements and standard engineering practice. Caisson-type footings require the excavation of a hole up to 30 feet deep and up to 16 feet in diameter. A circular corrugated metal form about 13 feet in diameter would be inserted in the hole, and another circular corrugated metal form several feet smaller in diameter would be inserted inside the larger form. The space between the two forms would be filled with reinforced concrete, and the space inside the inner concrete form would be filled with compacted backfill and/or slurry. Anchor bolts extending from the depth of the concrete footing and protruding about 9 inches above the concrete would be used to attach the towers. FIGURE 2.1-4 **Photograph of Representative Wind Turbine** MAIDEN WIND FARM EIS Spread footing foundations would require holes approximately 50 feet by 50 feet square and 6 to 8 feet deep. Backfill would be compacted in the bottom of the hole and a reinforced square concrete footing would be poured. A reinforced concrete pedestal approximately 3 feet high would be mounted on the concrete footing to hold the tower. The concrete footing would be covered with approximately 2.5 feet of compacted backfill and 6 inches of topsoil, leaving the pedestal above ground. If bedrock is encountered, it is anticipated that rock anchors may be used to secure the base of the footing. Explosives may be required in some circumstances to create holes for foundations. #### Towers. The towers would be approximately 161 to 262 feet tall at the turbine hub, and with the nacelle and rotor mounted, the total height of the wind turbine would be approximately 300 to 390 feet high with a rotor blade in the vertical position. The towers would be smooth, hollow steel structures, approximately 14 feet in diameter at the base and tapering to the nacelle. The towers would be painted neutral gray or off-white to be visually less obtrusive. A control cabinet would be located inside the base of each tower. A ladder inside the structure would ascend to the nacelle to provide access for turbine maintenance. A locked door would provide access at the base of the tower. Some of the towers would be furnished with obstruction lighting at the top of the nacelle for aircraft safety. The number of wind turbines with lights and the type of lighting would be determined in consultation with the Federal Aviation Administration (FAA). For the Stateline Wind Project in Eastern Washington and Oregon, the FAA required white flashing lights in the daytime and red flashing lights at night. Lights were required to be placed every thousand feet and at the ends of turbine strings. Turbine towers have two to three sections. Turbine tower sections would be transported to the site on trailers that each carry one tower section. Tower sections would be delivered by truck to staging areas and then to each tower location. They
would then be erected using a large construction crane. #### Nacelle. As each tower is being assembled, the nacelle, hub, rotor blades, and other turbine equipment would be delivered to each tower location. The nacelle would be hoisted to the top of the tower by a large construction crane and bolted to the tower. The hub and rotor blades would be assembled on the ground; then the entire rotor assembly would be hoisted and attached to the nacelle. The nacelle would be equipped with an anemometer and a wind vane that signals wind direction changes to an electronic controller. In conjunction with the electronic controller, a yaw mechanism would use electric motors to turn the nacelle and rotor so that the blades face into the wind. The diameter of the circle swept by the blades would range from approximately 172 to 262 feet (that is, each blade would be approximately 86 to 131 feet long). The three rotor blades would be composed of composite fiberglass. #### 2.1.2.2 Electrical System The electrical system associated with the wind turbines would consist of the following: - A transformer at the base of each tower that would collect 600 volts from individual turbines and increase the voltage to 34.5-kV or 69-kV - The collector lines from the transformers to either or both of the two substations - One (for the first 50 aMW) or two (for a larger project) substations where energy would be transformed or "stepped up" from 34.5-kV or 69-kV to 230-kV - For a project over 50 aMW, an overhead 230-kV transmission line from the eastern area substation that would connect to one of BPA's existing transmission lines, or directly into BPA's Midway Substation north of the project. To facilitate the interconnection of the first 50 aMW, BPA would either 1) tap the 230-kV transmission line and install three switches at the tap point, or 2) build a new 1- to 2-acre substation adjacent to the project's western substation to terminate the existing line. Subsequent stages of the project would be connected to a second substation in the eastern portion of the project site. The most likely interconnection option would be to build a new 4-mile 230-kV transmission line (see Figure 2.1-2) to interconnect with the existing BPA Big Eddy-Midway 230-kV transmission line. BPA will prepare a transmission study to verify the feasibility of this interconnection and evaluate other options for interconnecting subsequent stages. The other options may include: - BPA may need to double-circuit (build a second line on the same right-of-way) the Big Eddy-Midway line from the interconnection point to the Midway Substation north of the project. - The project developer could build a 230-kV transmission line approximately 7 miles long from the eastern substation to interconnect with BPA's North Bonneville-Midway 230-kV transmission line, a few miles west of the project. - A small possibility exists that the project developer would build a 230-kV transmission line about 15 miles from the eastern substation north to interconnect directly into BPA's Midway Substation. It is unknown whether any of these options would be necessary. Because these options are speculative at this time, this EIS does not address impacts of interconnection other than the most likely options of connecting both substations directly to the Big Eddy-Midway transmission line. If another option is pursued for the subsequent stages, additional environmental analysis would be prepared, as necessary. All options would require installation of metering, supervisory control and data acquisition (SCADA), communications, and relaying equipment at one or both of the project developer's substations located on the project site. #### Collector System. Transformers would be located on a concrete pad approximately 5 feet by 5 feet square constructed immediately adjacent to the tower base. From there, power from the turbine would be transmitted via underground 34.5-kV or 69-kV electric cables buried approx- imately 3 to 4 feet below the ground surface, in a trench up to 5 feet wide. In areas where collector cables from several strings of turbines follow the same alignment (for example, near a substation), multiple sets of cables would be installed within each trench where possible. Underground cables would be used in most areas. Overhead cables on tubular steel towers or wood poles would be used to connect turbine strings in steep areas or areas where soils or bedrock conditions make it necessary. Overhead poles would be approximately 45 to 70 feet high (although in some locations poles as high as 85 feet may be required). The span between overhead poles would be between 200 and 300 feet. Overhead poles would be designed so that electrical conductors are spaced a sufficient distance apart to keep conductors from contacting each other in storms and to minimize the risk of bird electrocution. In addition, triangular or other "antiperching" devices would be installed on all pole structures to discourage birds from perching on them. Construction would require access (approximately 8 feet in width) for heavy equipment along the length of overhead lines. At each structure location, an area approximately 100 feet by 100 feet would be required as a temporary laydown or staging area where heavy equipment and poles would be placed during the installation of each structure. #### Substations. The project developer would build and maintain one (for a 50 aMW project) or two (for a larger project) fenced substation sites occupying up to 4 acres each. The sites would be gravel except for concrete pads underneath transformer and switching equipment. A gravel parking area for maintenance vehicles would also be included. Transformers would be nonpolychlorinated biphenyl (PCB) oil-filled types. The foundations would be designed to contain more than 100 percent of the capacity of oil in the transformer to prevent discharge to the ground in the event of a transformer casing failure. #### Transmission Line. If a project greater than 50 aMW is built, a second substation would be built in the eastern portion of the project site. Energy from the eastern project substation would most likely be transmitted to BPA's existing Big Eddy-Midway 230-kV transmission line via a new 4-mile overhead transmission line that would be built and maintained by the project developer. For this 230-kV transmission line, tubular steel or wood poles would be approximately 100 feet high and would be spaced about 800 feet apart. It is estimated that about 26 poles would be needed for the 4-mile transmission line. Constructing the 4-mile overhead 230-kV transmission line would require similar types of construction laydown areas as for the overhead collector system. In addition, it is likely that two or three conductor stringing sites would be required. These would be areas approximately 200 feet by 200 feet, located approximately 100 to 200 feet from the transmission line, where equipment would be stationed to pull the conductor the length of a line segment. Overhead line construction would follow standard industry procedures and entail the following major activities: surveying, corridor preparation, materials hauling, structure assembly and erection, ground wire and conductor stringing, and cleanup and restoration. The transmission line would be constructed and maintained in conformance with the National Electric Safety Code and other applicable codes and standards. Raptor anti-perching devices would be installed on all new overhead power line poles within 1 mile of turbine strings to limit potential raptor use near the wind turbines. All power lines would be constructed following *Suggested Practices for Raptor Protection on Power Lines: The State of the Art in 1996* (APLIC, 1996); specifically, conductors would be spaced as recommended by the study to minimize the potential for bird electrocution. #### 2.1.2.3 Meteorological Towers Meteorological (met) towers are used to measure wind conditions. They are slender steel towers approximately 165 feet high. These towers usually have 3 or 4 anemometers to record wind speeds at several elevations. One met tower is currently being used in the study area and is located at the ridgetop near BPA's existing transmission line. Met towers are usually secured by guy wires that extend up to 110 feet from the base of each tower. Guyed met towers require no foundation support. Two or three additional met towers would be installed for the project. The met towers would be constructed upwind of turbine strings or groups of turbine strings to monitor wind strengths as part of the process used to confirm turbine performance. #### 2.1.2.4 Access Roads The western end of the study area in Yakima County is accessible via Interstate 82, State Route 241, and Lewandowski Road, then via private ranch roads. The eastern portion of the study area in Benton County is accessible via Interstate 82, North Gap Road, and other rural roads (see Section 3.9.3 and Figure 3.9-1). From the termination of county roads, both routes currently lead to the ridgetop via private 4-wheel-drive ranch and farm roads. The only Yakima County road that would be used by project traffic is Lewandowski Road, which appears to be in good condition and not in need of upgrading. However, the project developer would work with the Yakima County Public Works Department to determine whether the road would need to be upgraded for use by heavy construction vehicles. Several Benton County gravel roads may require upgrading to support construction vehicle loads. This could involve obtaining right-of-way from property owners. The project developer would work with engineers from the Benton County Department of Public Works to ensure that all roads, bridges, and culverts are capable of carrying the proposed loads. County roads would be restored to their pre-project condition and to the satisfaction of the Benton County Department of Public Works if any damage to the roads were
to occur as a result of construction activities. The project would include improving existing private roads and constructing new gravel roads on private property to provide access for construction vehicles and equipment. New roads would be located to minimize ground disturbance, maximize transportation efficiency, and avoid sensitive resources and unsuitable areas. Up to 10.3 miles of existing private roads would need to be improved and up to 44.5 miles of new roads would be constructed. New gravel roads would be constructed along and between each turbine string on the project site if no farm roads currently exist. Generally these roads would be up to 30 feet wide, including shoulders. An additional 10 feet on either side of the road would be temporarily disturbed by heavy equipment during roadwork. All roads would be designed under the direction of a licensed engineer. Proper permits, approvals, and authorizations would be obtained prior to all roadwork. Any existing culverts would be replaced with wider or stronger culverts as necessary, and drainage improvements would be made pursuant to a project erosion control plan and National Pollutant Discharge Elimination System (NPDES) permit as necessary to control runoff. The road construction contractor would bring gravel for road improvements from newly permitted onsite quarries or from other local permitted gravel resources. Potential quarry sites are shown in Figure 2.1-2. After construction of the project, use of the access roads on private lands would be restricted by landowner permission and would be used by project maintenance staff. These roads would have locked gates. #### 2.1.2.5 Operation and Maintenance Buildings Up to three permanent O&M facilities would be constructed on the project site. Each O&M building would be approximately 20,000 square feet, including an office and workshop area, restroom, and kitchen facility. The O&M buildings, including parking, would be on 4-acre sites. Potable water would be acquired from the landowner or from another source with a permitted water right. Water use for these facilities would be less than 5,000 gallons per day and used water would drain into an onsite septic system. A graveled parking area for employees, visitors, and equipment would be adjacent to each building. The entire area would be fenced and have a locked gate. Constructing these facilities would involve conventional building activities: clearing and grading, constructing a foundation pad, framing and finishing the building, electrical wiring, plumbing, constructing a sanitary wastewater system, and outfitting the buildings with office and shop facilities. Buildings would be constructed in accordance with Benton County and *Uniform Building Code* (UBC) requirements. #### 2.1.3 Construction It is expected that construction activities could begin in summer 2002 and operation could begin in winter 2002-2003. Construction would be carried out by one or more construction contractors hired by the project developer. Temporary facilities would include up to two 10-acre main staging areas, up to 14 2-acre intermediate staging areas, and two 8-acre quarry sites/concrete batch plants, as shown in Figure 2.1-2. Table 2.1-4 lists construction equipment typically used for wind project construction. **TABLE 2.1-4**Equipment Typically Used for Wind Project Construction | Equipment | Use | |---------------------------------------|--| | Bulldozer | Road and foundation construction | | Grader | Road and foundation construction | | Water trucks | Compaction, erosion, and dust control | | Roller/compactor | Road and foundation compaction | | Backhoe/trenching machine | Digging trenches for underground cables | | Heavy-duty rock trencher | Underground trenching | | Truck-mounted drilling rig | Drilling tower foundations | | Concrete trucks/concrete pumps | Pouring tower and other structure foundations | | Cranes | Tower/turbine erection | | Dump trucks | Hauling road and pad material | | Flatbed trucks | Hauling wind turbines, towers, transformers, and other equipment | | Pickup trucks | General use and hauling minor equipment | | Small hydraulic cranes/fork lifts | Loading and unloading equipment | | Four-wheel-drive all-terrain vehicles | Rough grade access and underground cable installation | | Rough-terrain forklift | Lifting equipment | #### 2.1.3.1 Erosion Control The erosion control plan, which is required under the project NPDES 1200C General Stormwater Permit, would include general "best management practices" for erosion control during and after construction. These practices would likely include sediment-control basins and traps in drainages or other erosion control devices such as jute netting, straw bales, soil stabilizers, and check dams. Surface flows would be directed away from cut-and-fill slopes and into ditches that outlet to natural drainages. Permanent drainage and erosion control facilities would be constructed as necessary to allow stormwater passage without damage to the roads or to adjacent areas, and without increasing sedimentation to any streams. #### 2.1.3.2 Temporary Staging Areas During wind turbine installation, several temporary laydown or staging areas would be required. Depending on the size of the project, these areas would include up to two 10-acre main staging areas and up to 14 2-acre intermediate staging areas where tower sections, nacelles, and other components would be temporarily stored as each wind turbine string is constructed. In general, a 2-acre laydown/staging area would be required for each group of 25 to 50 turbines. These staging areas also would be used for parking construction vehicles, construction employees' personal vehicles, and other construction equipment. Portable fuel tanks (500- to 1,000-gallon above-ground tanks with berms) could be used for equipment fueling at some staging areas. At each turbine location, an area of approximately 250 feet by 250 feet (62,500 square feet) would be required to place turbine blades and other turbine components and to station a construction crane as each tower is erected. At the end of most turbine strings (except where a turbine string is adjacent to a through road), an area approximately 180 feet by 180 feet also would be needed to allow construction equipment to turn around. After construction has been completed, laydown and staging areas would be graded and reseeded to wheat or native grasses as necessary to restore the area as close as possible to its original condition. #### 2.1.3.3 Quarry Sites/Concrete Batch Plants The potential locations for quarry sites/concrete batch plants are shown in Figure 2.1-2. The eastern quarry pit already exists. The western quarry would need to be developed. The quarries could possibly provide all the gravel supplies for construction of the project. Approximately 8 acres would be needed for each quarry and ancillary facility. The sites would include the quarry, raw material stockpiles (for example, sand and gravel, concrete aggregates), a mobile crusher for the concrete batch plant, a diesel generator, parking, storage, and a settling pond. Portable concrete batch plants are permitted under Washington's Sand and Gravel General NPDES permit. Portable batch plants are those that operate at a site for less than 1 year. The general permit requires a monitoring plan, stormwater pollution prevention plan, an erosion and sediment control plan, and a spill plan. The permit requires restoration of the site after the portable batch plant and associated facilities are removed. For concrete truck washout, best management practices would be incorporated that require a settling pond to catch washdown and stormwater runoff. A water storage tank could be used at the portable batch plant to store water hauled from an offsite source if water was not available at the site. #### 2.1.3.4 Site Cleanup Final cleanup and restoration would occur immediately following construction as weather permits. Waste materials (for example, brush, rock, construction materials) would be removed from the area and recycled or disposed of at approved facilities. Excess soil would be tamped around turbines and power poles or spread on the site. Disturbed areas would be graded and reseeded with native vegetation as necessary. Reseeding would be carried out in consultation with the Weed Control Boards of Yakima and Benton Counties and landowners. #### 2.1.3.5 Fire Emergency Plan Because part of the proposed project site is not located within a county fire protection district, a fire emergency plan would be developed and submitted to Benton and Yakima County Fire Marshals for approval prior to beginning construction of the project. This plan would outline onsite fire prevention and suppression methods that would be used during construction and operation of the proposed project. The plan could require onsite water tanks containing sufficient water to fight grass fires (as determined by the fire districts). Operation and maintenance staff would be instructed in fire suppression techniques. The construction contractor specifications would include provisions such as limiting vehicle traffic to access roads and gravel areas, and limiting smoking to inside vehicles only. #### 2.1.3.6 Employment The project developer anticipates that about 150 workers would be employed for approximately 9 months to construct the facilities. A peak workforce of up to 350 workers would be onsite during an estimated 4-month peak construction period. Construction workers would be employees of various construction and equipment manufacturing companies under contract to the project developer. It is likely that construction workers would include a mix of locally hired (Yakima and Benton Counties) workers for road and turbine foundation construction, and if necessary, workers from outside the two-county area for specialized construction. #### 2.1.4
Operation and Maintenance Activities The project developer would operate and maintain the project. Every turbine in the project would be monitored by a 24-hour computerized control system, with staff monitoring computers at the project's O&M buildings and remotely from other office locations. Routine maintenance of the turbines would be performed to maximize performance and detect and prevent potential difficulties. O&M personnel would perform both routine maintenance and most major repairs. Most servicing would be performed "uptower" (that is, without using a crane to remove the turbine from the tower). Routine maintenance would include periodically replacing lubricating fluids, checking parts for wear, readjusting components, and recording data from meteorological tower data recording chips. All roads, pads, and trenched areas would be inspected regularly and would be maintained to minimize erosion. Up to 15 permanent full-time staff would be employed during operation of the project. Most of the O&M staff would likely be hired locally. One or two supervisors with experience at other wind turbine projects would supervise the O&M staff. ## 2.1.5 Decommissioning For financial evaluation and contractual purposes, the project is assumed to have a useful life of 20 years. The trend in the wind energy industry has been to "repower" older wind energy projects by upgrading equipment with more efficient turbines. It is likely that the project would be upgraded with more efficient equipment and could have a useful life far longer than 20 years. BPA would have the option to extend its power purchase agreement at that time. If the project were terminated, the project developer would request the necessary authorizations from the appropriate regulatory agencies and landowners to decommission the facilities. All facilities would be removed to a depth of 3 feet below grade and unsalvageable material would be disposed of at authorized sites. The soil surface would be restored as close as possible to its original condition, or to match the current land use. Reclamation procedures would be based on site-specific requirements and techniques commonly employed at the time the area would be reclaimed, and would likely include regrading, adding topsoil, and revegetating all disturbed areas. Decommissioned roads would be reclaimed or left in place based on landowner preference, and the leased property would be relinquished to the landowner. ### 2.2 No Action Alternative Under the No Action Alternative, BPA would not purchase or transmit power from the proposed project. Therefore, it is likely that the project would not be constructed or operated, and the potential environmental impacts associated with the proposed project would not occur. If the project is not built, the region's need for power could be met by development of a gas-fired combustion turbine. While more than 28,000 MW of gas-fired combustion turbine projects have been proposed for the region, less than 3,000 MW of wind projects currently are being developed. Because the construction and operation of gas-fired generation is a predictable consequence of not building the project, it is considered a predictable outcome of the No Action Alternative. Although it would be speculative to estimate the impacts of a similarly sized CT due to the uncertainty of the location and type of technology, impacts of a typical CT are identified in the No Action Alternative sections of Chapter 3 for informational purposes. Impacts from gas-fired combustion turbine projects include air emissions and other impacts of construction and operation in the vicinity of the new plants, and impacts associated with natural gas extraction and transport. Combustion turbine projects require significant amounts of water, the appropriation of which may have adverse impacts on limited surface water or groundwater resources. Gas extraction impacts include those related to drilling and associated development activities, and those related to ongoing operation of gas wells and associated delivery systems, which would occur for the life of the project. While conservation can provide for a significant portion of the regional energy needs, costeffective conservation is being comprehensively addressed in the region and would not predictably replace new generation. Therefore, it is not appropriate to consider conservation as a predictable outcome for the No Action Alternative. # 2.3 Alternatives Considered but Eliminated from Detailed Evaluation Throughout the scoping process and during the development of this EIS, the lead agencies considered a wide range of alternatives for the proposed action. In their consideration of potential alternatives, the lead agencies assessed whether each potential alternative was reasonable under the National Environmental Policy Act (NEPA) and the State Environmental Policy Act (SEPA) and thus merited detailed evaluation in this EIS. In making this determination, the lead agencies assessed whether the potential alternative met the identified purposes of and need for the proposed action, including the objective of BPA to acquire power from wind resources. In addition, BPA considered the goal of the project developer to develop a wind farm specifically at the site identified in their proposal. Alternatives that did not meet the purposes and need did not merit detailed evaluation in this EIS, nor did alternatives already assessed in other EISs, that were not practical or feasible, or that obviously would have greater adverse environmental effects than the proposed action. This section summarizes those alternatives that were considered but eliminated from detailed evaluation in this EIS. #### 2.3.1 BPA Development of Wind Power BPA does not have the statutory authority to own energy resources. Therefore, BPA enters into power purchase agreements with energy developers to acquire the power from resources cultivated by these developers in order to serve BPA customer needs. Because alternatives involving BPA development or ownership of a wind resource would not be feasible, these alternatives were eliminated from detailed evaluation in this EIS. ## 2.3.2 Alternative Energy Resources As discussed in Section 1.2, BPA needs to acquire power from wind power resources. BPA also has objectives of bringing wind power to market and responding to the project developer's proposal to develop a wind farm at the proposed project site (see Section 1.3). In addition, potential environmental impacts from development of alternative energy resources have already been assessed by BPA in its Resource Programs EIS (RPEIS). The RPEIS analyzed the environmental trade-offs among all reasonably available energy resources, including conservation, renewable resources (wind, solar, geothermal, biomass, and hydro), system efficiency improvements, cogeneration, combustion turbines, nuclear power, and coal. As stated in Section 1.2, the BPA Administrator has chosen to implement the Emphasize Conservation Alternative from the RPEIS, and acquisition of wind power is consistent with this decision. Thus, because alternatives involving other energy resources would not meet the purposes and need of the proposed action and have already been evaluated in the RPEIS, these alternatives were eliminated from detailed evaluation in this EIS. #### 2.3.3 Alternative Transmission Paths Two existing power lines cross the project site — BPA's 500-kV John Day-Hanford transmission line, and BPA's 230-kV Big Eddy-Midway transmission line. The project developer sited the project in part to take advantage of these transmission lines. Connection of more than 50 aMW of the proposed project to either of these BPA lines would require the developer to build a 4-mile-long transmission line. This line would extend almost due west from the eastern project substation to an interconnection point along the Big Eddy-Midway line (see Figure 2.1-2). Alternative transmission paths or interconnection points for the first 50 aMW of the proposed project would involve constructing a transmission line that would not need to be constructed under the project as currently proposed in order to connect to another point on the transmission grid. Because more land would be affected by such an alternative, there likely would be greater adverse environmental effects to land uses (primarily agricultural uses), vegetation, and wildlife habitat. Construction of a transmission line for the first 50 aMW also would increase the potential for adverse effects to cultural resources, and this line would result in greater visual effects. In addition, construction of a transmission line for this stage would greatly increase project costs, and would likely render the project economically infeasible. Thus, because alternatives involving alternative transmission paths would have greater adverse environmental effects than the proposed action and likely would render the project infeasible, these alternatives were eliminated from detailed evaluation in this EIS. As discussed in Section 2.1.2.2, alternative transmission paths or interconnection points for subsequent stages of the proposed project could involve constructing a transmission line that would be several more miles in length than the proposed 4-mile transmission line, or building the proposed 4-mile line and double-circuiting several miles of the existing Big Eddy-Midway transmission line. These alternatives would have the same potential for greater impacts discussed above for a new line for the first 50 aMW of the proposed project. In addition, these alternative transmission paths would require several more miles of line installation than the proposed path, which would greatly increase project costs and likely render the project economically infeasible. Thus, because alternatives involving alternative transmission paths would have greater adverse environmental effects than the proposed action and likely would render the project
infeasible, these alternatives were eliminated from detailed evaluation in this EIS. If consideration of these alternatives becomes necessary as a result of BPA's transmission study, additional environmental analysis would be prepared as necessary. #### 2.3.4 Alternative Wind Turbine Locations The siting of wind turbines is constrained by the need for a location with a sufficient wind resource to allow the project to operate in a commercially and technically viable manner. Thus, wind turbines must be sited in locations where data show that there are sufficient wind speeds on a regular basis throughout the year. The project developer's proposal for the Maiden Wind Farm identified only the proposed site for development of the project. This study area was chosen because of the high quality of the wind resource at this location. Other factors considered were the relative ease of access to the site and its proximity to BPA transmission lines. All of these factors combined to make the proposed site the most practical and feasible from a technical and economic standpoint. Other possible locations would jeopardize this feasibility, due to a lack of sufficient wind resource (and thus operational problems and a lower return on investment), more difficult access, and/or remoteness from any nearby BPA transmission lines (which would require construction of more lengthy transmission lines to interconnect). One of the purposes of the proposed action is to respond to the project developer's proposal, and alternative locations would not accomplish this objective. In siting the individual turbines within strings at the project site, the same factors were considered that were used in choosing the study area. The turbines have been sited to minimize environmental effects to the greatest extent possible while maintaining the commercial viability of the project, and mitigation is identified in this EIS to further reduce and avoid potential impacts. Thus, alternative wind turbine locations were eliminated from detailed evaluation in this EIS because these alternatives would jeopardize the feasibility of the project and would not meet the purposes of the proposed action. # 2.4 Comparison of the Alternatives The environmental impacts of the proposed action and the no action alternatives were evaluated and are described in Chapter 3, Affected Environment and Environmental Consequences. Table S-1 in the Summary section summarizes the environmental impacts of the proposed action. Potential significant impacts of the proposed project include impacts to ferruginous hawk, visual resources, and sensitive research facilities on the Hanford Reservation. Under the no action alternative, the proposed project would not be constructed or operated, and the potential environmental impacts associated with the proposed project would not occur. Table 2.4-1 compares the Proposed Action and the No Action alternatives based on the purposes described in Chapter 1, Section 1.3, Purposes of Action. Purposes help decision-makers decide which alternative is the best alternative to meet the need. This information, combined with the environmental impacts associated with each alternative, forms the basis for a decision on which alternative to choose. **TABLE 2.4-1**Comparison of Alternatives | Durnagas | Dranged Action | No Action | |--|---|--| | Purposes | Proposed Action | No Action | | Acquire wind power to fulfill BPA's obligations under the Northwest Power Act regarding the acquisition of additional power generation resources and development of renewable energy resources | Purchasing power from the proposed project would help fulfill BPA's obligations | By not purchasing power from the proposed project, BPA would forgo this opportunity to acquire a wind power resource | | Further the objectives of the
President's National Energy Policy
to diversify energy sources by
making greater use of non-
hydroelectric renewable sources
such as wind power | Purchasing power from the
proposed project would help
further the President's National
Energy Policy | By not purchasing power from the
proposed project, BPA would forgo
this opportunity to further the
President's National Energy Policy | | Protect BPA and its customers against risk of power outages by diversifying BPA's energy supplies | Purchasing power from the proposed project would help diversify BPA's energy supplies, thereby helping to lower risk to BPA's customers | By not purchasing power from the proposed project, BPA would forgo this opportunity to diversify it's energy supplies | | Meet growing customer demand for energy from renewable energy resources | Purchasing power from the proposed project would help meet customer demand for renewable energy | By not purchasing power from the proposed project, BPA would forgo this opportunity to increase it's ability to meet customer demand for renewable energy | | Ensure consistency with the resource acquisition strategy of BPA's Resource Programs and Business Plan | Purchasing power from the
proposed project would be
consistent with the resource
acquisition strategy of BPA's
Resource Programs and Business
Plan | By not purchasing power from the proposed project, BPA would forgo this opportunity for a project that would be consistent with it's resource acquisition strategy | | Further the objective of BPA's PBL Strategic Plan to increase the amount of renewable energy resources under contract and to evaluate issues of integration and operation of wind resources | Purchasing power from the proposed project would increase the amount of renewable energy resources BPA has under contract and would help BPA to evaluate integration and operation issues | By not purchasing power from the proposed project, BPA would forgo this opportunity to help fulfill this objective | | Respond to the project developer's application to BPA for the purchase and transmission of power generated by wind turbines at the proposed Maiden Wind Farm site | Purchasing power from the proposed project would respond positively to the project developer's application to BPA to purchase and transmit power from the proposed project | Not purchasing power from the proposed project would respond negatively to the project developer's application to BPA to purchase and transmit power from the proposed project | # 2.5 Preferred Alternative BPA's preferred alternative is the proposed action to execute power purchase and construction and interconnection agreements to acquire and transmit up to 50 aMW of output from the project developer's proposed Maiden Wind Farm. The proposed project is the only alternative that meets the underlying need for the action and best meets the purposes of the action. #### **CHAPTER 3** # Affected Environment and Environmental Consequences ## 3.1 Introduction The sections in this chapter address the affected environment and the potential environmental impacts of the proposed Maiden Wind Farm and the No Action Alternative. The proposed project would be located primarily in Benton County, in the south-central part of Washington. A small portion of the project would be located in Yakima County, also located in the south-central part of Washington. The site is approximately 10 miles northeast of the town of Sunnyside and 15 miles north of Prosser, east of State Route 241 (Figure 2.1-1). The study area varies for each impact analysis and is defined under Study Methodology in each technical section of this chapter. The actual footprint of permanent project facilities, including roads, wind turbines, transmission line structures, substations, meteorological (met) towers, and operation and maintenance buildings, would occupy about 251 acres. The "project site" is the location of all permanent project facilities (the project footprint) in addition to all temporary facilities such as construction staging, laydown and turnaround areas, and quarries, and would include about 1314 acres. The project would be located along the ridges and southwestern slopes of the Rattlesnake Hills. Elevations in the study area range from about 2,600 to 3,600 feet above mean sea level. The study area includes portions of Sections 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 35, 36, Township 11 North (T11N), Range 24 East (R24E), and R25E in Benton County and portions of Sections 3, 10, 11, 12, 13, 23, 24, 25, 26, 35, 36, T11N, R23E in Yakima County. Sections 16, 36, T11N, R24E in Benton County are public lands managed by the Washington Department of Natural Resources (DNR). The remainder of the study area is on private land. The rolling fields and rangeland within the study area are used for cattle grazing and dryland wheat farming. Five rural residences are located in the eastern portion of the study area. The Hanford Reach National Monument, including the Fitzner-Eberhardt Arid Lands Ecology (ALE) Reserve, forms the northeastern boundary of the study area. BPA's 230-kilovolt (kV) Big Eddy-Midway and 500-kV John Day-Hanford transmission lines run from south to north across the western portion of the study area. BPA's Midway-Grandview 115-kV transmission line runs west of the study area. # 3.2 Land Use and Recreation # 3.2.1 Regulatory Framework Land use in the study area is guided by the *Benton County Comprehensive Land Use Plan* (Benton County, 2000) and *Plan 2015: A Blueprint for Yakima
County Progress* (Yakima County, 1997). Both county plans implement the planning requirements and goals of the 1990 Washington State Growth Management Act (GMA). Because the project requires a Conditional Use Permit (CUP) from both counties, it is subject to the requirements of the Washington State Environmental Policy Act (SEPA), which includes completion of this EIS. ### 3.2.1.1 Benton County In Benton County, power generation facilities in the GMA agricultural district, in which the proposed project would be located, require a CUP according to Benton County Zoning Ordinance 11.18.070.11. CUPs are issued provided that the facility is located in a manner that minimizes adverse impacts to agricultural productivity on adjacent lands. Benton County Zoning Code 11.52.090(d) requires the Benton County Board of Adjustment to determine if the proposed use: - Is compatible with other uses in the surrounding area or is no more incompatible than are any other outright permitted uses in the applicable zoning district. - Will not materially endanger the health, safety, and welfare of the surrounding community to an extent greater than that associated with any other permitted uses in the applicable zoning district. - Would not cause pedestrian and vehicular traffic associated with the use to conflict with existing and anticipated traffic in the neighborhood to an extent greater than that associated with any other permitted uses in the applicable zoning district. - Will be supported by adequate service facilities and would not adversely affect public services to the surrounding area. - Would not hinder or discourage the development of permitted uses on neighboring properties in the applicable zoning district as a result of the location, size, or height of the buildings, structures, walls, or required fences or screening vegetation to a greater extent than other permitted uses in the applicable zoning district. - Is not in conflict with the goals and policies expressed in the current version of the County's Comprehensive Plan. ### 3.2.1.2 Yakima County In Yakima County the project is defined as a power generating facility. Power generating facilities in agricultural districts are allowed only as a Type III conditional use. According to the Yakima County Zoning Code (15.12.040), approval of this use would be subject to the following conditions: - Material impacts of the development are mitigated, whether environmental or otherwise. - The development is compatible with existing neighboring land uses, assuring consistency with the intent and character of the zoning district involved. - Structures and areas proposed are surfaced, arranged, and screened in such a manner that they are compatible with and not detrimental to existing or reasonable expected future development, or resource uses. # 3.2.2 Study Methodology The study area for analysis of land use and recreation impacts included all land in Benton County and Yakima County approximately 1 mile from the project site (for land use) and 5 miles from the project site (for recreational opportunities). These distances are based on a general estimate of potential impact areas. Description and analysis of land use and recreation issues were based on a review of plans, maps, and land use documents; discussions with local agency staff; and a visit to the study area by a land use planner. Land use reference documents include the *Benton County Comprehensive Land Use Plan*, the *Benton County Zoning Ordinance* (Benton County, 1995), *Plan 2015: A Blueprint for Yakima County Progress*, and the *Yakima County Zoning Ordinance* (Yakima County, 2000). ### 3.2.3 Affected Environment The study area is characterized by an open rural landscape of rolling fields and rangeland interspersed with isolated farm buildings and a few rural residences. Overall population density is low. In both counties, the land on which the project facilities would be located is zoned as agriculture. ### 3.2.3.1 Zoning Zoning in the Benton County portion of the study area is GMA Agriculture with a 20-acre minimum lot size. The purpose of this designation is to conserve these lands for agricultural production. The *Benton County Comprehensive Land Use Plan* does not identify any future zoning changes. Zoning in the Yakima County portion of the study area is Agriculture with a 40-acre minimum lot size. The purpose of designating this designation is to preserve and maintain areas for the continued practice of agriculture and to permit only those new uses that are compatible with agricultural activities. No future zoning changes are expected in the study area. #### 3.2.3.2 Land Use All land in the study area has been designated by both counties for agricultural uses (Figure 3.2-1). Existing land uses in the study area are agricultural and include nonirrigated winter wheat and cattle grazing. Five residences and associated farm buildings are located in the eastern portion of the study area. Approximately 595 acres of land within the study area is currently managed as Conservation Reserve Program (CRP) land. The CRP is a federal program administered by the Natural Resource Conservation Service (NRCS). This program encourages farmers to convert highly erodible cropland or other environmentally sensitive acreage to vegetative cover such as native grasses, wildlife, trees, filter strips, or riparian buffers. Farmers receive an annual payment for participating in the multiyear program. Other land uses within the study area include transportation (county and private roads) and open space. The U.S. Department of Energy (DOE) Hanford Site is adjacent to the northern boundary of the study area and includes the Hanford Reach National Monument and the Fitzner-Eberhardt ALE. The project would be located on privately-owned land except for portions of two sections that are owned by DNR. Several private landowners own land on which the proposed project facilities would be located. Prime soils for agriculture occur throughout the study area. Prime soils are those that have sufficient depth, moisture, and nutrients to allow crops to achieve their maximum growing potential. Scoping comments raised a concern about a potential for land use conflicts with two research facilities located on the nearby DOE Hanford Site that are sensitive to seismic vibration and acoustic noise. The Laser Interferometer Gravitational-Wave Observatory (LIGO) is located approximately 11 miles east of the project site. The sensitive gravitational-wave astronomy equipment located at the LIGO facility must be isolated from ground vibrations and acoustic influences in order to measure gravitational waves (Sanders, 2000). The LIGO facility location was chosen for its exceptionally low levels of seismic noise and vibration, and the likelihood that these levels would remain low in the foreseeable future. The Battelle Gravitational Research Observatory (BGRO) also is located at the Hanford Site, approximately 6 miles northeast of the project site. The BGRO facility, located in an old NIKI missile bunker, contains sensitive equipment designed to measure extremely small movements and is very sensitive to ground vibrations (Boynton, 2001). Research at the BGRO facility is currently being conducted by staff from the University of Washington and the University of California Irvine. There are also several radio towers and communication facilities within the study area located along the ridgetop of the Rattlesnake Hills. #### 3.2.3.3 Recreation No designated or developed recreational facilities exist in the study area. The ALE is not open for general public use but is accessible for research studies and field trips through special use permits. Except for two sections of land owned by DNR, the majority of the study area is on private fenced land. The only identified recreational activity is hunting, which is allowed in some areas only with landowner permission. Other types of dispersed outdoor recreation, such as hiking, camping, wildlife observation, photography, and offroad vehicle use, may occur on private land with landowner permission. Beyond the study area, public park and recreation facilities exist in the communities of Sunnyside, Grandview, and Prosser. # 3.2.4 Impacts of the Proposed Action ### 3.2.4.1 Land Use and Zoning ### **Evaluation Criteria.** - Impacts to land use would be considered high (and significant) if the proposed project substantially impaired a current or planned land use, if it resulted in a change in overall land use patterns, or if it conflicted or was incompatible with permitted land uses or zoning ordinances. - Impacts to land use would be considered **moderate** if the proposed project resulted in a modest change in the current or planned land use, in overall land use patterns, or in a slight conflict with permitted land uses or zoning ordinances. - Impacts to land use would be considered low if the proposed project resulted in no noticeable changes in the current or planned land use, if it resulted in a minor change in overall land use patterns, or if it did not conflict with permitted land uses or zoning ordinances. ### **Construction Impacts.** Both Benton and Yakima Counties allow development of wind farms in agricultural districts, and wind turbines are considered compatible with agricultural uses. During construction of the proposed project about 1,063 acres of land would be altered (see Table 2.1-2), which would temporarily interfere with existing agricultural uses. Direct land use impacts from construction activities are anticipated to be moderate but temporary (lasting approximately 9 months). Construction of the project would not substantially or permanently impair land use, change overall land use patterns in the study area, or conflict with permitted land uses. Construction of facility foundations and gravel access roads would require concrete and gravel sources. Construction of the proposed new quarry site and associated concrete
batch plant would require a CUP and a mineral resources extraction permit from Benton County. While existing land use on the proposed 8-acre quarry site would be altered until the land recovered, this is a small portion of the land available for wheat farming and is a temporary change that would result in a low land use impact. The sensitive research facilities located on the Hanford Site could potentially be impacted by project construction activities (e.g., blasting for foundations, trenches, and quarry operations). It is estimated that these activities would only occur over the first half of the 9-month construction period. There could be as many as five to ten blasts per day, six days a week. However, each blast lasts less than a second. Due to the intermittent nature of these activities and the long distance of the proposed project from the sensitive research facilities, these activities would not be expected to substantially impair these land uses. Nonetheless, because there is the potential for an adverse effect to uses at the facilities, this impact would be considered moderate to high. **Mitigation**. To the extent possible, construction activities would be coordinated with landowners to minimize interference with agricultural uses. All areas impacted by temporary project facilities such as quarries, laydown areas, and staging areas, would be regraded and seeded as necessary to restore them as close as possible to their original condition and land uses. The Benton County Mineral Resources ordinance requires that the quarry site be compatible with existing land uses and that the site be restored as close as possible to its original condition when the quarry is closed. The LIGO and BGRO research facilities would be notified in advance of construction activities with the potential to cause significant vibration or noise. ### **Operation Impacts.** Project facilities (including roads) would result in permanent change in land use of about 251 acres of land from agriculture to energy production (see Table 2.1-1). Although the acreage converted for the project no longer would be available for agricultural use, it represents a relatively small portion of the agricultural acreage in the area owned by the landowners involved (approximately 2.5 percent) and a much smaller fraction of the total agricultural acreage in the counties. Current activities could continue in all areas except those occupied by the permanent footprint of project facilities, resulting in a low impact. Landowners, including DNR, would receive compensation for the use of their property through a lease agreement with the project developer. This steady source of income would increase and diversify overall farm income, creating a beneficial impact and helping to ensure continued agricultural viability. CRP contracts would be terminated on the acreage where permanent project facilities would be located. The project developer would convert the lease of these properties and withdraw the properties from the CRP program in coordination with the NRCS and landowners. The small area of land (less than 100 acres) that would be taken out of the CRP program would result in a low impact because proposed mitigation measures for vegetation and wildlife impacts include enhancing, protecting, and creating additional natural habitat on existing private lands, particularly CRP land, near the project site. Land use impacts associated with operation of the proposed project would be low because the project would not substantially or permanently impair land uses, change land use patterns, or be incompatible with existing uses or zoning ordinances. Beneficial impacts could occur from increased access provided by roads constructed or improved for the project. The scientific programs at the LIGO and BGRO facilities located on the Hanford Site could potentially be adversely impacted by seismic vibrations and acoustic noise from the operation of the wind turbines. Although such an impact is not expected due to the expected low levels of vibration that would be generated by the project and the distance between the project and these facilities, the levels of impacts are difficult to determine given the unique type of facilities. Completion of a seismic vibration study is required to determine the full impact of the project on the facilities. If operations at the facilities were substantially impaired, this would be considered a high and significant impact. It is not expected that the radio towers and communication facilities along the ridgetop of the Rattlesnake Hills would be impacted by the proposed project. However, there is a slight possibility that the placement of wind turbines or operation of electronic equipment associ- ated with the wind turbines could adversely affect these existing facilities. The developer is working with the owners of these facilities to determine if there would be a land use conflict. *Mitigation.* Wind turbines would be sited out of the signal paths of existing radio and telecommunications towers. A seismic study will be completed prior to construction to determine if operation of the proposed project would have a significant impact on the research facilities. Information from the study will be included in the Final EIS. ### **Decommissioning Impacts.** Upon decommissioning, land use impacts resulting from facility construction and operation would be largely reversible. Once facilities were removed, acreage taken out of agricultural use could be returned to agricultural use. An exception might be some of the access roads, which local landowners may wish to continue to use and maintain. No permanent land use impacts would result from decommissioning. ### 3.2.4.2 Recreation ### **Evaluation Criteria.** - Impacts to recreation would be considered **high** (and significant) if the proposed project substantially impaired an existing recreational use, or moderately impaired a recreational use experienced by a large number of people. - Impacts to recreation would be considered **moderate** if the proposed project resulted in a modest change in recreational opportunities. - Impacts to recreation would be considered **low** if the proposed project result in a minor change in recreational opportunities. ### Construction, Operation, and Decommissioning Impacts. Given the generally low population density of the area and the limited public lands, few recreational users would be anticipated near the proposed project site; therefore, impacts to recreational activities would be low. No designated public recreational facilities exist in the study area so no impacts would occur. Limited temporary impacts to private landowner-approved activities such as hunting or photography could occur during project construction, operation, and decommissioning; however, these impacts would be low. The ALE is not open for general public use and would therefore not be affected by the project. # 3.2.5 Impacts of the No Action Alternative Under the No Action Alternative, the project most likely would not be constructed and existing land and recreation uses would continue without the influence of the proposed project. However, this does not preclude other development allowed under permitted uses in the study area. If the project were not constructed, the region's power needs could be addressed through development of a gas-fired combustion turbine (CT), which could have greater impacts to land use depending on its location. BPA's Resource Programs EIS (RPEIS) shows that a CT generating 150 average megawatts (aMW) of power could use as much as 687 acres of land for gas extraction, transportation, and the generation plant itself. # 3.3 Vegetation # 3.3.1 Regulatory Framework Potential impacts to vegetation and wildlife habitat are regulated by a number of federal, state, and local laws. The regulations described below address federal and state special status species and other issues related to vegetation. - Clean Water Act, Section 404. Affects only federally listed wetland species within jurisdictional waters. See discussion in Section 3.8—Water Resources and Wetlands. - Endangered Species Act (16 USC § 1531 et. seq.). The ESA is the primary federal law directed at protection of species at risk of extinction and defines procedures for listing species, designating critical habitat for listed species, and preparing recovery plans. The ESA also specifies prohibited actions and exceptions. Responsibility for implementation and enforcement of the ESA lies with the USFWS for listed species of plants. Section 9 of the ESA prohibits "take" of endangered species, where take is defined as "harass, harm, hunt, shoot, wound, kill, trap, capture, collect, or attempt to engage in such conduct." Subsequent amendments to the law have extended the prohibition of take to include threatened species. There are no provisions under the ESA for compensating landowners who may have property or habitat occupied by endangered or threatened species. In addition to listing species as endangered or threatened under the ESA, the USFWS also identifies candidate species and species of concern. Candidate species are those species for which sufficient data have been gathered to allow the USFWS to propose listing the species. Species of concern are those species for which insufficient data have been gathered. Under Section 7 of the ESA, federal agencies are directed to consult with the USFWS if listed species are present in the vicinity of the agency's proposed action. If these species are present and there is potential for them to be affected by the project, the agency must prepare a Biological Assessment (BA) describing the potential effects. Although consultation with the USFWS is only required under the ESA for listed species, it is common practice to also consult with the USFWS if candidate species could be affected by a proposed action. Washington Department of Fish and Wildlife (WDFW) Regulations. In
Washington, state-listed plant species are not specifically protected by state statute or regulation, but are listed to assist with agency management efforts and decisionmaking. Species may be listed because of rarity, vulnerability to disturbance, or other factors. Washington Natural Heritage Program (WNHP) maintains a list of endangered, threatened, and sensitive plant species (Revised Code of Washington [RCW] 79.70.030). WDFW publishes a Priority Habitats and Species (PHS) list as a means of providing habitat and wildlife information to local governments, agencies, landowners, and tribes for land use planning purposes. The PHS list is a catalog of habitats and species considered priorities for conservation and management. Priority species require protective measures for their perpetuation due to their population status, sensitivity to habitat alteration, and/or recreational, commercial, or tribal importance. Priority species include state endangered, threatened, sensitive, and candidate species and those species of recreational, commercial, or tribal importance that are vulnerable. Priority habitats are those habitat types or elements with unique or significant value to a diverse assemblage of species. A priority habitat may consist of a unique habitat type or dominant plant species, a described successional stage, or a specific structural element such as a unique soil or ecological niche. - Washington Weed Law. In accordance with Revised Code of Washington (RCW) 17.10.080, a state noxious weed list of the names of those plants that are determined to be highly destructive, competitive, or difficult to control by cultural or chemical practices, is maintained by the state noxious weed control board (WAC 16-750). The list indicates where in Washington weed control will be required. Each county weed board is responsible for identifying and controlling noxious weeds and counties maintain their own noxious weeds lists. According to this list, there are three classes of noxious weeds in Washington: - Class A weeds are non-native species with a limited distribution in the state. Therefore, eradication of all Class A weeds is required by state law. - Class B weeds are established in some regions of Washington, but are of limited distribution or not present in other regions of the state. Because of differences in distribution, treatment of Class B weeds varies between regions of the state. - Class C weeds are already widely established in Washington or are of special interest to the state's agricultural industry. # 3.3.2 Study Methodology The 13,284-acre study area for priority habitats was defined by a map provided by the project developer and included all sections where project facilities would be located (see Figure 3.3-1). Vegetation in the study area was mapped according to "habitat types," which are considered to be the generally recognizable assemblages of plant species that occur in a pattern across the landscape (see Figure 3.3-1 for the study area boundaries). Habitat types were based on the dominant plant species. Habitat types in the study area were initially mapped using black and white aerial photography at a scale of approximately 1:20,000 obtained from the U.S. Geological Survey (USGS) National Aerial Photography Program and Benton County. General habitat types within the study area were distinguished and the aerial photographs were then taken to the field to be verified and refined (ground-truthed). All roads within and around the study area were driven to survey the habitat types. Some areas, such as steep hillsides and ravines, were covered on foot. Field-verified habitat types were transferred to the topological base map (scale approximately 1:24,000) for the project and then digitized using geographic information systems (GIS). Special status plant species that could potentially be found in the study area were determined by a review of available literature, contacts with federal and state agencies, and contacts with university and private botanists with local knowledge. Federal status plant species include plant taxa listed as endangered or threatened by the USFWS, plant species formally proposed for listing, and candidates for listing. State status plant species include taxa defined as "endangered," "threatened," "sensitive," "review," or "extirpated" by the Washington Natural Heritage Program (WNHP); and taxa on the WNHP "watch" list (i.e., species that are more abundant or less threatened in Washington than previously assumed). visually searched on foot. The survey corridors for special status plant species were designed to take in all ground potentially disturbed by the project, including all project facilities. For the turbine strings, the survey corridors included land within 165 feet of the centerline of the proposed turbine strings. In most cases, the surveyed corridors were 330 feet wide, although in many areas several project facilities located together resulted in a wider corridor. The 330-foot corridor width was designed to accommodate mapping inaccuracies and minor changes to the final locations of project facilities. Surveys were conducted from May 20 through June 6, 2001, and again on July 9, 2001, by two botanists. An additional late summer survey was conducted in late August for the federally-threatened Ute ladies'-tresses orchid (*Spiranthes diluvialis*), which is only identifiable at that time of year. The first survey was designed to locate all spring-identifiable species and cover the entire study area with the exception of cultivated wheat fields. The July survey was designed to locate certain special status species not identifiable in the spring. These were all species associated with riparian habitats, so the survey focused on the springs, seeps, and creeks of the study area (i.e., riparian habitats within 165 feet of the centerline of proposed facilities). ### 3.3.3 Affected Environment ### 3.3.3.1 Study Area Overview The Rattlesnake Hills lie within the center of the Columbia Basin Physiographic Province (Franklin and Dyrness, 1988). A "physiographic province" is a term commonly used by geologists to describe a region of similar geologic structures and climate, and whose pattern of topography differs significantly from that of adjacent regions. The ridgetops and southfacing slopes of the hills support shrub-steppe and grassland-steppe habitat. The term steppe refers to a vast semi-arid plain dominated by either shrubs (e.g., sagebrush) or grasses. The upper north face of the ridgeline and hill slopes and canyon side slopes support relatively lush shrub-steppe vegetation. Historically, the vegetation of the Columbia Basin Physiographic Province was dominated by shrub-steppe and grassland-steppe dissected by perennial and intermittent streams, some with springs, and scattered deciduous trees and shrubs. Much of the basin has been converted to agriculture. The study area has been previously classified within the Central Arid Steppe zone as defined by the Washington State Gap Analysis (Cassidy et al., 1997). The Central Arid Steppe zone typically contains plant communities dominated by big sagebrush (*Artemesia tridentata*), bluebunch wheatgrass (*Pseudoroegnaria spicata*), and Sandberg's bluegrass (*Poa secunda*), with the introduced species cheatgrass (*Bromus tectorum*) common in disturbed areas. Franklin et al. (1988) classifies the study area as within the big sagebrush/bluebunch wheatgrass vegetation zone. According to Franklin et al. (1988), other species common in this zone include rabbitbrushes (*Chrysothamnus* spp. and *Ericameria* spp.), threetip sage (*Artemesia tripartita*), spiny hopsage (*Grayia spinosa*), needle-and-thread grass (*Hesperostipa comata*), Thurber's needlegrass (*Achnatherum thurberianum*), Cusick's bluegrass (*Poa cusickii*), bottlebrush (*Elymus elymoides*), Sandberg's bluegrass, cheatgrass, and flatspine stickseed (*Lappula occidentalis*). From 1994 through 1999, The Nature Conservancy of Washington mapped and described potential vegetation communities on the Hanford Site, which is located adjacent to the study area to the northeast (Soll, 1999). The term "potential vegetation community" refers to the plant association thought to represent the climax community of a site (a climax community is a stable community of organisms in equilibrium with existing environmental conditions that represents the final stage of an ecological succession). Often, this climax community is not currently present at the site due to ongoing or past disturbance (e.g., fire, grazing, noxious species invasion). In the Rattlesnake Hills area, The Nature Conservancy study identified several potential vegetation communities, including big sagebrush/bluebunch wheatgrass, threetip sagebrush/Idaho fescue, buckwheat/Sandberg's bluegrass, and threetip sagebrush/bluebunch wheatgrass. Similar potential vegetation communities occur in the adjacent study area. ### 3.3.3.2 Existing Vegetation The study area consists of actively grazed rangeland dominated by shrub-steppe and grassland-steppe in the western portion, and areas of cropland (primarily wheat) in the eastern portion. Most of the springs in the study area have been modified for cattle use; limited natural riparian habitat occurs along streams. Vegetation in the study area has been disturbed and modified through crop production, livestock grazing, and other land uses such as transmission lines and communication towers and their associated roads. Habitat modification has taken place in some areas where cheatgrass and other non-native grasses have displaced native vegetation, especially in areas with deeper soils. Other disturbance factors in the general vicinity of the study area that have likely influenced the vegetation communities include herbicide use, chemical drift from cultivated fields, noxious weed invasion, road building and other activities related to farming and ranching, and changes in wildfire frequency and
extent. In certain limited portions of the study area, most notably the shallow-soiled buckwheat and Sandberg's bluegrass communities, native species are still dominant. ### **Existing Habitat Types.** The vegetation in the study area has been classified into seven habitat types: cropland, riparian, shrub-steppe, grassland-steppe, lithosol, rock outcrop/shrub, and wetlands. Each habitat type is described below. The habitat types are shown in Figure 3.3-1. Wetlands are further described in Section 3.8, Water Resources and Wetlands, and shown in Figure 3.8-1. Table 3.3-1 lists the habitat types used in this EIS and provides brief habitat descriptions. Habitat types were determined based on the dominant and co-dominant plant species. Habitat types varied in quality from site to site depending on the aspect, soil depth, percentage of non-native plants, and land use, all of which influence the extent of wildlife use within the habitat type. **TABLE 3.3-1**Habitat Types in the Maiden Wind Farm Study Area | Basic Type | Habitat
Type | Percent of
Study Area | Acres | General Habitat Description | |--------------|---------------------------|--------------------------|--------|--| | Agricultural | Cropland | 35 | 4619 | Current cropland or recently abandoned cropland; potential to support wildlife varies depending on season, crops grown, and plant density, structural diversity, and height. | | Riparian | Riparian | 1 | 135 | Vegetation located along drainages that require more water than upland vegetation. Most drainages in the study area are narrow and steep. Riparian vegetation includes an overstory of chokecherry, golden current, and/or red-osier dogwood in places, which provide potential habitat for nesting raptors when the trees are sufficiently large to provide nest platforms. Riparian areas with dense shrub/trees also provide cover for big game and other wildlife. | | Steppe | Shrub-
steppe | 32 | 4217 | Big sagebrush or threetip sage is dominant with a grass/forb understory. The potential to support wildlife varies depending on habitat quality (degree of grazing/weeds). | | | Grassland-
steppe | 31 | 4114 | Predominantly grassland (native and non-native grass species), and may have scattered sagebrush patches. Potential to support wildlife varies depending on habitat quality (degree of grazing/weeds). | | | Lithosol
habitat | 1 | 184 | Shallow-soiled habitat on ridgetops where native buckwheats and Sandberg's bluegrass dominate. Potential to support wildlife varies depending on habitat quality (degree of grazing/weeds). | | | Rock
outcrop/
shrub | <0.1 | 12 | Rocky outcrops and associated shrubs, including chokecherry and squaw current; giant wildrye often present. Potential feeding, perching, and nesting habitat for birds, and cover for game species and other wildlife. | | Wetlands | Emergent wetlands | <0.1 | 3 | Wetland habitat dominated by plants that tend to grow in wet areas; potential to support sensitive wildlife species varies depending on habitat quality (degree of grazing/weeds). | | Total acres | | | 13,284 | | *Cropland*. This habitat type consists of all lands within the study area used for the production of crops, primarily nonirrigated wheat. These areas provide limited low quality habitat for some common wildlife species. Cropland habitat is found in the eastern portion of the study area. **Riparian**. Riparian habitat includes those areas adjacent to streams, springs, and seeps within the study area. Riparian habitat is typically narrow and often confined within the steep walls of drainages. Tree and shrub species are common, though not continuous, in most riparian habitat. Common native tree and shrub species include chokecherry (*Prunus virginiana*), golden current (*Ribes aureum*), and red-osier dogwood (*Cornus stolonifera*) in the higher elevation riparian habitat, and black cottonwood (*Populus balsamifera* spp. *trichocarpa*) and various willows (*Salix* spp.) in the lower elevations. Common understory species include various rush species (*Juncus* spp.). Where trees are present, riparian areas can provide habitat for nesting birds, particularly raptors. Riparian areas in the study area are of high value to wildlife for water, food, and shelter throughout the year. They also serve as travel corridors for wildlife. **Shrub-Steppe**. Big sagebrush and/or threetip sage are the dominant shrub species in the shrub-steppe habitat. Big sagebrush is more common at the lower elevations in deeper soils, where in some areas it reaches 4 to 5 feet tall. Threetip sage is more common on the upper slopes in drier, shallower soils. Bluebunch wheatgrass and cheatgrass are the most common grasses associated with this habitat type; Idaho fescue, Sandberg's bluegrass, and Cusick's bluegrass also occur. Common forbs (i.e., nonwoody plants other than grasses) include longleaf phlox (*Phlox longifolia*), yarrow (*Achellia millifolium*), sulfur lupine (*Lupinus sulphureus*), and largeflower triteleia (*Triteleia grandiflora* var. *grandiflora*). Some areas of shrub-steppe habitat show evidence of recent burns. The condition of this habitat type in the study area, based on visual observation, ranges from poor quality (heavily grazed and weedy) to good quality (lightly grazed, vigorous shrubs) habitat. Shrub-steppe in the study area provides important habitat for many species; for example, deer and small game find escape cover, breeding habitat, and forage in the shrub-steppe. *Grassland-Steppe*. The grassland-steppe habitat encompasses those areas where grass species are dominant. Much of the grassland-steppe is dominated by cheatgrass; other common grass species found include non-native bulbous bluegrass (*Poa bulbosa*) and varying amounts of native grasses, such as bluebunch wheatgrass, Sandberg's bluegrass, and Idaho fescue. In some isolated moist areas, giant wildrye is dominant. Common native forbs include longleaf phlox and sulfur lupine. The grassland-steppe tends to occur at higher elevations and on steeper slopes than the shrub-steppe, and those areas where the soils tend to be shallower. Like the shrub-steppe, the grassland-steppe is subject to grazing, with habitat quality varying from poor to good. The grassland-steppe provides cover, breeding habitat, and forage for a variety of bird and wildlife species. *Lithosol.* The lithosol habitat is a subset of the grassland-steppe. Lithosol refers to areas of exposed shallow, rocky soils, as found along some areas of the ridgetop. In this habitat, various buckwheats (*Eriogonum* spp.) and Sandberg's bluegrass are dominant. Vegetative cover is sparse. This habitat provides limited value for birds and other wildlife. However, it likely receives occasional use by various birds, small mammals, and reptiles (e.g., shorthorned lizard). **Rock Outcrop/Shrub**. This habitat type is found on the upper steep, north-facing slope of Rattlesnake Hill. This habitat is limited in size, making up only a small portion of the total habitat in the study area. Dominant shrub species include the native chokecherry and squaw current. Although small in size, this habitat type provides habitat for nesting birds, including raptors, as well as food and shelter throughout the year. **Wetlands**. The wetland habitat type includes those areas that meet the U.S. Army Corps of Engineers' (ACOE) definition of a wetland and may be regulated by that agency (see Section 3.8 for further discussion of wetlands and their location in the study area). In the study area, six locations qualify as wetlands; five are associated with springs, and the sixth is located along Sulphur Creek where the existing western access road crosses the creek. All these wetlands are emergent wetlands dominated by herbaceous species. The wetland habitats are small in size (the largest is 0.23 acres, the others are 0.06 acres or less), and are heavily used by cattle as evidenced by trampled vegetation and congregations of cattle observed at the wetlands during a site visit. Common plant species associated with the wetlands include the native celery-leaved buttercup (*Ranunculus sceleratus*), yellow monkeyflower (*Mimulus guttatus*), speedwell (*Veronica anagallis-aquatica*), and non-native water-cress (*Rorippa nasturtium-aquaticum*). Although the wetlands receive heavy cattle use, they also provide important habitat for other species such as amphibians, songbirds, and bats. Game animals likely concentrate their activities near these watering sites at various times of the year. ### **Priority Habitats.** According to the WDFW, priority habitats are those habitat types or elements with unique or significant value to a diverse assemblage of species. A priority habitat may consist of a unique vegetation type or dominant plant species, a described successional stage, or a specific structural element. Priority habitats are discussed here as they relate to vegetation; additional information on priority animal species is provided in Section 3.4, Wildlife. Portions of shrub-steppe habitat in the study area were designated by the WDFW as a priority habitat based on the good to excellent condition of the shrub-steppe and because some areas are remnant shrub-steppe, mainly in draws, within croplands. However, because much of the shrub-steppe in the study area is of good quality and may meet WDFW criteria for priority habitat, all shrub-steppe habitat within the study area is considered priority habitat for this evaluation. These areas provide important habitat
for some raptors, game species, and possibly sage grouse. Priority habitat is also found along the ridgetops of the Rattlesnake Hills based on the stony soils (lithosols) and buckwheat/Sandberg's bluegrass communities (lithosol habitat type). The riparian corridor along Sulphur Creek is also considered priority habitat based upon its location within shrub-steppe habitat, including cliffs, rock outcrops, and talus, and the concentration of raptor nest sites (WDFW database). Sulphur Creek also has a fringe wetland associated with it (see Section 3.8, Water Resources and Wetlands). #### Noxious Weeds. The state of Washington designates three classes of weeds and each county maintains a noxious weed list based on the state classification. Placement on the noxious weed list allows counties to enforce control if locally desired. No Class A , B, or C noxious weeds were observed in the study area; however, one Class B species, perennial sowthistle, could occur, but positive identification could not be made during the timing of the field visits. Three species on the Benton County "Education List" (list of weeds for which the weed board will assist landowners with control) were found in the study area: Canada thistle (Cirsium arvense), bull thistle (Cirsium vulgare), and puncturevine (Tribulus terrestris). In addition to these weeds, several non-native species were observed and in some cases (e.g., cheatgrass) have taken over large areas. ### **Special Status Plant Species.** The pre-field review resulted in a list of 54 special status plant species with the potential to occur in the study area (Table 3.3-2). These species were searched for during the field surveys. These species include federal- and state-listed as well as review, extirpated, and watch list species determined by the WNHP. Although review, extirpated, and watch list species have no legislated protection, they are often a matter of public concern. For example, the Audubon Society has expressed concern about the project's effect on rosy balsamroot (a watch list species). In addition, for long-term projects such as this one, it is possible that the status of these species may be elevated prior to final permitting; by integrating these species into the initial surveys, a later assessment of project-related impacts for these species would not be necessary. It should be noted that unusually dry conditions were present during the spring of 2001, with lower than normal rainfall. This may have affected some of the survey's target species. In the case of certain perennial species, the dry conditions may have affected blooming times, seed set, or vegetative development. For the annuals, certain individuals may not have germinated at all during 2001. Although blooming times, seed set, or vegetative development may not have been typical during 2001, it is unlikely that the variations would have put the identification periods for any of the target species outside of the range of the surveys. The USFWS identified one federally-threatened species, Ute ladies-tresses, and one federal candidate species, Umtanum wild buckwheat, as having potential to occur in the project vicinity. Two federal candidates (basalt daisy and White Bluffs bladderpod) and five federal species of concern (Columbia milkvetch, gray cryptantha, Hoover's desert-parsley, Wanapum crazyweed, and Hoover's tauschia) potentially occur in the study area and were included in the survey based on information obtained from other sources. The WNHP reported no known occurrence records of special status plant species in the study area. However, they did note that several rare plant populations are known from the Hanford Site, adjacent to the study area. The field surveys did not locate any Ute ladies'-tresses in the study area. The federally-threatened Ute ladies'-tresses are found in open wetland and riparian areas, including spring habitats, moist to wet meadows, river meanders, and floodplains. They seem to require "permanent sub-irrigation," indicating a close affinity with floodplain areas where the water table is close to the surface throughout the growing season. They also require open habitats, and populations decline if trees and shrubs invade the habitat. They are not tolerant of permanent standing water, and do not compete well with aggressive species. In the study area, potential habitat for Ute ladies'-tresses was found at the five springs and the riparian area along Sulphur Creek, though the habitat in these areas was degraded from heavy cattle use. Individual plants may not flower in consecutive years or under adverse environmental conditions; however, because the habitat is degraded, it is unlikely individuals occur at these sites. Marginal habitat was also found for two federal candidate plant species: basalt daisy and Umtanum wild buckwheat. Basalt daisy, a federal candidate and state threatened species, is only known to occur in Kittitas and Yakima counties. This endemic species occurs as a single population within an area approximately 10 miles long by 2 miles wide (WNHP, 2000). It grows in crevices in basalt cliffs on canyon walls along the Yakima River and Selah Creek, both of which cut through the Yakima Basalt Formation. This habitat does not occur in the study area, and none were located during 2001 surveys. Umtanum wild buckwheat, a federal candidate and state endangered species, is endemic species that is only known to occur in one area in Benton County. The habitat of Umtanum wild buckwheat is the exposed tops of one ridgeline that is composed of basalt. The known elevational range of this species is 1,100 to 1,320 feet. Habitat for Umtanum wild buckwheat is not found in the study area and none were located during 2001 surveys. The survey located three state-level special status plant species: Columbia milkvetch (state threatened; federal species of concern), Snake River cryptantha (state sensitive), and Rickard's Idaho milkvetch (state Review Group 1 [R1]). In addition, two "watch list" species were found, rosy balsamroot and curvepod milkvetch. A watch list ranking means the species is more abundant and less threatened than previously thought. **TABLE 3.3-2**Federal and State Special Status Plant Species Potentially Occurring in the Study Area | Common Name and
Scientific Name | Typical Habitat | Status ¹ | ID Period ² | |--|---|---------------------|------------------------| | Federal Status Species | | | | | Columbia milkvetch Astragalus columbianus | sandy loam, gravelly soil, shrub-steppe | SoC
(State T) | Mar-May | | Gray cryptantha
Cryptantha leucophaea | shrub-steppe, dry open sandy areas | SoC
(State S) | May-Jun | | Basalt daisy
Erigeron basalticus | cliff crevices, rocky canyons | C
(State T) | May-Oct | | Umtanum desert buckwheat
Eriogonum codium | basalt gravel on cliff edges | C
(State E) | May-Aug | | White Bluffs bladderpod
Lesquerella tuplashensis | caliche soils in shrub-steppe | C
(State E) | May-Jul | | Hoover's desert-parsley Lomatium tuberosum | talus, basalt outcrops, rocky hills | SoC
(State T) | Mar-May | | Wanapum crazyweed Oxytropis campestris var. wanapum | lithosol, ridgetops | SoC
(State E) | May-Jun | | Ute-ladies'-tresses Spiranthes diluvialis | springs, seeps, riparian areas | LT
(State T) | Aug-Sep | | Hoover's tauschia Tauschia hooveri | sagebrush scablands | SoC
(State T) | Feb-Apr | | State Status Species (see above | for additional state status species) | | | | Constructed douglas' onion
Allium constrictum | shrub-steppe | S | May-Jul | | Grand redstem Ammannia robusta | wet soil, springs, seeps, riparian areas | R1 | Jul-Sep | | Palouse milkvetch Astragalus arrectus | shrub-steppe, grassy hillsides | S | May-Jun | | Rickard's Idaho milkvetch Astragalus conjunctus var. rickardii | shrub-steppe | R1 | May-Jun | | Geyer's milkvetch
Astragalus geyeri | dunes, sandy areas | S | Jun-Jul | | Pauper milkvetch Astragalus misellus var. pauper | shrub-steppe | S | May-Jun | | Curvepod milkvetch Astragalus speirocarpus | shrub-steppe | Watch | Apr-May | | Rosy balsamroot
Balsamorhiza rosea | open, rocky places in thin soils, frequently on ridgetops | Watch | Apr-May | | Rosy pussypaws Calyptridium roseum | shrub-steppe, swales | S | May-Jun | | Small-flower evening primrose
Camissonia minor | shrub-steppe, flood gravels | R1 | May-Jun | **TABLE 3.3-2**Federal and State Special Status Plant Species Potentially Occurring in the Study Area | Common Name and Scientific Name | Typical Habitat | Status ¹ | ID Period ² | |---|--|---------------------|------------------------| | Dwarf evening primrose Camissonia pygmaea | shrub-steppe, flood gravels | Т | May-Jul | | Naked-stemmed evening primrose
Camissonia scapoidea | shrub-steppe, sandy soil | S | May-Jun | | Dense sedge
Carex densa | riparian areas, wetlands, moist ground | S | Apr-Jul | | Porcupine sedge
Carex hystericina | marshy areas, wetlands, moist ground | S | May-Aug | | Chaffweed
Centunculus minimus | wet soil, river edges | R1 | Jun-Sep | | Bristle-flowered collomia Collomia macrocalyx | shrub-steppe | S | May-Jun | | Beaked cryptantha Cryptantha rostellata | shrub-steppe, talus, canyons | S | May-Jun | | Miner's candle Cryptantha scoparia | shrub-steppe | R1 | May-Jun | | Snake River cryptantha Cryptantha spiculifera | sage steppe, open slopes and flats | S | May-Jul | | Desert dodder Cuscuta denticulate | shrub-steppe | S | May-Aug | | Beaked spike-rush Eleocharis rostellata | stream edges, alkaline wetlands | S | Jun-Sep | | Giant helleborine Epipactis gigantean | stream banks, lakes, springs, seeps | S | Apr-Jul | | Piper's daisy
Erigeron piperianus | sage steppe, dry open areas | S | May-Jun | | Great Basin gilia Gilia
leptomeria | shrub-steppe | R1 | May-Jun | | Sagebrush stickseed
Hackelia hispida var. disjuncta | cliffs, talus | S | May-Jun | | Canadian St. John's-wort Hypericum majus | wet soil | S | Jul-Sep | | Inch-high rush Juncus uncialis | wet soil | R1 | Jun-Aug | | Awned half-chaff sedge Lipocarpha aristulata | wet soil | R1 | Jun-Sep | | Kalm's lobelia
Lobelia kalmii | wetlands, along shores | E | Jul-Aug | | Loeflingia
Loeflingia squarrosa var. squarrosa | sage-steppe, sandy areas | Т | May-Jun | | Suksdorf's monkey-flower
Mimulus suksdorfii | open, moist to dry places | S | Apr-Jun | | Nuttall's sandwort
Minuartia nuttallii var. fragilis | gravelly benches or talus | S | May-Aug | | Small-flowered nama Nama densum var. parviflorum | sandy areas, sage-steppe | R1 | Apr-Jun | | Coyote tobacco
Nicotiana attenuata | dry sandy bottoms, dry open places | S | Jun-Sep | **TABLE 3.3-2**Federal and State Special Status Plant Species Potentially Occurring in the Study Area | Common Name and Scientific Name | Typical Habitat | Status ¹ | ID Period ² | |--|--|---------------------|------------------------| | Caespitose evening-primrose Oenothera caespitosa ssp. caespitosa | road cuts, dry hills and talus slopes | S | May-Jul | | Long-tubed evening-primrose Oenothera flava | hard-packed soils, swales, vernal pools | Χ | Jul-Aug | | Brittle prickley-pear Opuntia fragilis | dry hillsides, open ground | R1 | May-Jun | | Winged combseed Pectocarya linearis | open dry places | R1 | Apr-May | | Hedgehog cactus Pediocactus simpsonii var. robustior | desert valleys, low mountains | R1 | May-Jul | | Fuzzytongue penstemon Penstemon eriantherus var. whitedii | foothills, sage-steppe | R1 | May-Jul | | Dwarf phacelia
Phacelia tetramera | alkaline flats and washes | R1 | May-Jun | | Austin's knotweed
Polygonum austiniae | dry to moist flats or banks | S | Jun-Aug | | Persistant-sepal yellowcress Rorippa columbiae | riparian shorelines, moist sandy soil, springs | Т | Jul-Oct | | Lowland toothcup Rotala ramosior | wet, swampy places | R1 | Jun-Sep | | Prairie cordgrass Spartina pectinata | ditches, ponds, freshwater marshes | S | Jun-Jul | Source: Eagle Cap Consulting, 2001 Notes: ¹Federal Status (U.S. Fish and Wildlife Service) - LT: Federal Listed Threatened. Taxa likely to be classified as Endangered within the foreseeable future throughout all or a significant portion of their range. - C: Federal Candidate. Taxa that are candidates for formal listing as Endangered or Threatened. - SoC: Federal Species of Concern. Available information supports tracking the status and threats to these species because of one or more of the following factors: negative population trends have been documented; habitat is declining or threats to the habitat are known; subpopulations or closely related taxa have been documented to be declining; competition or genetic implications from introduction of exotic species; identified as a species of concern by agencies or professional societies; in combination with any of the other criteria, information is needed on status or threats to these species. #### **Washington State Status** - E: State Endangered. Taxa that are in danger of becoming extinct in Washington within the near future if factors contributing to their decline continue. - T: State Threatened. Taxa that are likely to become Endangered in Washington within the near future if factors contributing to their decline continue. - S: State Sensitive. Taxa that are vulnerable or declining, and could become Endangered or Threatened in Washington without active management or removal of threats. - R1: State Review Group 1. Taxa for which there are insufficient data to support listing in Washington as Threatened, Endangered, or Sensitive. - X: State Extirpated. Taxa possibly extirpated from Washington. Watch: Washington Natural Heritage Program (WNHP) ranking; species is more abundant and less threatened than previously thought. ²ID Period: The normal peak period during which the species is identifiable in the field. Columbia Milkvetch (WA: Threatened; Federal Species of Concern). Three populations of Columbia milkvetch were found, all located at the extreme western end of the study area. For this evaluation, the term "population" is used to refer to a spatial grouping of all individuals of a particular taxon in a specific area or region at a certain time. The term is used to functionally separate occurrences of the particular taxon, and is not meant to imply complete genetic isolation of each distinct group. Typically, the population boundary was defined at the point where no more individuals of the particular taxon occurred for approximately 330 feet. The populations are located in rocky lithosol habitats along the main ridgetop and secondary ridges. An estimated total of 410 plants were found in the three populations, but only approximately 66 of these are located within the survey corridor. The total estimated area for all three populations is 10.4 acres, with 3.9 acres located in the survey corridor. In general, Columbia milkvetch is restricted to a limited geographic area within the arid steppe zone in Eastern Washington where it occurs in Yakima, Benton, and Kittitas Counties (WNHP, 1999). Nine populations are known from the Hanford Site, and the species appears to be relatively common on the Yakima Training Center and other areas within its limited range (Soll, 1999). Snake River Cryptantha (WA: Sensitive). Seven populations of Snake River cryptantha were found in the study area. Three of these populations overlap with the three Columbia milkvetch populations discussed above, while the remaining four were found farther east, off the main ridgetop. All seven populations are located west of the existing BPA transmission lines, in the western portion of the study area. Snake River cryptantha was found growing in similar habitat to Columbia milkvetch: shallow-soiled, rocky, ridgetop habitats. Rocks and bare ground make up a significant percentage of the ground surface in these habitats. A total of approximately 316 Snake River cryptantha plants were found in the seven populations, with more than half of those (approximately 176) occurring within the survey corridors. The total estimated area for all seven populations is 9.3 acres, with 2.4 acres located within the survey corridors. This species is a regional endemic, occurring only in central Washington, eastern Oregon, northeastern California, and northern Nevada, east into the Snake River Plain of Idaho, and western Montana. Four populations are known from the adjacent Hanford Site, with the largest containing several thousand plants. Rickard's Idaho Milkvetch (WA: Review Group 1). Rickard's Idaho milkvetch is a relatively new taxon to science, described in 1997 from the nearby Hanford Site. It was found throughout the study area, occurring in approximately 61 percent of the noncultivated survey corridor area. Because the taxon was so widespread and common within the study area, populations were not mapped where they extended outside of the survey corridors. Thirteen populations were recorded for Rickard's Idaho milkvetch, with several of the populations covering extremely large areas. Densities were highest along the main ridgetop, and generally sparser with decreasing elevation. In total, over 39,000 individuals were estimated to occur within the survey corridors, with tens of thousands more likely to occur adjacent to the corridors. Rickard's Idaho milkvetch was found growing in the deeper-soiled shrub-steppe habitats. The total estimated area for all populations within the study area is 926 acres. Of that number, approximately 73 acres contain high densities (greater than 1,000 individual plants per acre), 376 acres contain medium densities (between 50 and 1,000 individual plants per acre), and 194 contain low densities (less than 50 individual plants per acre). Prior to the surveys, Rickard's Idaho milkvetch was known from only two locations: one large population within the Hanford Site on Rattlesnake Mountain; and one small population in the Horse Heaven Hills area to the south (Soll, 1999). In addition, a single historical collection exists, dated 1917, from Wasco County, Oregon (Welsh et al., 1997). The Hanford Site population is large, containing several tens of thousands of plants. Due to its large size, the Hanford Site population remains incompletely mapped. **Rosy Balsamroot (WA: Watch List).** Rosy balsamroot was found scattered throughout many of the shallow-soiled lithosol plant communities running the length of the main ridge in the western half of the study area. The majority of individuals found during the spring survey were well past blooming, but the leaves, and occasionally the dried flower stalks, persisted. The habitat characteristics of the rosy balsamroot sites were similar to those described for the Columbia milkvetch sites. Approximately 4,600 total rosy balsamroot plants were found within the survey corridors along the main ridgetop. **Curvepod Milkvetch (WA: Watch List).** Two small populations of curvepod milkvetch were found along the existing access road near Sulphur Creek. The plant was found in upland, shrub-steppe habitat near the existing road. Most plants were at the fruiting stage during the time of the spring survey. A total of approximately 30 plants were found in the two populations. ## 3.3.4 Impacts of the Proposed Action ### 3.3.4.1 Evaluation Criteria - Impacts to vegetation would be considered **high** (and significant) if 10 percent or more of a priority habitat within the study area was destroyed, noxious weeds were spread to the site and not adequately controlled, a federally-listed (endangered, threatened, or candidate) plant species was taken without effective mitigation, or a state-listed (endangered, threatened, or
sensitive) plant species was impacted to the point it was elevated in status (e.g., from sensitive to threatened). - Impacts to vegetation would be considered **moderate** if 5 to 10 percent of a priority habitat within the study area was destroyed, noxious weeds were spread to the site but controlled, a federally-listed plant species was taken but the loss could be mitigated through habitat enhancement, translocation, or other measures approved by the USFWS, or if more than 50 percent of individuals of a state-listed plant species in the study area were damaged or destroyed, but did not result in elevation in status, or if a federal species of concern or state review group species were impacted to the point it was elevated in status (e.g., from review group to sensitive). - Impacts to vegetation would be considered low if less than 5 percent of a priority habitat within the study area was destroyed, there was no increase in the spread of noxious weeds, or if less than 50 percent of individuals of a federal species of concern or statestatus plant species in the study area were damaged or destroyed, with no impact on their status. ### 3.3.4.2 Construction Impacts Impacts from project construction activities would include: - Temporary removal of vegetation (project plans include re-seeding areas that are temporarily disturbed with native species) - Potential dispersal of noxious or invasive weed seeds by construction equipment entering the site - Potential erosion of disturbed soils. Long-term project impacts would include: - Replacement of vegetative cover with project facilities - Potential increase in noxious and invasive species - Potential soil erosion. Estimates of temporary and long-term disturbance in the various habitat types are shown in Table 3.3-3. One of the seven habitat types in the study area would not be directly impacted by project facilities: rock outcrop/shrub. This type occurs in small isolated pockets on the north slope of Rattlesnake Hills and no project facilities would be located there. There would be potential impacts to wetlands and riparian areas. Potential impacts to the wetland adjacent to Sulphur Creek would occur due to widening of the existing access road (see Section 3.8, Water Resources and Wetlands). No turbines, buildings, or staging areas have been proposed in riparian habitat types, but impacts would occur from access roads that cross riparian corridors. The riparian habitat associated with Sulphur Creek is considered priority habitat and is discussed below. Approximately half of the proposed facilities would be located in agricultural areas. While some cropland and rangeland would be lost to project facilities, crop production and grazing could continue up to and around the facilities. The remaining half of the facilities would be located in grassland-steppe, shrub-steppe, and lithosol habitats. **TABLE 3.3-3** Estimated Disturbance to Vegetation by Habitat Type | Type of Impact ¹ | Estimated Ground Disturbance (acres) | |-----------------------------|---| | Permanent | 98.3 | | Temporary | 416.3 | | Permanent | 0.7 | | Temporary | 1.3 | | Permanent | 57.5 | | Temporary | 174.4 | | Permanent | 57.2 | | Temporary | 187.0 | | Permanent | 12.2 | | Temporary | 50.9 | | | Permanent Temporary Permanent Temporary Permanent Temporary Permanent Temporary Permanent Temporary | **TABLE 3.3-3** Estimated Disturbance to Vegetation by Habitat Type | Habitat Type | Type of Impact ¹ | Estimated Ground Disturbance (acres) | |--------------------|----------------------------------|--------------------------------------| | Rock Outcrop/Shrub | Permanent | 0.0 | | | Temporary | 0.15 | | Wetlands | Permanent | 0.0 | | | Temporary | 0.05 | | | Total Permanent Habitat Impacted | 226 | | | Total Temporary Habitat Impacted | 830 | ¹Tables 2.1-1 and 2.1-2 in Chapter 2 show the area to be occupied by permanent and temporary project facilities. The total acres of disturbance shown on those tables is greater than shown above because some project facilities overlap. For example, underground cable lines and overhead power lines overlap roadway shoulders so the total habitat area disturbed would likely be smaller than the area indicated on the tables in Chapter 2. ### **Priority Habitats.** For this evaluation, all shrub-steppe and lithosol habitats were considered to meet the WDFW criteria for priority habitats, along with riparian habitat along Sulphur Creek. If the full project is built, approximately 57.5 acres of shrub-steppe would be permanently displaced by project facilities and 174.4 acres temporarily impacted by project construction activities (Table 3.3-3). The total 231.9 acres represents about 5.5 percent of the shrub-steppe habitat in the study area so temporary construction impacts would be moderate. Because 57.5 acres represents approximately 1.3 percent of the shrub-steppe habitat in the study area, long-term impacts from project construction would be considered low. Approximately 12.2 acres of lithosol habitat would be permanently impacted and 50.9 acres temporarily impacted by project facilities (Table 3.3-3). The total 63.1 acres represents about 34.3 percent of the lithosol habitat in the study area so temporary construction impacts would be high. Because 12.2 acres represents approximately 6.6 percent of the lithosol habitat in the study area, long-term impacts from project construction would be considered moderate. The existing access road from the west parallels the riparian priority habitat associated with Sulphur Creek. Improvements to this existing access road would be planned as part of the proposed project. Impacts to this priority riparian habitat would be low because less than 5 percent of the habitat would be impacted by improvements to the existing access road. #### **Noxious Weeds.** Most noxious and invasive species are aggressive pioneer species that have a competitive advantage over other species on disturbed sites. Therefore, all areas disturbed by the project are potential habitat for noxious and invasive species, particularly for those species previously observed or known to occur in the study area. The introduction of new noxious species from other areas can occur from construction equipment, other vehicles, and worker's boots transporting seeds onto the project site. Once established in an area, negative impacts can include the following, depending on the species, degree of invasion, and control measures: - Loss of wildlife habitat - Alteration of wetland and riparian functions - Reduction in livestock forage and crop production - Displacement of native plant species - Reduction in plant diversity - Changes plant community functions - Increased soil erosion and sedimentation - Control and eradication costs to local communities - Reduction in land value (Sheley et al., 1998). Noxious weed impacts are difficult to predict and are largely dependent on control measures implemented during and after construction. If noxious weeds were spread to the site and not adequately controlled, impacts would be considered high. If noxious weeds were spread on the site but controlled, impacts would be considered moderate. If no increase in the spread of noxious weeds resulted from construction or operation of the project, impacts would be considered low. ### Special Status Species. Five special status plant species were found in the survey area: one federal species of concern/state threatened, one state sensitive, one state Review Group 1, and two WNHP watch list species. Potential impacts to these species are discussed below. Columbia Milkvetch (WA: Threatened; Federal Species of Concern). Ground disturbance related to construction of the proposed project would cause direct adverse impacts, including destruction of Columbia milkvetch individuals if they are located in areas to be disturbed. Within the study area, Columbia milkvetch occurs only at the extreme western end. Although the three populations total approximately 410 plants, only an estimated 66 plants are located within the survey corridor. Because only a portion of the survey corridor would receive impacts from the proposed project, less than half of these 66 plants would be expected to be directly impacted. This number represents 8 percent of the total individuals contained in the three populations. In addition to direct impacts from ground-disturbing activities, the proposed project also has the potential to indirectly impact Columbia milkvetch if degradation of habitat in the area were to occur through the introduction and spread of noxious weeds and other non-native species. Although little is known about how Columbia milkvetch responds to competition from non-native species, it can be assumed that significant increases in non-native species in the area would be detrimental to the species. At the present time, the habitat along the ridgetop where Columbia milkvetch is found is relatively intact. Native species predominate at the milkvetch sites, and few noxious weeds are present. If the project were to lead to the degradation of these ridgetop communities by increasing noxious weed densities, it is likely that some level of adverse impact to the Columbia milkvetch populations would occur. Direct impacts to Columbia milkvetch populations would likely be low. With implementation of a weed control plan, indirect impacts (from increase in the density of non-native species and changes in fire frequency patterns) would not be expected to reach a level where any of the three Columbia milkvetch populations within the study area would be adversely affected. Therefore, the project would not jeopardize the continued existence of any Columbia milkvetch population, or contribute to the need for federal listing of the species. **Snake River Cryptantha (WA: Sensitive)**. Within the study area, seven populations of Snake River
cryptantha are known. Permanent and temporary ground disturbance related to project construction would directly impact some individuals. Because the populations vary both in size and spatial relationship to the survey corridor, likely ground disturbance impacts to each of the populations are slightly different. In total, of the 316 individual plants in all seven populations, less than 87 (28 percent) would be expected to receive direct impacts, including destruction of some individuals, from ground disturbance during construction. Because final project facilities placement has not been determined, the exact number of plants likely to be impacted could be higher or lower than the predicted figure. Impacts would be expected to remain below 50 percent of individuals so impacts would be considered low. Proposed project activities have the potential to indirectly impact Snake River cryptantha populations through the introduction and spread of noxious weeds. Observational evidence suggests that Snake River cryptantha does not tolerate a high level of direct competition with other plant species (WNHP, 1999). In addition, all of the habitats in which it was found within the study area were relatively intact, with few non-native species. This would suggest that if the project were to significantly increase the noxious weed densities, it would have an adverse effect on the species. The extent and severity of this impact is difficult to gauge, but, given the limited numbers and population extent found in the area, the project could result in adverse impacts to one or more populations. This would be considered a low impact. The project would be expected to have low direct impacts on the Snake River cryptantha populations. Implementation of a weed control plan would minimize indirect impacts (resulting from noxious weed increases or fire frequency changes) that could lead to the degradation or destruction of any Snake River cryptantha population. The proposed project would not be anticipated to jeopardize the continued existence of any Snake River cryptantha population, or contribute to the need for federal listing of the species, so impacts would be low. **Rickard's Idaho Milkvetch (WA: Review Group 1).** Because this species is so widespread within the study area, it was not feasible to map the exact boundaries of the populations. One population extended along much of the main ridge and down the slope. It contained over 31,000 individuals within the survey corridors alone, with many times that number thought to occur between the corridors. It is possible that many of the recorded populations may actually connect up as one population outside of the survey corridors, or even connect with the Hanford Site population further along the Rattlesnake ridgeline. Direct impacts to Rickard's Idaho milkvetch would be low. It is anticipated that no more than 11 percent (19,500 individuals) of the predicted population in the immediate area would be directly impacted. It is not anticipated that the loss of less than 11 percent of the population would significantly jeopardize the continued existence of the local population of Rickard's Idaho milkvetch. It was found vigorously growing throughout a variety of study area habitats, and would likely continue to thrive in the area even with the direct impacts predicted from the proposed project. Indirect impacts to Rickard's Idaho milkvetch would be low. The proposed project has the potential to indirectly impact Rickard's Idaho milkvetch populations through the introduction and spread of noxious weeds. Although little is known about how Rickard's Idaho milkvetch responds to competition from non-native species, observational evidence suggests that the species may be adversely impacted. The highest densities of Rickard's Idaho milkvetch were generally found in the least disturbed portions of the study area. While individual plants were also found in some of the more degraded habitats (i.e., in the vicinity of heavy concentrations of cheatgrass), Rickard's Idaho milkvetch densities in these habitats was typically low. While this observed correlation may be due to other factors, it is safest to assume that increased noxious weed densities would have an adverse effect on the species. Because the populations of Rickard's Idaho milkvetch cover most of the study area, it would not be feasible for the project to avoid all direct impacts to the species. In most cases, relocating a particular facility to avoid known Rickard's Idaho milkvetch individuals would impact other individuals in the new corridor. However, the proposed project would have a low direct impact on the local population because it is so widespread in the study area. With implementation of a weed control plan, indirect project-related impacts (resulting from changes in fire frequency or increases in noxious weeds) would not be expected to adversely affect the local population. While some individuals could be affected by these changes if they occurred, the majority of the local population would likely remain unaffected. *Watch List Species*. Impacts to state watch list species would be low. Ground disturbance related to construction would likely directly impact some individuals of the two state watch list species, rosy balsamroot and curvepod milkvetch. While individual plants would likely be impacted, the proposed project would not be expected to result in a change of status of these species because these species are abundant in the study area and the number likely to be impacted would be low. The status of these species on the watch list indicates that they are more abundant than previously thought. ### Mitigation. The following mitigation measures would be implemented to reduce impacts to vegetation (see Section 3.8 for mitigation related to wetland impacts): - Total acres of steppe habitat types removed or damaged as a result of project construction would be replaced or enhanced in similar proportions at a ratio of 3:1 (3 acres enhanced or replaced for each acre impacted) either by enhancing local CRP lands to facilitate their recovery to high-quality steppe habitat, or by creating steppe habitat from nearby agriculture lands by reclaiming them with native grass and shrub species. In selecting mitigation areas, priority may be given to areas with remnant lithosol habitat, as lithosol is extremely difficult to replicate, as well as areas that would best enhance reproductive rates of wildlife species likely to be impacted by the project. Any enhanced or replacement acres would be protected for the life of the project from development, grazing, or conversion to other habitat types. - Prior to the start of construction, a Site Management Plan Team (SMPT) would be convened to prepare a Site Management Plan (SMP). The SMPT would include representatives from the USFWS, WDFW, DNR, BPA, county representatives, landowners, and the project developer. The role of the SMPT would be to 1) protect the natural and agricultural resources identified in this EIS during construction by minimizing the areal extent and pattern of construction activities to that necessary for the efficient conduct of construction operations; 2) protect sensitive and unique species and habitats; and 3) assure the effective implementation of the standard design and construction measures proposed as part of the project, as well as mitigation measures included both during and post-construction. The SMP would include provisions for: - the siting of towers to minimize impacts on lithosol and rare plant communities; - the design and implementation of a fire management and erosion control program/procedures; - the location and physical marking of the boundaries of project storage and staging areas and soil deposition sites; - procedures to keep the site clean daily of unconstrained project waste and toxics (petroleum products, paper, cans, materials remnants etc.) designate areas, and provide facilities and procedures for safe storage of toxic and hazardous substances; - minimizing the extent of construction related roads and access routes; - methods of delineation and marking (i.e. fencing, taping flagging) off-limit areas such as sensitive plant communities; - size, location, and type of offsite habitat enhancement/replacement for the estimated 57.5 acres of shrub-steppe and 12.2 acres of lithosol permanently impacted by the project; - selecting recipient sites, restoration plans, and protocols for the estimated 174.4 acres of shrub-steppe and 50.9 acres of lithosol habitat that would be temporarily impacted by project construction activities; - route project access roads to avoid, where possible, adverse impacts to sensitive vegetation, including wetlands; - education of the construction work force relative to respecting and adhering to the physical boundaries, off-limit areas, fire and weed prevention measures, etc., of the SMP; - a weed control plan with protocols and procedures, vehicle cleaning and parking locations, etc., for minimizing the introduction of weed species to the construction site; - a complete site plan for the SMP would be laid out (fenced, flagged, taped with use areas designated) on the ground prior to the start of construction of any phase of the project. - At the start of construction, the SMPT would be superceded by an SMP monitor who would be at the project site daily during construction activities. The monitor would be approved by the SMPT and contracted by Benton County with funds provided by the project developer. The monitor's principal role would be to ensure adherence to the provisions of the SMP and keep a daily record of activities, decisions, etc., relating to that objective. SMP issues that arise during construction that cannot be resolved onsite (e.g., interpretation, unforeseen problems, adjustments of boundaries) would be resolved between the county and the project developer with technical expertise from the appropriate SMPT
representative when needed. - Prior to construction, a noxious weed control plan would be developed in consultation with local county weed control boards, and the plan would be implemented over the life of the project. The plan would address specific measures such as: - Clean construction and transport vehicles prior to bringing them to the project site. - Revegetate habitats temporarily disturbed during construction as quickly as practicable with native species to minimize habitat (disturbed areas) for noxious weed invasion. It may be appropriate to initially spray the area to kill newly emerged weeds and then reseed or replant with native species. The revegetation plan would be submitted to the SMPT (see below) for comment. - Actively control noxious weeds that have established themselves. Coordinate with the local county weed control boards regarding what control measures are most effective and coordinate with the appropriate agencies on how to avoid impacts to special status plants as a result of weed control measures. - During project construction, best management practices would be employed to reduce impacts to adjacent vegetation and habitats and to minimize the construction footprint to the extent possible. - As required by the SMPT, prior to construction, the population boundaries of special status plants would be flagged or fenced to facilitate avoidance, and construction personnel would be instructed to completely avoid these marked areas. During construction, the SMP monitor would inspect the populations to confirm that flagging and/or fencing is intact, and that construction activities avoid these sites to the extent possible. - Final facility design would be reviewed prior to construction, and any proposed disturbance areas that lie outside of the vegetation survey corridors would be surveyed for special status plants during the appropriate season. ### 3.3.4.3 Operation Impacts Impacts to vegetation as a result of operation of the project would likely be low. Vehicles would travel on established roadways and maintenance activities would take place at the wind turbines or at the operation and maintenance buildings and gravel substation sites. Vehicles and workers could introduce and/or spread noxious weeds in the study area. The level of impact would be low with implementation of a weed control plan. ### 3.3.4.4 Decommissioning Impacts Impacts from decommissioning the project would be similar but lower than those for construction, assuming that all access roads remained in place. Decommissioning vehicles would travel on established roadways, which would not impact vegetation, except for the possible introduction and/or spread of noxious weeds. Vegetation around project facilities to be removed would likely be impacted to the same extent as described for construction. Similarly, if the landowners requested that access roads be removed, impacts would be similar to those for construction. All facilities would be removed to a depth of 3 feet below grade and the soil surface would be restored as close as possible to its original condition, or to match the current land use. Reclamation procedures would be based on site-specific requirements and techniques commonly employed at the time the area would be reclaimed, and would likely include regrading, adding topsoil, and revegetating all disturbed areas. Decommissioned roads would be reclaimed or left in place based on landowner preference. ## 3.3.5 Impacts of the No Action Alternative Under the No Action Alternative, the existing conditions would remain unchanged by the proposed project. Other generation facilities would likely be constructed and operated in the region, most likely gas-fired CTs. The construction of a gas-fired turbine generator, the development and extraction of natural gas, and the construction of gas pipelines to provide fuel to the generating facility could use as much as 687 acres for an equivalent amount of power. The significance of such impacts to priority habitats and special status plant species would depend on the location and design of the facility. # 3.4 Wildlife # 3.4.1 Regulatory Framework Wildlife, special status species, and wildlife habitat are regulated by several federal and state laws as described below. - **Fish and Wildlife Coordination Act.** The Fish and Wildlife Coordination Act (16 *U.S. Code* [USC] 661 et. seq.) requires federal and state agencies to consult with the USFWS, National Marine Fisheries Service (NMFS), and state wildlife agencies regarding activities that impact, impound, or modify public waterways. Under the act, USFWS and NMFS are responsible for project review and consultation for projects in which water diversions or water body modifications are proposed. This includes addressing concerns about plant and wildlife species that may not be considered under the federal Endangered Species Act (ESA). - Migratory Bird Treaty Act. The Migratory Bird Treaty Act (MBTA) was passed in 1918 with the purpose of ending commercial trade in birds and their feathers. In general, all migratory as well as most nonmigratory birds in the U.S. are protected under the Act. Under the MBTA, it is unlawful to take, import, export, possess, buy, sell, purchase, or barter any migratory bird, feathers or other parts, nests, eggs, and products made from migratory birds. Take is defined as pursuing, hunting, shooting, poisoning, wounding, killing, capturing, trapping, or collecting. - Endangered Species Act (16 USC § 1531 et. seq.). The ESA is the primary federal law directed at protection of species at risk of extinction. Responsibility for implementation and enforcement of the ESA lies with the USFWS for listed species of wildlife, resident fish, and plants, and with the NMFS for listed anadromous fish and marine wildlife. Section 9 of the ESA prohibits "take" of endangered species of fish or wildlife, where take is defined as "harass, harm, hunt, shoot, wound, kill, trap, capture, collect, or attempt to engage in such conduct." Subsequent amendments to the law have extended the prohibition of take to include threatened species. There are no provisions under the ESA for compensating landowners who may have property or habitat occupied by endangered or threatened species. In addition to listing species as endangered or threatened under the ESA, the USFWS also identifies candidate species and species of concern. Candidate species are those species for which sufficient data have been gathered to allow the USFWS to propose listing the species. Species of concern are those species for which insufficient data have been gathered. Under Section 7 of the ESA, federal agencies are directed to consult with the USFWS if listed species are present in the vicinity of the agency's proposed action. If these species are present and there is potential for them to be affected by the project, the agency must prepare a Biological Assessment (BA) describing the potential effects. Although consultation with the USFWS is only required under the ESA for listed species, it is common practice to also consult with the USFWS if candidate species could be affected by a proposed action. Washington Department of Fish and Wildlife Regulations (WAC 232-12-297). In Washington, state-listed animal species are not specifically protected by statute or regulation, but are listed to assist with agency wildlife management efforts and decisionmaking. Species may be listed because of rarity, vulnerability to disturbance, or other factors. WDFW maintains and publishes a PHS list and a Species of Concern list as a means of providing habitat and wildlife information to local governments, agencies, landowners, and tribes for land use planning purposes. The PHS list is a catalog of habitats and species considered priorities for conservation and management. Priority species include state endangered, threatened, sensitive, and candidate species; animal aggregations considered vulnerable; and those species of recreational, commercial, or tribal importance that are vulnerable. Priority habitats are those habitat types or elements with unique or significant value to a diverse assemblage of species. A priority habitat may consist of a unique vegetation type or dominant plant species, a described seral (successional ecological community) stage, or a specific structural element such as a unique soil or ecological niche. The Species of Concern List, published by the WDFW Wildlife Management Program, includes native Washington fish and wildlife species that are listed as endangered, threatened, or sensitive, or as candidates for these designations. Endangered, threatened, and sensitive species are legally established in Washington Administrative Codes. Candidate species are established by WDFW policy. Bald Eagle Protection Act (16 USC § 668-668d, 54 Stat. 250). The Bald Eagle Protection Act was passed in 1940 to protect bald eagles and was later amended to include golden eagles. Under the act it is unlawful to import, export, take, sell, purchase, or barter any bald eagle or golden eagle, their parts, products, nests, or eggs. Take includes pursuing, shooting, poisoning, wounding, killing, capturing, trapping, collecting, molesting, or disturbing eagles. • Benton and Yakima County Critical Areas Ordinances. Title 15 of the Benton County Ordinance and Title 16A of the Yakima County Ordinance provide county level protection of critical areas and resources. Critical areas and resources include wetlands, rivers and creeks, critical aquifer recharge and interchange areas, frequently flooded areas, geologically hazardous areas, and fish and wildlife conservation areas. Fish and wildlife conservation areas identified in Title 15 of the Benton County Code include Washington State Natural Areas Preserves and Natural Resource Conservation Areas, and WDFW Priority Habitats. The county ordinances provide guidelines for protecting and mitigating impacts to these areas. ## 3.4.2 Study
Methodology ### 3.4.2.1 Study Area Two study areas were used for different aspects of the baseline biological investigations, depending on the resource of concern. The primary study area was the proposed location of wind turbines and associated facilities (e.g., roads, met towers, substations, operation and maintenance facilities), including a buffer of approximately 1 mile from all project facilities. This area is referred to as the study area throughout this section. The 1-mile buffer zone was included to assist in addressing potential direct and indirect impacts to wildlife species and habitat for species that have home ranges likely to extend beyond the boundary of the project site. The avian use surveys, vegetation mapping, and general wildlife observations took place within the study area. The second study area, called the raptor nesting area (RNA), was surveyed by helicopter for raptor and other large bird nests. This area included a 5-mile buffer around the project site to survey for nesting raptors that could be affected by the proposed project. The 5-mile buffer was selected to cover the typical home range for most raptors. ### 3.4.2.2 Information Review Information about wildlife and threatened and endangered species potentially occurring in the study area was obtained from the USFWS, WDFW, and WNHP. In addition, background information was obtained from scientific literature, internet resources, technical reports, natural resource databases, and resource experts. The WNHP and WDFW priority habitats databases were used to gather site-specific information about special status species (federal or state endangered, threatened, or candidate, or federal species of concern). A species list of federal special status species was solicited from the USFWS. The WDFW Species of Concern list was queried for state special status species potentially occurring in the study area (WDFW, 2000). In addition, the Biodiversity Inventory and Analysis of the Hanford Site, the WDFW Web page, and the Washington State Breeding Bird Atlas were reviewed for information about special status species in the project vicinity. ### 3.4.2.3 Field Surveys An avian baseline study is currently being conducted in the study area to collect specific information regarding wildlife and avian resources within and around proposed project facilities. An interim technical report containing additional details regarding the results of the field surveys is available for review at BPA or the Benton County Planning and Building Department on request. Table 3.4-1 summarizes the field surveys conducted for the avian baseline study that addressed wildlife and their habitat, either directly or peripherally. TABLE 3.4-1 Summary of Field Surveys | Date | Nature of Survey | | | | | | |------------------------------------|---|--|--|--|--|--| | 4/01 – current | Avian Use Surveys: Emphasis on locating raptors and other large birds; point count surveys at eight permanent (fixed) plots; half-mile radius observation plot. | | | | | | | 5/01, 6/01, 7/01 | Paired plot bird surveys: Emphasis on recording breeding passerines; point count surveys at 15 paired plots 985 feet apart (30 total plots). | | | | | | | 4/30 – 5/02/01 and
6/18 – 19/01 | Raptor nest survey: Surveys conducted by helicopter to locate raptor and large bird nests visible from the air; survey area included a 5-mile radius of the site. | | | | | | | 5/21 – 25/01 | General vegetation mapping: Ground-truthing of plotted vegetation types from Benton County aerial photos. | | | | | | | 4/01 – current | General wildlife observations: Conducted while on site during other surveys. | | | | | | Field surveys in the study area included weekly point counts for raptors and all birds, point count breeding season bird surveys monthly from May to July, raptor nest surveys, general vegetation mapping, and general wildlife observations. In addition to the avian study, rare plant surveys and wetland investigations were also conducted and provided additional information on study area habitats (see Sections 3.3, Vegetation, and 3.8, Water Resources and Wetlands). The field surveys were designed to record avian species seen on the site and provided opportunity for observing and recording other fauna such as mammals and reptiles. The vegetation mapping provided a list of habitat types in the study area. Habitat types were cross referenced with habitat preferences and known distribution of special status species to determine potential for their occurrence in the study area. Data collected from the field surveys were compiled and analyzed to address specific questions about bird use of the study area. A summary of the major findings from the spring, summer, and fall surveys, and potential impacts to wildlife and special status species is provided in the following sections. The results of the winter surveys will be incorporated into the final technical report and into the Final EIS. ### 3.4.3 Affected Environment The proposed project would be located in the Columbia Basin Physiographic Province. Historically, the basin's vegetation was dominated by shrub-steppe and grassland-steppe dissected by perennial and intermittent streams, some with springs, and associated riparian corridors of deciduous trees and shrubs. Much of the basin has been converted to agriculture. The study area consists of rangeland dominated by shrub-steppe and grassland-steppe that varies from poor to high quality habitat for wildlife. The study area is grazed by livestock (cattle) and receives some human disturbance in the form of recreation (hunting) and facilities (power lines, radio towers) maintenance. Parcels in the eastern portion of the study area are being actively farmed, primarily in wheat fields. There is one perennial stream in the study area, Sulphur Creek, which has its source in Sulphur Spring. Along the lower reaches of Sulphur Creek there is cottonwood riparian habitat. Ephemeral drainages associated with springs scattered along the south flank of Rattlesnake Ridge, are tributaries of Sulphur Creek. Water from these springs does not extend far along the tributaries before it dries up or goes underground. Maiden Spring and Lower Maiden Spring have been developed for livestock watering. There are also several springs scattered along the north flank of Rattlesnake Ridge. See Section 3.8, Water Resources and Wetlands, for a more detailed discussion of wetlands and waterways. ### 3.4.3.1 Special Status Species Thirty federal or state of Washington special status fish, wildlife, or insect species may occur within the study area based on habitat preferences, species' ranges (including migration corridors), known occurrence on the nearby ALE of the Hanford Site, known occurrence in Benton or Yakima Counties, or public or agency comment (Table 3.4-2). No federally-listed or candidate wildlife species were documented in the study area during the field surveys. *Pygmy Rabbit (Federal and State Endangered).* Based on work conducted by the WFDW, pygmy rabbits only occur in Washington in five distinct groups in Douglas County (WDFW, 1995). The Washington State Recovery Plan for pygmy rabbit, cites one observation of a single pygmy rabbit from Benton County on the ALE, Hanford Monument, however, no details or supporting information is provided for this sighting (WDFW, 1995). Work conducted for The Nature Conservancy to survey and assess habitat on the ALE for pygmy rabbits did not document any individuals (Marr, 1997). No other historical or current records of pygmy rabbit were located for Benton or Yakima counties. Based on habitat and soils, it is unlikely that pygmy rabbits occur or are likely to occur in the study area. **Bald Eagle (Federal and State Threatened).** A bald eagle has been observed nearby on the ALE; however, it has not been recorded during avian or raptor nest surveys of the study area. Due to the aquatic nature of their prey base and the limited nesting opportunities (large trees), bald eagles are unlikely to breed or forage within the study area. However, they may migrate through the study area to suitable wintering areas along the Columbia River. *Middle Columbia River Steelhead and Bull Trout (Federal Threatened; State Candidate).* The project would not affect any water resources occupied by the two listed fish species, bull trout and Middle Columbia River steelhead. The project would not affect these fish. Western Sage Grouse (Federal Candidate; State Threatened). Western sage grouse is a possible rare resident based on recent winter observations of this species on the ALE; however, results of winter surveys when sage grouse could potentially occur in the study area are not yet complete. No Western sage grouse have been documented in the study area and they are unlikely to occur. *Mardon Skipper (Federal Candidate; State Endangered).* Mardon skipper is a butterfly that occupies grasslands and native prairie habitats within ponderosa pine woodlands or savanna. The study area is not suitable for this species because it lacks this type of habitat. Mardon skipper have not been documented in the study area and are unlikely to occur. **TABLE 3.4-2**State and Federal Special Status Species of Known or Potential Occurrence in the Study Area | Common Name and Scientific Name | Federal
Status | WDFW
Status | Occurrence in Study Area | Occurrence
Documentation | |---|-------------------|----------------|--|---| | <u>Mammals</u> | | | | | | Pygmy rabbit (Sylvilagus idahoensis) | Е | Е | Not documented. One historical record from
ALE; unlikely to occur due to lack of suitable habitat and current known range (Douglas County). | WDFW, 1995 | | Black-tailed jackrabbit (Lepus californicus) | N/A | С | Not documented. Possible occurrence based on suitable grassland/shrub habitats; documented on ALE. | TNC, 1999 | | White-tailed jackrabbit (Lepus townsendi) | N/A | С | Not documented. Possible occurrence based on suitable grassland/shrub habitats; documented on ALE. | TNC, 1999 | | Merriam's shrew
(Sorex merriami) | N/A | С | Not documented. Possible occurrence based on suitable sagebrush shrub and mesic grass/shrub habitats; documented on ALE. | TNC, 1999,
WDFW PHS,
2001 | | Townsend's big-eared bat (Coryhorhinus townsendii) | SoC | С | Not documented. Unlikely to occur due to lack of suitable habitat. | TNC, 1999 | | <u>Birds</u> | | | | | | Sandhill crane
(Grus canadensis) | N/A | E | Not documented. Unlikely breeding resident due to lack of habitat, possible migrant or transient during post-breeding dispersal. | LaFramboise and
LaFramboise,
1999 | | Peregrine falcon (Falco peregrinus) | SoC | Е | Documented on site. Unlikely breeder due to lack of suitable nest habitat (cliffs); rare migrant; two individuals observed in September 2001. | Smith et al., 1997,
Young et al., 2001 | | Bald eagle
(Haliaaetus leucocephalus) | Т | Т | Not documented. Unlikely breeding resident due to lack of habitat, possible migrant or winter transient; observed on ALE. | LaFramboise and
LaFramboise,
1999 | | Ferruginous hawk
(Buteo regalis) | SoC | Т | Documented on site. Observed during bird surveys on site; four nest locations located within 5 miles of project site. | Young et al., 2001 | | Western sage grouse
(Centrocercus
urophasianus) | С | Т | Historical. Possible resident; scattered habitat (medium to dense sagebrush stands mixed grass and forbs); documented on ALE. | Hays et al.,
1998a; WDFW
PHS, 2001 | **TABLE 3.4-2**State and Federal Special Status Species of Known or Potential Occurrence in the Study Area | Common Name
and Scientific Name | Federal
Status | WDFW
Status | Occurrence in Study Area | Occurrence
Documentation | |--|-------------------|----------------|---|--| | Sharp-tailed grouse
(Tympanuchus
phasianellus) | N/A | Т | Not documented. Possible resident but limited habitat (grasslands, native prairie); historical records from Benton County. | Hays et al., 1998b | | Northern goshawk (Accipiter gentilis) | N/A | С | Not documented. Unlikely rare migrant; no suitable nesting habitat (coniferous and aspen woodlands); observed on ALE. | LaFramboise and
LaFramboise,
1999 | | Golden eagle
(Aquila chrysaetos) | N/A | С | Documented on site. No nest sites found; two observations during fall avian surveys; winter use on ALE; winter use is likely higher than spring/summer/fall; may forage within study area. | LaFramboise and
LaFramboise,
1999; Young et
al., 2001 | | Merlin
(Falco columbarius) | N/A | С | Documented on site. Uncommon due to habitat and apparent rare status; possible rare migrant; one observation on site. | Young et al., 2001,
LaFramboise and
LaFramboise,
1999 | | Burrowing owl (Athene cunicularia) | SoC | С | Not documented. Possible but unlikely breeding resident due to lack of habitat; possible migrant; documented breeding on ALE. | LaFramboise and
LaFramboise,
1999 | | Vaux's swift
(Chaetura vauxi) | N/A | С | Not documented. No suitable nesting habitat; unlikely rare migrant. | LaFramboise and
LaFramboise,
1999 | | Streaked horned lark (Eremophila alpestris strigata) | N/A | С | Not documented. Unlikely due to subspecies range. | Smith et al., 1997 | | Lewis woodpecker (Melanerpes lewis) | N/A | С | Not documented. No suitable nesting habitat; unlikely rare migrant; observed on ALE. | LaFramboise and
LaFramboise,
1999 | | Sage thrasher (Oreoscoptes montanus) | N/A | С | Documented on site. Observed during avian surveys on site; suitable sagebrush cover for nesting. | Young et al., 2001 | | Loggerhead shrike (Lanius ludovicianus) | SoC | С | Documented on site. Observed during avian surveys on site; suitable sagebrush cover for nesting. | Young et al., 2001 | | Sage sparrow
(Amphispiza belli) | N/A | С | Documented on site. Observed incidentally south of study area boundary; patches of suitable sagebrush cover for nesting occur on site but not observed during bird surveys. | Young et al., 2001 | **TABLE 3.4-2** State and Federal Special Status Species of Known or Potential Occurrence in the Study Area | Common Name and Scientific Name | Federal
Status | WDFW
Status | Occurrence in Study Area | Occurrence
Documentation | |---|-------------------|----------------|---|-------------------------------------| | Reptiles | | | | | | California mountain
kingsnake
(Lampropeltis zonata) | N/A | С | Not documented. Unlikely due to lack of suitable habitat (oak, pine woodlands, chaparral slopes); one isolated historical record from eastern Yakima County. | Nussbaum et al.,
1983 | | Striped whipsnake (Masticophis taeniatus) | N/A | С | Not documented. Possible due to suitable habitat (grasslands, sagebrush, dry rocky canyons); records from Yakima and Benton Counties and ALE. | Nussbaum et al.,
1983; TNC, 1999 | | <u>Amphibians</u> | | | | | | Northern leopard frog (Rana pipiens) | N/A | E | Not documented. Unlikely due to lack of suitable habitat; historical record from Benton County near tri-cities. | McAllister et al.,
1999 | | Oregon spotted frog (Rana pretiosa) | N/A | E | Not documented. Unlikely due to lack of suitable habitat; no records from Benton or Yakima Counties. | McAllister and
Leonard, 1997 | | Columbia spotted frog (Rana luteiventris) | N/A | С | Not documented. Unlikely due to lack of suitable habitat; no records from Benton or Yakima Counties. | Nussbaum et al.,
1983 | | Western toad
(Bufo boreas) | SoC | С | Not documented. Unlikely due to lack of suitable habitat; no records from Benton or Yakima Counties. | Nussbaum et al.,
1983 | | <u>Fish</u> | | | | | | Middle Columbia River
steelhead
(Oncorhynchus mykiss) | Т | С | Not documented. Unlikely due to lack of habitat (rivers, perennial streams); possible in the mainstem Yakima River and larger perennial tributaries. | Chapman et al.,
1994 | | Bull trout (Salvelinus confluentus) | Т | С | Not documented. Unlikely due to lack of habitat (near pristine stream habitat with cold water and loose clean gravel); generally in mountainous areas. | WDFW, 2000 | | <u>Insects</u> | | | | | | Mardon skipper
(Polites mardon) | С | E | Not documented. Unlikely due to lack of habitat (native grassland, prairie habitats within ponderosa pine savanna/woodlands). | Potter et al., 1999 | ### Codes: E = Endangered. T = Threatened. C = Candidates. SoC = Species of concern (Federal). N/A = Not applicable. State-listed or candidate breeding resident species observed in the study area include ferruginous hawk, sage thrasher, loggerhead shrike, and sage sparrow. Sage grouse and burrowing owl have been documented near the study area on the ALE. Other state-listed or candidate species that are migrants through the area or do not breed in the area and have been recorded in the study area include golden eagle, peregrine falcon, and merlin. Northern goshawk and Lewis woodpecker have been documented on the ALE Reserve. Sandhill crane and Vaux's swift have not been documented nearby and are unlikely migrants through the study area. #### 3.4.3.2 Fish Sulphur Creek is the only perennial stream in the study area. It is crossed by the primary access road from the southwest (Figure 2.1-2). The portion of the creek immediately below Sulphur Spring for approximately 1.25 miles is mapped as a perennial stream based on the USGS topographic map. Downstream, Sulphur Creek is mapped as an intermittent stream. According to the WDFW, there are no known fish in this stream near the study area (LaRiviere, 2001). #### 3.4.3.3 Bats During public scoping, concern was raised over potential bat use in the study area. Based on general information and literature about bat range and habitat preferences, 14 species of bats could potentially occur in the study area (Table 3.4-3). California bat, small-footed myotis, little brown bat, long-legged myotis, Yuma myotis, western pipistrelle, big brown bat, and pallid bat have all been documented on the nearby ALE Reserve (TNC, 1999). Both hoary bats and silver-haired bats, two common fatalities at other wind plants, have also been recorded on the nearby ALE, and are expected to migrate through the study area. Bat species diversity, abundance, and activity in the study area are unknown. No field surveys for bats were conducted. Townsend's big-eared bat, a federal species of concern and state candidate, is not expected to be present in the study area. Although it has been known to occur in desert scrub habitats, it tends to prefer forested areas, riparian areas, and is less common in xeric shrub/grass vegetation types (Kunz and Martin, 1982). There are no records of Townsend's big-eared bat from the ALE (TNC, 1999) and no records could be located for this species in the project region. Generally speaking, very
little is known about bats in the vicinity and particularly in the study area. **TABLE 3.4-3**Bat Species of Potential Occurrence in the Study Area | Common Name and Scientific Name | Typical Habitat | Expected Occurrence in Study Area | Occurrence
Documentation | |--|--|---|-----------------------------| | California Bat
Myotis californicus | Generally found in open habitats where it forages along tree edges, riparian areas, open water; roosts in cliffs, caves, trees | Likely; documented on ALE | Fitzner and Gray,
1991 | | Small-Footed Myotis
Myotis ciliolabrum | Varied arid grass/shrublands, ponderosa pine and mixed forests; roosts in crevices and cliffs; hibernates in caves, mines | Likely; documented on ALE | West et al., 1998,
1999 | | Long-Eared Myotis
Myotis evotis | Primarily forested habitats and edges, juniper woodland, mixed conifers, riparian areas; roosts snags, crevices, bridges, buildings, mines | Unlikely due to habitat; not documented on ALE | TNC, 1999 | | Little Brown Bat
Myotis lucifugus | Closely associated with water; riparian corridors; roosts buildings, caves, hollow trees; hibernates in caves | Possible; documented on ALE | West et al., 1998,
1999 | | Fringed Myotis
Myotis thysanodes | Primarily forested or riparian habitats; roosts buildings, trees; hibernates in mines and caves | Unlikely due to habitat; not documented on ALE | TNC, 1999 | | Long-Legged Myotis
Myotis volans | Coniferous and mixed forests, riparian areas; roosts caves, crevices, buildings, mines | Unlikely due to habitat; documented on ALE | Fitzner and Gray,
1991 | | Yuma Myotis
Myotis ymanensis | Closely associated with water in a variety of habitats— riparian, shrublands, forests woodlands; roosts in mines buildings, caves, bridges | Likely; documented on ALE | West et al., 1998,
1999 | | Hoary Bat
<i>Lasiurus cinereus</i> | Forested habitats, closely associated with trees; roosts in trees; migratory species | Unlikely resident but probable migrant; documented on ALE | West et al., 1998,
1999 | | Silver-Haired Bat
Lasionycteris
noctivagans | Forested habitats; generally coniferous forests; roosts under bark; believed to be a migratory species | Unlikely resident but probable migrant; documented on ALE | West et al., 1998,
1999 | | Western Pipistrelle
Pipistrellus hesperus | Primarily desert lowlands; desert shrublands; canyons; roosts under rocks, crevices and possibly in sagebrush | Likely; documented on ALE | West et al., 1998,
1999 | | Big Brown Bat
Eptesicus fuscus | Generally deciduous forests; buildings; roosts in buildings, trees, crevices; hibernates in caves, mines | Possible; documented on ALE | West et al., 1998,
1999 | | Spotted Bat
Euderma maculatum | Varied habitat—pine forests to desert scrub with nearby cliffs; roosts in crevices, cliff faces | Unlikely due to rarity; not documented on ALE | TNC, 1999 | | Townsend's Big-Eared
Bat <i>Corynorhinus</i>
townsendii
(Federal Species of
Concern; State
Candidate) | Varied habitats—forests to desert scrub; roosts in buildings, caves, mines, bridges; hibernates in caves | Unlikely due to lack of
suitable roost sites; not
documented on ALE | TNC, 1999 | | Pallid Bat
Antrozous pallidus | Generally occurs in arid regions, desert scrub habitats; roosts in cliff faces, caves, mines, buildings | Unlikely due to lack of suitable roost sites; documented on ALE | West et al., 1998,
1999 | The potential for bats to occur is based on key habitat elements such as food sources, water, and roost sites. Potential roost structures such as trees, caves, and old buildings are scarce throughout the study area; however, ample talus slopes and rock crevices occur along Rattlesnake Ridge on both the north and south flanks and likely provide suitable roost sites for some species. The riparian corridor of Sulphur Creek has cottonwood trees which are suitable for roosting bats; this corridor is crossed by the primary access road. Sulphur Creek likely provides a source of water and forage in emergent insects. Maiden Spring, developed for livestock watering, also provides an insect source and opportunities for bats to water in the livestock toughs. Shrubs and small trees in the riparian draws below Maiden Spring may provide some roosting opportunities for bats. # 3.4.3.4 Big Game Species During public scoping, concern was raised over potential impacts to big game species from the proposed project. Based on agency information, literature review, and observations on the site, elk (*Cervis elaphus*) and mule deer (*Odocoileus hemionus*) occur in the study area, primarily along the ridgeline of Rattlesnake Ridge and the adjoining slopes. However, mule deer also have been observed in the eastern portion of the study area, which is primarily wheat fields. During avian surveys between April and October 2001, a total of 167 elk and 15 mule deer were observed in four and six groups, respectively (Young et al., 2002). The Rattlesnake Hills elk herd exists on the ALE east and north of the study area and in surrounding areas of Benton and Yakima counties. Elk seen in the study area are part of this herd. The Rattlesnake Hills herd has expanded slowly from an estimated eight individuals in 1975 to over 800 individuals in 1999. WDFW has attempted to control the herd through liberal hunting seasons; however, restricted access to the ALE and private lands in the Rattlesnake Hills have limited hunter success (WDFW, 2000). ### 3.4.3.5 Reptiles and Amphibians While the field surveys did not target reptiles and amphibians, two species of reptiles were documented in the study area – short-horned lizard (*Phrynosoma douglassi*) and yellowbellied racer (*Coluber constrictor*). Other reptile species documented on the nearby ALE that could potentially occur on the project site include: sagebrush lizard (*Sceloporus graciosus*), side-blotched lizard (*Uta stansburiana*), common garter snake (*Thamnophis sirtalis*), western terrestrial garter snake (*Thamnophis elegans*), gopher snake (*Pituophis melanoleucus*), nightsnake (*Hypsiglena torquata*), striped whipsnake (*Masticophis taeniatus*), and western rattlesnake (*Crotalus viridis*). Very little habitat is suitable for amphibians or aquatic reptiles (e.g., turtles) in the study area. Maiden Spring does not provide suitable habitat for amphibians. Sulphur Creek and Sulphur Springs may provide some habitat for tiger salamanders (*Ambystoma tigrinum*) or Woodhouse's toad (*Bufo woodhousei*). ### 3.4.3.6 Birds During scoping, concerns were raised about potential avian mortality, displacement of breeding birds, loss of prime shrub-steppe habitat, and disruption of migratory pathways. Species of special interest include raptors, particularly ferruginous hawks and eagles, and state candidate species and grassland and shrubland nesting passerines such as sage sparrows, loggerhead shrikes, and sage thrashers. Migrating birds are also of special interest for this project due to the possibility of the primary Rattlesnake Ridge line providing a migratory corridor for birds. # Avian Baseline Study Results. While the avian use surveys of the study area were designed to record all birds observed, the surveys focused on two avian groups—raptors and other large birds believed to be susceptible to impacts from wind plants, and grassland-/shrub-steppe passerine species which breed in these habitats in the study area. General results of the surveys are presented below. Results of the paired plot surveys are presented in the interim technical report available for review at BPA or the Benton County Planning and Building Department upon request. In general, results of the two survey types were consistent and the results presented below are representative of the study area. More detailed results of the two studies are found in the interim technical report. Fixed Point (Raptor and Large Bird) Surveys. A total of 232 30-minute point count surveys were conducted between April 20 and October 28, 2001. Surveys were conducted at eight fixed stations (point count stations) once a week (Figure 3.4-1). A total of 40 avian species were observed during the fixed point surveys (Table 3.4-4). As expected, passerines were by far the most numerous group. Horned lark, western meadowlark, vesper sparrow, and dark-eyed junco were the four most numerous passerines observed. Passerines comprised 82.9 percent of the total number of birds observed and raptors comprised 5.5 percent of all birds observed. Northern harrier, American kestrel, red-tailed hawk, and Swainson's hawk were the four most common raptors observed. Corvids (magpies, crows, and ravens) comprised 9.4 percent of all birds observed. Other birds (primarily upland game birds) comprised 4.0 percent of all birds observed. Only one group of waterfowl (one flock of 15 Canada geese) was observed in the study area during the fixed point surveys. Upland game birds observed on the site included three non-native species (ring-necked pheasant, chukar, and Hungarian [gray] partridge). TABLE 3.4-4 Avian Species Observed Between April 20 and October 28, 2001 | Group/Species
(Status:
F = Federal; WA = State) | Total
Observations | Exposure
Index | Average
Avian Use | Frequency of
Occurrence
(%) | Percent
Composition | |---|-----------------------|-------------------|----------------------|-----------------------------------|------------------------| | Corvids | | | | | | | Black-Billed Magpie | 9 | 0.000 | 0.0408 | 3.1 | 0.33 | | Common Raven | 275 | 0.543 |
1.1332 | 40.2 | 9.09 | | Subtotal | 284 | | 1.1740 | 42.0 | 9.42 | | Passerines | | | | | | | American Goldfinch | 1 | 0.000 | 0.0043 | 0.4 | 0.03 | | American Pipit | 22 | 0.000 | 0.0996 | 0.9 | 0.80 | | American Robin | 4 | 0.000 | 0.0172 | 0.9 | 0.14 | | Barn Swallow | 4 | 0.000 | 0.0179 | 0.9 | 0.14 | | Brewer's Sparrow | 22 | 0.007 | 0.0951 | 6.9 | 0.76 | | Brown-Headed Cowbird | 2 | 0.000 | 0.0086 | 0.4 | 0.07 | | Cassin's Finch | 11 | 0.000 | 0.0474 | 1.3 | 0.38 | | Cliff Swallow | 6 | 0.000 | 0.0271 | 1.4 | 0.22 | | Dark-Eyed Junco | 54 | 0.000 | 0.2331 | 3.5 | 1.87 | | European Starling | 2 | 0.000 | 0.0086 | 0.4 | 0.07 | | Golden-Crowned Kinglet | 3 | 0.000 | 0.0129 | 0.9 | 0.10 | | Grasshopper Sparrow | 7 | 0.000 | 0.0305 | 3.0 | 0.24 | | Horned Lark | 1631 | 0.079 | 7.2237 | 78.2 | 57.96 | | House Finch | 3 | 0.000 | 0.0129 | 0.9 | 0.10 | | Loggerhead Shrike
(F: SoC; WA: C) | 3 | 0.000 | 0.0129 | 0.9 | 0.10 | | Mountain Bluebird | 5 | 0.000 | 0.0216 | 0.9 | 0.17 | | N. Rough-Winged Swal. | 20 | 0.089 | 0.0891 | 0.9 | 0.72 | | Red-Breasted Nuthatch | 1 | 0.000 | 0.0043 | 0.4 | 0.03 | | Rock Wren | 10 | 0.000 | 0.0433 | 3.9 | 0.35 | | Sage Thrasher (WA: C) | 2 | 0.000 | 0.0086 | 0.9 | 0.07 | | Savannah Sparrow | 3 | 0.000 | 0.0129 | 0.9 | 0.10 | | Say's Phoebe | 2 | 0.000 | 0.0086 | 0.9 | 0.07 | | Spotted Towhee | 4 | 0.000 | 0.0172 | 1.3 | 0.14 | | Swainson's Thrush | 1 | 0.000 | 0.0043 | 0.4 | 0.03 | | Tree Swallow | 12 | 0.000 | 0.0577 | 0.5 | 0.46 | | Unidentified Blackbird | 2 | 0.000 | 0.0086 | 0.4 | 0.07 | | Unidentified Finch | 35 | 0.000 | 0.1563 | 0.4 | 1.25 | | Unidentified Flycatcher | 8 | 0.000 | 0.0345 | 1.7 | 0.28 | | Unidentified Passerine | 151 | 0.009 | 0.7234 | 2.2 | 5.80 | | Unidentified Sparrow | 1 | 0.000 | 0.0043 | 0.4 | 0.03 | | Unidentified Swallow | 12 | 0.009 | 0.0523 | 3.1 | 0.42 | **TABLE 3.4-4** Avian Species Observed Between April 20 and October 28, 2001 | Group/Species
(Status: | Total | Exposure | Average | Frequency of Occurrence | Percent | |----------------------------------|--------------|----------|-----------|-------------------------|-------------| | F = Federal; WA = State) | Observations | Index | Avian Use | (%) | Composition | | Unidentified Warbler | 1 | 0.000 | 0.0043 | 0.4 | 0.03 | | Varied Thrush | 1 | 0.000 | 0.0043 | 0.4 | 0.03 | | Vesper Sparrow | 64 | 0.000 | 0.2606 | 16.9 | 2.09 | | Violet-Green Swallow | 1 | 0.000 | 0.0045 | 0.4 | 0.04 | | Western Kingbird | 7 | 0.000 | 0.0310 | 2.2 | 0.25 | | Western Meadowlark | 195 | 0.004 | 0.8244 | 37.4 | 6.61 | | Western Tanager | 4 | 0.000 | 0.0172 | 0.4 | 0.14 | | White-Crowned Sparrow | 14 | 0.000 | 0.0619 | 0.9 | 0.50 | | Wilson's Warbler | 1 | 0.000 | 0.0043 | 0.4 | 0.03 | | Yellow Warbler | 1 | 0.000 | 0.0043 | 0.4 | 0.03 | | Yellow-Rumped Warbler | 1 | 0.000 | 0.0043 | 0.4 | 0.03 | | Subtotal | 2337 | | 10.3332 | 89.9 | 82.90 | | Raptors | | | | | | | American Kestrel | 32 | 0.011 | 0.1393 | 10.3 | 1.12 | | Cooper's Hawk | 4 | 0.006 | 0.0175 | 1.8 | 0.14 | | Ferruginous Hawk (F: SoC: WA: T) | 2 | 0.009 | 0.0091 | 0.9 | 0.07 | | Golden Eagle | 1 | 0.005 | 0.0045 | 0.4 | 0.04 | | Northern Harrier | 40 | 0.040 | 0.1660 | 13.8 | 1.33 | | Peregrine Falcon | 2 | 0.009 | 0.0086 | 0.4 | 0.07 | | Prairie Falcon | 9 | 0.032 | 0.0396 | 4.0 | 0.32 | | Red-Tailed Hawk | 28 | 0.058 | 0.1055 | 7.9 | 0.85 | | Rough-Legged Hawk | 4 | 0.011 | 0.0182 | 1.8 | 0.15 | | Sharp-Shinned Hawk | 1 | 0.004 | 0.0043 | 0.4 | 0.03 | | Swainson's Hawk | 26 | 0.061 | 0.0937 | 6.2 | 0.75 | | Unidentified Accipiter | 3 | 0.000 | 0.0141 | 1.4 | 0.11 | | Unidentified Buteo | 32 | 0.042 | 0.0667 | 5.3 | 0.53 | | Subtotal | 113 | | 0.6870 | 42.3 | 5.51 | | Shorebirds | | | | | | | Killdeer | 1 | 0.000 | 0.0045 | 0.4 | 0.04 | | Waterfowl | | | | | | | Canada Goose | 15 | 0.000 | 0.0670 | 0.4 | 0.54 | | Gamebirds | | | | | | | Chukar | 17 | 0.000 | 0.0733 | 3.0 | 0.59 | | Gray Partridge | 4 | 0.000 | 0.0179 | 0.4 | 0.14 | | Ring-Necked Pheasant | 2 | 0.000 | 0.0045 | 0.4 | 0.04 | | Subtotal | 23 | | 0.0956 | 3.9 | 0.77 | **TABLE 3.4-4**Avian Species Observed Between April 20 and October 28, 2001 | Group/Species
(Status:
F = Federal; WA = State) | Total
Observations | Exposure
Index | Average
Avian Use | Frequency of Occurrence (%) | Percent
Composition | |---|-----------------------|-------------------|----------------------|-----------------------------|------------------------| | Doves | | | | | | | Mourning Dove | 21 | 0.000 | 0.0941 | 2.3 | 0.76 | | Rock Dove | 6 | 0.000 | 0.0375 | | | | Unidentified Pigeon | 1 | 0.000 | 0.0069 | | | | Subtotal | 28 | | 0.0941 | 2.3 | 0.76 | | Other | | | | | | | Common Flicker | 2 | 0.000 | 0.0088 | 0.9 | 0.07 | | Unid. Hummingbird | 2 | 0.000 | 0.0086 | 0.9 | 0.07 | | Common Nighthawk | 1 | 0.004 | 0.0043 | 0.4 | 0.03 | | Subtotal | 5 | | 0.0088 | 0.9 | 0.07 | | Total | 2874 | | | | | **Avian Use**. A total of 1,078 observations were made of 2,874 individual birds during the fixed point (raptor and large bird) surveys (Table 3.4-4). These are raw counts of observations that were not standardized by the number of hours of observation, but provide an overall list of what was observed. Because individual birds were not marked, these counts also do not distinguish between individuals but provide an estimate of avian use of the study area. Avian use by species was calculated as the average (mean) number of observations per 30-minute survey. For example, if one red-tailed hawk was observed on five plot surveys, its average use would be 0.2. However, it is unknown if this was the same bird seen five times or five different birds seen once. Table 3.4-4 provides an index of how often red-tailed hawks occur in the study area and therefore are at risk of being impacted by the proposed project. Any reference to abundance refers to the use estimates and not absolute density or numbers of individuals. The three most abundant species documented in the study area were horned lark (58 percent), common raven (9 percent), and western meadowlark (6.6 percent). Together these species comprised more than 73 percent of all birds observed during the fixed point surveys. On average, more than seven horned larks, one common raven, and approximately one western meadowlark were observed during each 30-minute survey. The most abundant raptor observed was northern harrier, with 40 individuals observed, or approximately one northern harrier observed every six surveys. The bird use estimates for the study area, with the exception of a few common species, were similar or lower than other wind plants studied in the U.S. Raptor use of the study area was similar to other wind plants studied through the spring, summer, and fall. The most abundant raptors on the site based on use were northern harrier, American kestrel, and redtailed hawk. Only two ferruginous hawks (state threatened species and federal species of concern) were observed during the surveys despite a ferruginous nest being located in the study area. As a group, raptor use of the study area was approximately 0.69 raptors observed per 30-minute survey, or roughly one raptor observed every 1.4 surveys. For comparison, raptor use for spring, summer, and fall at four wind plants studied with the same methods¹ varied from slightly lower to much higher. Raptor use at the Condon Wind Plant, Oregon, was approximately 0.49 raptors per 30-minute survey²; at the Vansycle Wind Plant, Oregon, raptor use was approximately 0.55 raptors per 30-minute survey; at the Buffalo Ridge Wind Plant, Minnesota, raptor use was approximately 0.74 raptors per 30-minute survey; and at the Foote Creek Rim Wind Plant, Wyoming, raptor use was approximately 1.10 raptors per 30-minute survey. **Exposure Index**. The exposure index is a relative measure of the risk of each species observed on site during the fixed-point surveys coming in contact with a turbine. A higher exposure index implies that there is a potentially greater risk of an individual bird colliding with a turbine. The exposure index is based on the use (measure of abundance) of the site by the species and the flight characteristics observed for that species (percent of observations of the species flying and percent of observations of the species flying within the zone which would be occupied by turbine blades). Common raven, northern rough-winged swallow, and horned lark had the highest exposure indices (Table 3.4-4). Horned lark was nearly always observed below the zone of risk, but because it was by far the most abundant species, it had one of the highest exposure indices. All observations of northern rough-winged swallows were recorded within the zone of risk. Mortality studies at other wind plants have indicated that although ravens are often observed at wind plants within the zone of risk, they appear to be less susceptible to collision with wind turbines than other similar size birds (e.g., raptors, waterfowl). Raptor species with the highest index include Swainson's hawk, red-tailed hawk, and northern harrier. Although northern harrier and American kestrel were the most abundant raptor species observed, both species were observed less often in the zone of risk than the buteo species (ferruginous hawk, red-tailed hawk, Swainson's hawk). Avian Diversity (Frequency of Occurrence and Percent Composition). Frequency of occurrence and percent composition provide relative estimates of the avian diversity and species composition of the study area or what are the most frequently observed species in the study area and therefore most likely to be affected by the project. The frequency of occurrence was calculated as the percent of surveys where a particular species was observed within one-half mile (Table 3.4-4). Percent composition is represented by the mean use for a species divided by the total use for all species and multiplied by 100. The vast majority of species were
observed in less than 5 percent of the surveys. The most frequently observed raptor was northern harrier, seen in approximately 14 percent of all surveys (frequency of occurrence) but comprising only 1.3 percent of all bird observations based on use estimates (percent composition). In contrast, horned larks were observed during 78 percent of all surveys and comprised nearly 58 percent of all birds observed. - ¹ Fixed point surveys were conducted following the same methods at all four wind plants but had variable survey duration. The calculated use at these wind plants was standardized to 30-minute duration surveys under the assumption that raptor observations were uniform across time for each survey period. ² The fixed point survey area at the proposed Condon Wind Plant was approximately 2,000 feet, compared to 2625 feet for other surveys. As a group, due primarily to the abundance of horned larks on the site, passerines comprised nearly 90 percent of all bird observations and were observed in more than 82 percent of all the surveys. Raptor use of the site as a group was relatively low with less than one raptor observed during each 30-minute survey and during approximately 42 percent of the surveys. Overall, based on the use estimates, raptors, as a group, comprised approximately 5.5 percent of all bird observations. Raptor Nest Surveys. Two aerial surveys for raptor nests were completed within the RNA. The total RNA was approximately 235 square miles (Figure 3.4-1). A total of 107 raptor or large stick nests were located, 55 of which were classified as active nests during the first survey (Table 3.4-5). Nest density for buteos (ferruginous hawk, red-tailed hawk, Swainson's hawk) was approximately 0.11 nests per square mile. Nest density for all raptors located (buteos, falcons, owls) was approximately 0.16 nests per square mile. This index of raptor nest density falls within the range of other wind plants that have been studied. For example, the nest density in a 10-mile buffer surrounding the Foote Creek Rim Wind Plant, Wyoming, was 0.19 nest per square mile (Johnson et al., 2000a); nest density in a 10-mile buffer around the proposed Condon Wind Plant, Oregon, was 0.03 nest per square mile (URS et al., 2001); and nest density within a 2-mile buffer around the Stateline Wind Plant, Oregon and Washington, was 0.20 nest per square mile (URS and WEST, 2001). TABLE 3.4-5 Raptor and Large Bird Nests Located in the Maiden Wind Farm Study Area, Including the Area in a 5-Mile Radius Buffer | Species | Number of Active Nests ¹ | Number of Nests That
Produced Young ² | Total Young Observed
(Young per
Successful Nest) | |---------------------------------|-------------------------------------|---|--| | Ferruginous hawk (F: SC; WA: T) | 4 | 2 | 3 (1.5) | | Red-tailed hawk | 14 | 9 | 16 (1.78) | | Swainson's hawk | 9 | 2 | Unknown | | Prairie falcon | 8 | 3 | 8 (2.2) | | Great-horned owl | 2 | Unknown | Unknown | | Barn owl | 1 | 1 | 1 (1.0) | | Common raven | 17 | 6 | 11 | | Inactive nests | 52 | NA | NA | #### Notes: NA = not applicable During the second raptor nest survey of the study area, two new active Swainson's hawk nests were located and two nests initially recorded as a common raven and great-horned owl were occupied by Swainson's hawks. The second survey was intended to gain as much information as possible about nest success from the active nests located during the first survey. Based on the second survey, five raptors—ferruginous hawk, red-tailed hawk, Swainson's hawk, prairie falcon, and barn owl—as well as common ravens, were confirmed producing or fledging chicks in the study area. Swainson's hawks generally nest later than other buteos and some of the Swainson's hawk nests in the study are had not produced ¹Based on April 30-May 2, 2001, survey. ² Based on June 18-19, 2001, survey. young by the second visit. While these nest success rates are based on relatively small sample sizes, they provide an estimate of approximate nest success rate (i.e., percent of nests that are successful by species) and a record of successful breeding by several raptor species in the study area. One ferruginous hawk nest site is located along the southern edge of the project approximately 0.25 mile from a proposed turbine string. This nest had a pair of ferruginous hawks present on May 2, 2001, when the initial raptor nest survey was conducted, but was empty during a ground recheck of the nest on May 23. # 3.4.4 Impacts of the Proposed Action ### 3.4.4.1 Evaluation Criteria Impacts to wildlife and special status species would be considered **high** (and significant) if project activities were to: - Cause "take," as defined by the ESA (see Section 3.4.1), of a federally-listed endangered or threatened species (pygmy rabbit, bald eagle, middle Columbia steelhead, bull trout) - Jeopardize the continued existence of any federal candidate species (western sage grouse, Mardon skipper) - Jeopardize the continued existence of any state-listed endangered, threatened, or candidate species or result in trends that could cause their being proposed for listing as federally endangered or threatened - Substantially exceed the level of mortality (based on post-construction monitoring) of individual avian or bat species observed at similar newer generation wind plants - Substantially exceed the level of impact, such as mortality, displacement, and disturbance, to common wildlife species observed at similar newer generation wind plants. Impacts to wildlife and special status species would be considered **moderate** if project activities were to: - Cause an adverse effect to a federally-listed endangered or threatened species that can not be adequately mitigated - Cause adverse effects to a federal candidate or species of concern or state-listed endangered or threatened species which caused a reduction in numbers but without resulting in a trend that could cause their being proposed for listing as federallythreatened or endangered - Equal the level of mortality of individual avian or bat species observed at similar newer generation wind plants - Equal the level of impact, such as mortality, displacement, and disturbance, to common wildlife species observed at similar newer generation wind plants - Permanently interfere with the movement of any resident or migratory fish or wildlife species, including displacement and nesting interference. Impacts to wildlife and special status species would be considered **low** if project activities were to: - Cause effects to federally endangered or threatened species which could be completely mitigated - Cause effects to a federal candidate or species of concern or a state-listed or candidate species which do not contribute or result in trends toward federal listing - Result in a lower level of mortality to individual avian and bat species than observed at similar newer generation wind plants - Result in a lower level of impact, such as mortality, displacement, and disturbance, to common wildlife species than observed at similar newer generation wind plants - Temporarily interfere with the movement of any resident or migratory fish or wildlife species, including displacement and nesting interference. # 3.4.4.2 Construction Impacts As discussed in the following sections, direct impacts to wildlife from construction activities could include loss or destruction of habitat and mortality or injury from collisions with vehicles or construction equipment. Indirect impacts could include disturbance or displacement to resident or nesting avian species from increased traffic, noise, and activity in the study area. #### Loss of Habitat. Approximately 414 acres of native habitat would be temporarily removed or damaged during project construction. Because these areas would be revegetated with native seed mixtures, they could eventually provide wildlife habitat again. See Section 3.3, Vegetation, for more detailed discussion on impacts to habitats. #### Special Status Species. The amount of disturbance to special status species would depend on the construction season(s), methods, duration, and the occurrence of species in the study area. The majority of these species are not expected to occur in the study area with regularity. Overall, disturbance or displacement impacts are expected to be low and would potentially affect only a few species and individuals documented and likely breeding on site. The following listed or candidate species may occur in the study area during part of the year and have the potential to be affected by construction of the proposed project. Ferruginous Hawk (Federal Species of Concern; State Threatened). Ferruginous hawks are breeding residents of the study area. They have been observed during surveys, and four active nests were located within 5 miles of the project site during 2001. One nest was located within 0.25 mile of a proposed turbine string. Project construction could affect breeding ferruginous hawks through disturbance of nesting habitat if construction were to occur near an active nest. Without mitigation, this could result in a moderate impact. Loggerhead Shrike (Federal Species of Concern, State Candidate), sage thrasher, sage sparrow (State Candidates). These species are likely breeding residents in the study area. They were observed during the spring and summer and are expected to breed in big sagebrush stands. Potential construction impacts to these species are considered low because minimal construction would occur in big sagebrush stands (nesting habitat), which are generally located in the valleys and off of the primary ridgelines. **Bald Eagle (Federal and State Threatened)**. Based on available information, bald eagles are possible rare migrants in the study area but have not been documented and are not expected to occur on a regular basis. However, results of
winter surveys when the bald eagle would be most likely to occur in the study area are not yet complete. Construction of the project would not be likely to impact bald eagles because of their lack of presence in the study area. Impacts to bald eagle would be low. **Peregrine Falcon (Federal Species of Concern; State Endangered).** Peregrine falcons are rare migrants through the study area. Two individuals were observed in the study area during a fixed point survey on September 30, 2001. However, they have not been documented on the nearby ALE and are not expected to occur in the study area on a regular basis. Construction would have little to no affect on peregrine falcons; therefore, impacts would be low. Golden Eagle (State Candidate). Golden eagles are rare migrants and possible winter residents in the study area. One golden eagle was observed in the study area during fixed point surveys in the fall 2001. They have also been documented on the nearby ALE during the winter in low numbers. They are not expected to occur in the study area on a regular basis. Construction activities would have little to no effect on golden eagles; therefore, impacts would be low. *Merlin (State Candidate)*. A single merlin was observed in the study area in April 2001, and was likely a migrant. Merlins are considered an uncommon migrant and winter resident on the ALE, and occupy riparian areas or migrate along Rattlesnake Ridge (LaFramboise and LaFramboise, 1999). There is no suitable nesting habitat in the study area and they are considered a rare migrant and/or unlikely winter resident. Impacts from construction of the proposed project would be low. #### Fish. Based on available information, no fish occur in the study area; therefore, no impacts to fish would occur. Implementation of best management practices and compliance with applicable permits regarding runoff and sediment control would avoid impacts to downstream fish from construction of the project. #### Bats. Impacts to bats or bat habitat on the site are unlikely during construction. There is little bat habitat in the form of food sources, water, or roost sites where construction would occur; therefore, potential impacts to bats would be low. # Big Game. Elk and mule deer could potentially be affected by project construction. Impacts to big game would include loss of habitat and potential displacement. The elk and mule deer that use the site primarily occupy the grassland-/shrub-steppe habitats, springs, and riparian corridors. These species also graze in the agricultural areas in the eastern portion of the study area. Temporary loss of big game habitats from project construction would be approximately 114 acres. This impact would be considered low because over time, temporarily disturbed areas could recover and provide big game habitat. During the construction period, elk and mule deer would likely be displaced from the project site due to the influx of humans and heavy construction equipment and associated disturbance. Individuals of these species would likely seek more remote areas with less disturbance, such as the ALE. Construction-related disturbance and displacement would be expected to be temporary, resulting in a low impact. ### Reptiles and Amphibians. Construction activities could affect reptiles on the project site through loss of habitat and direct mortality of individuals located in construction zones. Reptiles documented in the study area occupy the grassland-/shrub-steppe habitats. The level of mortality to reptiles would be based on the abundance of species on the project site. Some mortality is expected because common reptiles such as short-horned lizards and yellow-bellied racers often retreat to burrows underground for cover or during periods of winter dormancy. Excavation for turbine pads, roads, or other facilities could kill individuals in underground burrows. While aboveground, yellow-bellied racers and other snakes are likely mobile enough to escape construction equipment; however, short-horned lizards do not move fast over long distances and rely heavily on camouflage for predator avoidance. Some individual lizard fatalities would be expected from vehicle activity, resulting in a low impact. Reptile and amphibian mortality has not been specifically studied at other facilities, but is assumed to be low based on informal observations. #### Birds. Construction of the proposed project could affect birds through loss of habitat, potential fatalities from construction equipment, and disturbance or displacement from construction and human occupation of the area. Bird mortality from construction equipment would be expected to be quite low because equipment generally moves at slow rates and is stationary for long periods. The risk of mortality due to construction activities would likely be limited to destruction of a nest with eggs or young for ground and shrub nesting species. Disturbance impacts would be expected to occur if construction activity occurred near an active nest or primary foraging area. Birds displaced from these areas could move to areas with less disturbance; however, displacement would be temporary and therefore result in a low impact. Breeding effort could also be disturbed and foraging opportunities altered during the construction period; however, these impacts would be temporary, resulting in a low impact. *Raptor Nests*. Based on the current project design, no raptor nests would be directly impacted by the proposed project. There were five inactive nests and three active nests located within 1 mile of the proposed project facilities. The active nests were a red-tailed hawk nest on an existing BPA transmission line tower, a ferruginous hawk nest in a small tree in the riparian corridor below Maiden Spring, and a prairie falcon nest in a rocky cliff face in the westernmost portion of the project. There was also an active common raven nest on the microwave tower on Rattlesnake Ridge. All three of the active raptor nests are within ¼ mile of proposed project facilities (e.g., turbines, substations) and could be subject to indirect (disturbance-related) impact if they were active during the construction period. With the exception of impacts to the ferruginous hawk nest (see discussion above), this would be considered a low impact. # Mitigation As discussed in Section 3.3, Vegetation, prior to the start of construction, a Site Management Plan Team (SMPT) would be convened to prepare a Site Management Plan (SMP). In addition to provisions discussed in Section 3.3, the SMP would include provisions for: - Placement of towers the minimum distance from raptor nesting sites according to WDFW Management Plan criteria - Maintaining reasonable driving speeds so as not to harass or accidentally strike wildlife - Methods of delineation and marking (i.e., fencing, taping flagging) off-limit areas such as sensitive plant communities and raptor nest sites - Mapping, marking, and including in the off-limit areas any new nesting, denning, or otherwise sensitive wildlife sites located during construction - Seasonal timing of construction to avoid, as best practicable, the courting, nesting, and breeding season of sensitive avi-fauna - Laying out a complete site plan for the SMP (fenced, flagged, taped with use areas designated) on the ground prior to the start of construction of any phase of the project. As discussed in 3.3, Vegetation, an SMP monitor would be at the project site daily during construction activities to ensure adherence to the provisions of the SMP and keep a daily record of activities, decisions, etc. relating to that objective. Results of the baseline avian surveys would be used to help with final project design, turbine siting, and mitigation planning via the SMP. The ferruginous hawk nest near the project site would be monitored by a wildlife biologist prior to construction to determine occupancy and the need for possible timing restrictions for construction in the vicinity of the nests. If the ferruginous hawk nest is active, a buffer of at least 0.6 miles as recommended by the Washington State Recovery Plan for Ferruginous Hawk (Richardson, 1996), would be established around the nest where no construction activity would occur until the nest was no longer active. This area would be flagged as off-limits to disturbance by construction personnel. If other raptor nests are found to be active during the construction period, a no-disturbance buffer of 1,000 feet would be marked and maintained until the nest was no longer active. Big sagebrush stands near construction areas that are suitable for nesting by loggerhead shrikes, sage thrashers, and sage sparrows would be flagged and designated as no disturbance zones. These areas would be flagged as off-limits to disturbance by construction personnel. ## 3.4.4.3 Operation Impacts #### Loss of Habitat. Approximately 128 acres of native habitat would be permanently removed for project facilities. This area may currently support wildlife by providing food, cover, or space for a variety of species. See Section 3.3, Vegetation, for more detailed discussion on impacts to wildlife habitats. ### Special Status Species. Several special status species have been recorded in the study area and these species are discussed individually below. Several of the breeding resident special status species on site typically occupy mature vegetation types such as shrub- and grassland-steppe and shrubland. The big sagebrush shrub-steppe where loggerhead shrikes, sage thrashers, and sage sparrows occur is located in depressional areas between ridges and off of the ridgetops. Permanent loss of these areas would be minimized by project design, which has most of the project facilities (e.g., turbines, adjacent access roads) located on the ridgetops. Due to the rare nature of most special status species, it is difficult to quantitatively estimate risk factors or mortality estimates for these species. Table 3.4-6
summarizes risk factors and provides a qualitative estimate of risk of collision with turbines for special status species. Information from other wind plants where rare species have been documented as fatalities is also included in the table to illustrate susceptibility of species to collision and assist in estimating relative risks of collision for the proposed project. Bald Eagle (Federal and State Threatened). Bald eagles are possible rare migrants or winter residents in the study area. No bald eagle fatalities have been documented at other wind plants (see Erickson et al., 2001). Because of their rare nature and habitat preferences, use estimates for bald eagles at other area wind plants are low. Bald eagle use estimates at the Foote Creek Rim Wind Plant, Wyoming, for spring, summer, and fall was 0.008 birds per 40-minute survey (Johnson et al., 2000a). During 5 years of carcass searches at Foote Creek Rim (69 turbines) no bald eagle casualties were located (Young et al., 2001). Operation of the proposed project would not be expected to cause bald eagle mortality due to their rare occurrence in the study area; therefore, impacts would be low. *Peregrine Falcon (Federal Species of Concern; State Endangered).* Peregrine falcons are rare migrants through the study area but have a potential risk of collision with wind turbines. No peregrine falcon fatalities have been documented at other wind plants (see Erickson et al., 2001). Because of their rare nature, use estimates for peregrine falcons at other wind plants are very low. Operation of the proposed project would not be expected to cause peregrine falcon mortality due to their rare occurrence in the study area; therefore, impacts would be low. *Merlin (State Candidate).* Merlins are considered an uncommon migrant and winter resident on the ALE, and one merlin was observed in the study area in April 2001. No merlin fatalities have been documented at other wind plants (see Erickson et al., 2001). Because of their rare nature, use estimates at other wind plants are very low. Operation of the proposed project would not be expected to cause merlin mortality due to their rare occurrence in the study area; therefore, impacts would be low. Ferruginous Hawk (Federal Species of Concern; State Threatened). Ferruginous hawks are breeding residents of the study area. They were observed during surveys on the site and four active nests were located within 5 miles of the project site during 2001. Once the project is operational, ferruginous hawks may be at risk of collision with wind turbines. Ferruginous hawk use of the study area in spring, summer, and fall of 2001 was approximately 0.009 birds per 30-minute survey, much lower than 0.052 birds per 40-minute survey recorded at the Foote Creek Rim Wind Plant in Wyoming (Johnson et al., 2000a). A conservative comparison would assume a uniform distribution of observations over time and thus approximately 0.04 birds/30 minutes on Foote Creek Rim. This estimate is greater than four times the spring-summer-fall use by ferruginous hawks in the Maiden Wind Farm study area. During three years of carcass searches at Foote Creek Rim (69 turbines) no ferruginous hawk casualties were located (Young et al., 2001); however, collision fatalities have been recorded at the Altamont and Tehachapi Pass Wind Plants in California (Erickson et al., 2001). Despite higher use estimates at Foote Creek Rim, the closest known ferruginous hawk nest to the Foote Creek Rim wind plant was approximately 2.25 miles away. The presence of an active ferruginous nest in the Maiden Wind Farm study area may increase the risk of ferruginous hawks colliding with turbines. However, due to the low use estimate for ferruginous hawks in the study area, the project would not be expected to cause large numbers of ferruginous hawk deaths. Expected mortality of ferruginous hawks could be as high as one per year, which would be considered a moderate to high (significant) impact. Golden Eagle (State Candidate). Golden eagles are rare migrants and winter residents in the study area and may be at risk of collision with wind turbines. Golden eagle mortalities have been documented at other wind plants and were common mortalities at the Altamont Pass Wind Plant in California (Erickson et al., 2001). However, due to their rare nature in the study area, the use estimate for golden eagles is very low and the project is not expected to cause eagle deaths at levels experienced at other plants. Expected mortality of golden eagle could be as high as one per year, which would be a low impact. Loggerhead Shrike (Federal Species of Concern, State Candidate), sage thrasher, sage sparrow (State Candidates). These species are likely breeding residents in the study area. They have been observed during the spring and summer and are expected to breed in big sagebrush stands. Once the project is operational, these species would be at risk of collision with wind turbines due to their occurrence in the study area. A single loggerhead shrike casualty was documented at the Tehachapi Pass Wind Plant in California (Erickson et al., 2001), a single sage thrasher casualty was found at the Foote Creek Rim Wind Plant in Wyoming (Young et al., 2001), but no sage sparrow casualties are known from wind plants (see Erickson et al., 2001). Use estimates for these species at the Maiden Wind Farm project site (based on the spring and summer surveys) are relatively low (see Young et al., 2002). The proposed wind turbines are generally located on ridgelines where soils are shallower and support fewer smaller shrubs. These species tend to occupy big sagebrush stands located between ridges, in depressions, and on the flats south of the main ridgeline where soils are deeper. Turbine placement on the ridge tops minimizes the risk of collisions; and therefore, expected mortality impacts from operation of the project would be low. **TABLE 3.4-6**Collision Risk Factors for Special Status Avian Species Known or Potentially Occurring in the Study Area | | Risk Factors | | | | | |---|--|--|---|--|--| | Species/
Federal and
State Status | Behavioral and Environmental Factors | Abundance and Distribution
Factors Based on Field Studies
and Existing Information | Generalized Level
of Risk
(Impact Level) | | | | Sandhill crane
WA: E | Diurnal migrant typically soars at high
altitude; may use thermals to gain
elevation above Rattlesnake Ridge;
flight elevations may include rotor
swept area | Not observed in study area;
reported as flyover on ALE; low
abundance at Buffalo Ridge and
Foote Creek Rim wind plants and
no fatalities observed | Level of risk unknown
but likely to be low
because of low use of
the area (low impact) | | | | Peregrine
falcon
F: SoC
WA: E | Uses open habitats usually near water and shorebird/waterfowl habitat; nests on cliffs; flight heights include rotor swept area; prey densities in study area very low | Observed in study area in fall; no records from nearby ALE; considered a very rare migrant or transient; no fatalities known from other wind plants | Level of risk very low (low impact) | | | | Bald eagle
F: T
WA: T | Feeds on carrion, fish, waterfowl in winter; wintering habitat along Columbia River; flight heights could include the rotor swept area | Not observed in study area, rare migration and winter occurrence on ALE; low abundance at Foote Creek Rim wind plant and no fatalities observed | Level of risk very low
due to expected rare
occurrence (low
impact) | | | | Ferruginous
hawk
F: SoC
WA: T | Grassland and shrub-steppe species;
hunts small/medium mammals, birds,
reptiles in open country; flight heights
include rotor swept area | Nesting resident in study area;
migrants also likely pass through in
spring and fall; common at Foote
Creek Rim wind plant but no
fatalities observed during two year
study | Level of risk
considered low due
to low use of the site;
however, risk may be
high due to presence
of nest in study area
(moderate to high
impact) | | | | Sage grouse
F: C
WA: T | Sagebrush obligate species; feeds on insects and vegetation; populations declining over the West due to habitat degradation; usually on the ground, but occasionally fly within rotor height | Historic observations from study area; suitable habitat is present; recent winter records from ALE; densities low at Foote Creek Rim wind plant, but no fatalities observed during two year study | Risk considered very
low due to rare
occurrence in area;
risk may be greater in
winter (low impact) | | | | Northern
goshawk
WA: C | Forest-dwelling species, migrant or transient through non-forested areas; would most likely be found in tree patches and/or brush in canyons; flight heights include rotor swept area | Not observed in study area; rare migration and winter occurrence on ALE; no fatalities known from other wind plants | Level of risk very low (low impact) | | | | Golden eagle
WA: C | Grassland and shrub-steppe species, nesting in trees or cliffs, hunts small/medium mammals, birds, reptiles; flight heights include rotor swept area | One observed in study area in fall; migration and winter records from ALE; fatalities at wind plants in California (primarily Altamont); common on
Foote Creek Rim wind plant but no fatalities observed during two year study | Level of risk
considered low due
to rare occurrence;
risk may be greater in
winter (low impact) | | | **TABLE 3.4-6**Collision Risk Factors for Special Status Avian Species Known or Potentially Occurring in the Study Area | | Risk Fa | actors | | |---|--|---|--| | Species/
Federal and
State Status | Behavioral and Environmental Factors | Abundance and Distribution
Factors Based on Field Studies
and Existing Information | Generalized Level
of Risk
(Impact Level) | | Merlin
WA: C | Uses variety of open and wooded habitats, nests in cliffs or tree cavities, feeds on small birds and mammals; may be attracted to large numbers of wintering horned larks or other prey species; flight heights include rotor swept area | One observation from study area; rare migrant or winter resident on ALE; no fatalities known from other wind plants | Level of risk
considered low due
to rare occurrence
(low impact) | | Burrowing owl
F: SoC
WA: C | Nests in old badger holes in
grassland and shrub-steppe habitats;
forages on insects and small
vertebrates; foraging and migrant at
heights that would be within rotor
swept area | Not observed in study area;
breeding records from ALE;
migrants may also pass through
area; numerous fatalities have
been recorded at a California wind
farm during recent study | Level of risk
considered low due
to rare occurrence
(low impact) | | Vaux's swift
WA: C | Nests in hollow trees and chimneys;
typically occurs in western and
northern Washington; flight heights
probably include rotor swept area | Not observed in study area; very rare migrant on ALE; no fatalities known from other wind plants | Level of risk
extremely low (low
impact) | | Lewis
woodpecker
WA: C | Nests in tree cavities in woodlands,
typically with openings and patchy
trees; flight heights unlikely but may
include rotor swept area | Not observed in study area; rare migrant on ALE; transients or migrants may occasionally pass through study area; one fatality documented from Vansycle wind plant | Level of risk very low
due to rare
occurrence (low
impact) | | Loggerhead
shrike
F: SoC
WA: C | Nests in big sagebrush shrublands or areas with scattered trees in shrubsteppe and grassland habitats; hunts insects and small vertebrates; migrates to winter range in southern U.S.; flight typically below rotor height; migration flights may include rotor swept area | Observed in study area in low
numbers; likely a breeding resident
and migrant through study area;
one fatality known from Tehachapi
Pass wind plant | Level of risk is
believed low due to
low numbers; risk
may be greater
during migration
periods (low impact) | | Sage thrasher
WA: C | Nests in sagebrush steppe of
relatively high quality; migrates to
winter range in southern U.S.; flight
typically below rotor height; migration
flights may include rotor swept area | Observed in study area in low
numbers; likely a breeding resident
and migrant through study area;
one fatality documented at Foote
Creek Rim wind plant during two
year study | Level of risk is
believed low due to
low numbers; risk
may be greater
during migration
periods (low impact) | | Sage sparrow
WA: C | Nests in sagebrush steppe of relatively high quality; migrates to winter range in southern U.S. and Mexico; flight typically below rotor height; migration flights may include rotor swept area | Observed just south of study area in big sagebrush stands; likely breeding resident; no fatalities known from other wind plants | Level of risk is
believed low due to
low numbers; risk
may be greater
during migration
periods (low impact) | | | Federal E = Endangered T = Threatened | C = Candidates
SoC = Species of concern (Fe | ederal) | ### Avian Mortality. Bird casualties due to collisions with turbines have been documented through mortality studies at wind plants across the country (Erickson et al., 2001). Measured use of the site by avian species and mortality estimates from other existing wind plants were used to predict potential mortality of birds for the proposed project. For example, use of the study area by raptors is relatively low compared to other wind plants, and mortality estimates of raptors from other "newer generation" wind plants are also relatively low (e.g., less than 0.04 raptors per turbine per year at the Foote Creek Rim Wind Plant in Wyoming and less than 0.01 raptors per turbine per year at the Buffalo Ridge Wind Plant in Minnesota). Therefore, mortality estimates for raptors from the proposed project are expected to be very low. Several elements of the project design would help reduce the potential for impacts to birds. Siting the project in an area with low bird use is a fundamental way of reducing avian impacts. In addition, the newer generation wind turbines have rotors that make one revolution approximately every 3 to 4 seconds, which increases the blade visibility to birds compared to older faster-moving turbine models. Newer turbine models also use tubular towers to reduce or eliminate perching opportunities, compared to lattice towers used on older models. Power lines between turbines would be located underground, further reducing perching opportunities and minimizing electrocution risks. Exceptions to this would be the aboveground transitions between turbine strings and the possible 4-mile transmission line. **Raptors**. Raptor mortality at "newer generation" wind plants is very low. For example, the estimate of raptor mortality at the Foote Creek Rim Wind Plant is the highest observed and is 0.036 raptors per turbine per year based on a 2-year study of 69 turbines (Erickson et al. 2001). No raptor mortality was observed at the Vansycle Wind Plant in Oregon during a one-year study of 28 turbines, and 0.001 raptors per turbine per year were found at the Buffalo Ridge Wind Plant during a 4-year study of 350 turbines (Erickson et al., 2001). Considering these mortality results, as well as raptor use estimates at these wind plants (see Avian Use in Section 3.4.3.6), it is estimated that potential mortality of raptors would be less than one-half that of the Foote Creek Rim Wind Plant (or less than 0.016 raptor per turbine per year); approximately two-thirds that of the Buffalo Ridge Wind Plant (or less than 0.0007 raptor per turbine per year); or approximately equal to that of the Vansycle Wind Plant (or zero raptors per turbine per year). Using these raptor mortality rates, a range of zero to nine raptor fatalities per year at the Maiden Wind Farm would be expected for the full project, which represents a low impact (if no raptors were killed) to moderate impact (if up to nine raptors were killed). **Passerines**. Small birds with the highest use index of the study area were horned larks, western meadowlarks, vesper sparrows, and grasshopper sparrows. Horned larks were by far the most abundant and are also a common casualty located at other wind plants. At the Foote Creek Rim Wind Plant, 28 horned lark fatalities were found over a 2-year study of 69 turbines, which amounted to 14 percent of all observed bird fatalities. Use estimates for horned larks at Foote Creek Rim were slightly less than the proposed project. Western meadowlarks and vesper sparrows have also been documented casualties at several wind plants. Based on this information, casualties for these species would be expected at the project site. Based on post-construction mortality monitoring at other newer generation wind plants, passerine mortality has been somewhat variable. Projected impacts for the proposed project are primarily based on data collected at the Vansycle Wind Plant (Erickson et al., 2000), the Foote Creek Rim Wind Plant (Young et al, 2001), and the Buffalo Ridge Wind Plant (Johnson et al., 2000b) where fatality estimates have been made for all birds, including passerines, and adjusted for scavenging and searcher efficiency. An extensive post-construction study of two wind plants on Buffalo Ridge in Minnesota with 350 total turbines was conducted from 1996 through 1999. Total annual mortality was estimated to average approximately 2.8 birds per turbine. Most of the mortality documented involved nocturnal migrant passerines (Johnson et al., 2000b). Based on a 2-year study at Foote Creek Rim, the total annual mortality associated with 69 turbines was estimated to be approximately 1.7 birds per turbine per year and for five met towers was estimated at 7.5 birds per tower per year. Many of the fatalities at this location were also believed to be nocturnal migrant passerines (Young et al., 2001). At the Vansycle Wind Project, only 12 avian fatalities were located during the first year of operation of 38 turbines. The casualties were comprised of at least six species, and most (58 percent) were passerines. Total estimated mortality was 24 birds per year or approximately 0.6 bird per turbine per year (Erickson et al., 2000). If these estimates are applied to the proposed project, the range of potential bird mortality would be expected to fall between approximately 360 and 1565 birds per year if all 549 turbines and four met towers
were constructed. Based on the regional Vansycle Wind Plant estimate, the actual mortality at the Maiden Wind Farm would be expected to be closer to the low end of this scale. Actual levels of mortality that would result from the proposed project are unknown and could be higher or lower depending on migratory patterns and patterns of movements through the area. The expected per turbine mortality rate for all birds for the proposed project is expected to be between 0.6 and 2.8 birds per turbine per year. The per met tower mortality rate would be expected to be between 7 and 8 birds per tower per year. These would be low impacts unless post-construction monitoring studies indicate higher mortality rates. ### Displacement. Displacement effects related to wind turbine operation have not been evaluated in detail in the United States; however, several studies in Europe have addressed this issue. In the U.S. a single study at the Buffalo Ridge Wind Plant indicates there may be some localized displacement of passerines away from turbines. Avian abundance adjacent to turbines in Buffalo Ridge was only 25 percent that of areas sampled at 590 feet from turbines (Leddy, 1996; Leddy et al., 1999). Further work in Minnesota also documented significantly lower avian abundance near areas where turbines are present (Johnson et al., 2000b). In European studies, many groups of birds, including waterfowl, shorebirds, waders, and passerines, have shown displacement effects ranging from 820 feet to as far as 2,624 feet from turbines (Peterson and Nohr, 1989; Pederson and Poulsen, 1991; Vauk, 1990; Winkelman, 1989; Winkelman, 1990; Winkelman, 1992). Reductions in use of up to 95 percent near turbines have been recorded (Winkelman, 1994). Disturbance to breeding birds appears negligible and was documented during only one study (Pedersen and Poulsen, 1991). Most disturbance has involved feeding, resting, and migrating birds (Crockford, 1992). Based on the available information, it is probable that some displacement effects may occur to the grassland/shrub-steppe avian species occupying the study area. The extent of these effects and their significance is unknown and hard to predict but could range from none to several hundred feet, resulting in low to moderate impacts. **Raptor Nests.** Operation of the proposed project would not affect raptor nests unless there were displacement effects that caused raptors to not return to the nests close to the project site. Impacts would be low. #### Bats. Bat research at other wind plants indicates that migratory bat species are at risk of collision with wind turbines, most likely during migration. It is likely that some bat fatalities would occur in the proposed project site. Both hoary bats and silver-haired bats, two common fatalities at other wind plants, have been recorded on the nearby ALE and are expected to migrate through the study area. At the Buffalo Ridge Wind Plant, based on a 2-year study, bat mortality was estimated to be 2.05 bats per turbine per year (Johnson et al., 2000b). At the Foote Creek Rim Wind Plant, based on 2 years of study, bat mortality was estimated at 1.51 bats per turbine per year (Young et al., 2001). At the Vansycle Ridge Wind Plant in Oregon, bat mortality was estimated at 0.74 bats per turbine for the first year of operation (Erickson et al., 2000). Most bat fatalities found at wind plants have been tree-dwelling bats, with hoary and silverhaired bats being the most prevalent fatalities. Although potential future mortality of migratory bats is difficult to predict, an estimate can be calculated based on levels of mortality documented at other wind plants. Estimates have ranged from 0.74 to 2.05 bats per turbine per year; however, it may be most appropriate to estimate bat mortality by comparing the proposed project to the Vansycle Wind Plant in Oregon due to similarity of habitat in the same physiographic province. The 1999 per turbine annual estimate at this wind plant was 0.74 bats per turbine. Using this estimate, full build-out of the proposed project could result in approximately 400 bat fatalities per year. The significance of this impact is hard to predict since there is very little information available regarding bat populations. However, there are no federal or state endangered or threatened bats that would potentially be affected by the project; therefore, impacts would be considered low. Actual levels of mortality that could result from the project are unknown and could be higher or lower depending on migratory patterns of bats, patterns of movement through the area, and the response of bats to turbines, individually and collectively. ### Big Game. There is little information regarding wind plant effects on big game species. The Foote Creek Rim Wind Plant in Wyoming appeared to have no effect on pronghorn (*Antilocapra americana*) (Johnson et al., 2000a). Pronghorn occurred in the area in low numbers and continued to use the area following construction of that project. The primary disturbances to big game associated with operation and maintenance of the proposed project would be vehicle traffic. While activities on site may periodically displace elk and mule deer, it is expected that they would return to the site. The level of use could be lower during the first few years of operation; however, it is likely that over the long-term, particularly since the Rattlesnake elk herd population is growing, elk and deer would become accustomed to the project facilities and would use areas in and around the facilities. Therefore, impacts would be expected to be low over the long-term. # Reptiles and Amphibians. Once operational, the project would not substantially impact reptiles. Operation and maintenance activities could occasionally result in a road killed snake or lizard; however, this would be a rare occurrence due to the limited nature of traffic expected. Impacts would be negligible. # Mitigation The following mitigation measures would be implemented to reduce impacts to special status species and other wildlife from operation of the project. See Section 3.3, Vegetation, for mitigation of wildlife habitat. - Ferruginous hawk nesting opportunities as identified by the Washington State Recovery Plan for Ferruginous Hawk would be constructed or created in areas of native habitat more than 5 miles away from the proposed project and any other proposed wind plants in the area. For each nest impacted by the project (closer than 0.6 mile to construction areas), at least three nesting opportunities would be created, monitored, and maintained for a minimum of a 5-year period. The location, type of nesting opportunities, and monitoring program would be approved by the WDFW. - Long-term impacts of wind turbines on other raptor nesting/foraging areas would be mitigated by: 1) avoiding placement of any facilities within 0.6 mile of any nest; or 2) placing additional nesting structures (three per existing nest within 0.6 mile of wind turbines) in suitable nesting areas at least 1 mile away from any wind turbines. - Raptor anti-perching devices would be installed on all new overhead power line poles within 1 mile of turbine strings to limit potential ferruginous hawk, peregrine falcon, merlin, bald eagle, golden eagle, and other raptor use near the turbines. All power lines would be constructed following Suggested Practices for Raptor Protection on Power Lines: The State of the Art in 1996 (APLIC, 1996); specifically, conductors would be spaced as recommended by the study to minimize the potential for bird electrocution. - A post-construction monitoring program would be developed in coordination with the SMPT. The program would monitor avian use of the site and avian and bat mortality using standardized carcass searches, and scavenging and searcher efficiency trials during the first year of operation of the project. - Other mitigation may be implemented if identified through Section 7 consultation with the USFWS. ### 3.4.4.4 Decommissioning Impacts Impacts from decommissioning the proposed project would be lower than those for construction, assuming that all access roads remain in place. Vehicles would travel on established roadways which would not impact habitat for special status species. If the landowners requested that access roads be removed, short-term impacts would be similar to those for construction, though more land would be restored to potential wildlife habitat in the long-term. Dismantling the project would eliminate avian mortality caused by the presence of wind turbines. Wildlife habitat would have the potential to return to pre-project conditions over time, therefore impacts from decommissioning would be low. Mitigation for impacts to wildlife would follow procedures in use at the time of decommissioning. # 3.4.5 Impacts of the No Action Alternative Under the No Action Alternative, there would be no potential impacts to wildlife, particularly birds, or to threatened and endangered species from construction and operation of the proposed project. It is likely that other power generation facilities would be constructed and operated in the region, most likely a gas-fired CT. The construction of a gas-fired turbine generator, the development and extraction of natural gas, and the construction of gas pipelines to provide fuel to the generating facility could create impacts to wildlife and threatened and endangered species. The significance of such impacts would depend on the location and design of the facility, and would need to be evaluated in coordination with the USFWS and local wildlife agencies. # 3.5 Visual Resources # 3.5.1 Regulatory Framework There is no regulatory framework for visual resources. According to Yakima County Plan 2015 and the *Benton County Comprehensive Land Use Plan*, there are no designated scenic areas, routes, or important vistas that would be within the line of sight of the proposed project. While each county has general
policies regarding the importance of protecting visual resources, none are specific to wind farm development or to the Rattlesnake Hills. Specific zoning ordinance requirements regarding wind turbines are provided in the regulatory framework section of Section 3.2, Land Use and Recreation. # 3.5.2 Study Methodology The visual resources study area includes an approximate 20-mile radius around the project site. Areas of population concentrations with direct lines of sight to the project site include the cities of Sunnyside, Granger, Grandview, and Prosser. In addition, some roadways to the north and west also provide views of the project site. Research involved review of topographic maps, aerial photographs, and road maps. Site visits were conducted to obtain an overview of the project vicinity and to make an initial determination of the areas where the project facilities would be most visible by the largest numbers of people. Six locations were selected from which the project would be seen by the general population. Viewpoints such as residences, travel routes, and public areas were chosen. At each location, a photograph was taken with a 35-millimeter (mm) camera to capture the existing view from that location. Visual impacts that would result from the project were evaluated by assessing the visual quality of the study area, viewer sensitivity, and the visibility of wind turbines and other project facilities from sensitive viewpoints. Computer modeling and rendering techniques were used to simulate what the proposed project would look like from where the photographs were taken. The wind turbines modeled in the visual simulations are based on full build-out of the proposed project using the maximum number of turbines (549 900-kilowatt [kW] turbines) at a height of 355 feet (with one rotor in the vertical position) and assuming the turbines would be an off-white color. Photographs used for modeling were taken on a clear, sunny day. While the simulations shown in this section may not be a completely accurate representation of the final project, they provide a concept of the maximum visual impact that would likely occur. Although the project developer is considering using turbines as high as 390 feet (for a 2,000-kW output turbine), full build-out of a 494-megawatt [MW] project using these turbines would require only 247 wind turbines instead of 549 turbines, a significant reduction in the density of turbines. Therefore, the visual simulations provide a "worst case" depiction of the proposed project. ### 3.5.3 Affected Environment The visual setting consists of a large, irrigated valley containing a variety of crops (such as apples, pears, grapes, and cherries), rural residences, and the nearby communities of Sunnyside, Granger, Grandview, and Prosser, all located 10 or more miles south of the project site. The Rattlesnake Hills dominate and define the northern portion of the valley and the Horse Heaven Hills dominate and define the southern portion of the valley. On the project site, vegetation consists of rangeland and wheat crops. There are several existing radio towers along the ridgeline of the Rattlesnake Hills, and two BPA transmission lines transect the western portion of the project site. A third BPA line is located just west of the study area. The existing visual quality of the study area is considered moderate to high due to the unique features of the Rattlesnake Hills and the vast expanse of undeveloped area. # 3.5.4 Impacts of the Proposed Action #### 3.5.4.1 Evaluation Criteria - Impacts would be considered **high** (and significant) if the existing visual character or quality of the site and its surroundings were substantially altered, if light or glare substantially affected day or nighttime views, or if sensitive viewers such as residents and recreationists viewed the proposed project frequently and for long periods of time. - Impacts would be considered moderate if viewers considered to have low sensitivity (such as travelers or commuters on local roadways) viewed the proposed project for moderate periods of time, regardless of the frequency, while engaged in other activities such as working or driving. - Impacts would be considered **low** if small numbers of people viewed the proposed project for short periods of time, regardless of the frequency. In applying these criteria to the impact analysis, a variety of factors were considered, including the extent of project visibility from residential areas and roadways, the degree to which the various project facilities would contrast with or be integrated into the existing landscape, the extent of change in the landscape's composition and character, and the number and sensitivity of viewers. ### 3.5.4.2 Construction Impacts Visual impacts resulting from construction activities would be limited to the sight of vehicles and equipment used in project construction, and dust from construction activities. The views of large numbers of construction vehicles or of dust would be episodic rather than constant and most viewers would be 10 or more miles away so that construction vehicles may not be visible. Impacts would be distributed over a large rural area with low-density population. These impacts would be temporary (up to 9 months) and are considered low. ### Mitigation. To minimize visual impacts, vehicles and equipment would be kept on the site and would not be parked near residential or public access areas. Equipment and supplies would be stored out of sight (if practical), and unusable equipment would be removed. Watering activities to control dust would reduce most visual impacts generated by project construction. # 3.5.4.3 Operation Impacts Changes in the appearance of the study area would result from the wind turbines along the ridgeline and down the slopes of the Rattlesnake Hills. The wind turbines would be a maximum of 390 feet high, measured with one rotor in the vertical position. Other facilities that would be less visible due to their smaller size are the potential transmission line towers, overhead conductors between turbine strings, one or two substations, up to three operation and maintenance buildings, and various new access roads. The wind turbines would look similar to the turbines shown in Figures 2.1-3 and 2.1-4. The perceived dominance of the turbines upon the landscape would vary during the time of day, time of year, and weather conditions, depending upon the angle of the sunlight striking the turbines. During times of the day and year when the angle of the sun is lower, sunlight striking at a lower angle on the side of the turbines would tend to make them more visible and more prominent than when the sun is more directly overhead. Depending on the time of day and weather conditions, the turbines would likely be visible to anyone who can currently see the top of the Rattlesnake Hills. Some of the turbines would be furnished with lights at the top of the nacelle for aircraft safety. The number of wind turbines with lights and the type of lighting would be determined in consultation with the Federal Aviation Administration (FAA). For the Stateline Wind Project in eastern Washington and Oregon, the FAA required white flashing lights in the daytime and red flashing lights at night. Lights were required to be placed every thousand feet and at the ends of turbine strings. Applying the same requirement to the proposed project results in the potential for 125 to 175 lights if the full project were to be constructed. Although these lights are meant to be visible from aircraft and less visible from ground level, the presence of these lights could create a substantial change in views from residential areas and roadways, even considering the low number of viewers and the distance from which the project would be viewed. Visual impacts due to light and glare at night would be considered low to high, and unavoidable. In the eastern portion of the study area, five residences would have foreground views of the wind turbines. Two residences belong to landowners who would financially benefit from the project through wind lease payments; therefore, while the visual impact to these residents would be high, it is considered to be an insignificant impact. The three other residences could perceive impacts to be high resulting from the change in visual landscape of adjacent properties. This would be a significant and unavoidable impact. All other viewers would see the wind turbines from a distance of several miles, and impacts would range from low to high. Reactions to the location of turbines on the ridges constituting the middle and far distance views would likely vary. Some people may prefer the natural setting as it now exists, without the addition of the towers to the landscape. Others may find them to be an interesting and even aesthetic point of visual interest on the landscape. Potential impacts are discussed further in the following section. ### **Visual Impacts from Specific Locations.** Photographs were taken on a clear day from six locations where the wind turbines would be clearly visible and where the project would be seen by the general population. Figure 3.5-1 shows these locations and the direction from which the photograph was taken. Wind turbines were then superimposed on the photographs using software that allows the accurate placement and proportion of the turbines in the visual image. The visual impact of project facilities would be considered low to nonexistent under two circumstances. The first is where the topography would preclude a view of the turbines because ridges higher than those on which turbines are located would block the viewpoint. For example, from the Hanford area along State Route 240, located east of the project site, Rattlesnake Mountain blocks views of the Rattlesnake Hills and the turbines would not be visible. Secondly, in areas several miles away from the project site and of very low population density, few
people would see the towers; therefore, visual impacts would be expected to be low in such locations. No attempt was made to analyze visual resources and impacts from the viewsheds of areas with limited or no population concentrations. For example, traveling east or west on State Route 240 north of the project site, the back of the Rattlesnake Hills can be seen from a very far distance. However, no developed areas or residences exist in the area and few travelers frequent this roadway. As a result, few people would see the project, and only from a long distance. The visual simulations in Figures 3.5-2 through 3.5-7 show what the 494-MW project would look like at full build-out using 549 off-white turbines 355 feet in height. These simulations present a slightly exaggerated representation of the visibility of the turbines from the six viewpoints. The actual project likely would use fewer wind turbines of a slightly greater height, or shorter turbines. Location 1: From State Route 241 at Van Belle Road. Figure 3.5-2 is a visual simulation showing how the wind turbines would appear from the intersection of State Route 241 and Van Belle Road looking northeast toward the project site. This viewpoint location provides the greatest number of potential viewers from a moderate distance compared to the other viewpoints selected for analysis. From this distance (approximately 6 miles), the turbines would be visible to residents and passing motorists. The project would likely have a moderate visual impact to motorists and workers in the area. Residents in the area would view the turbines frequently and for long periods of time from their homes and could perceive the visual character of the hillside to be substantially altered, both during the day and at night. As seen in the visual simulation, the turbines would blend in with the colors of the hillside and sky background. However, visual impacts could be perceived as high by area residents, particularly at night. Location 2: From Interstate 82 at State Route 223 in Granger. Figure 3.5-3 is a visual simulation showing how the wind turbines would appear from the intersection of Interstate 82 and State Route 223 in the community of Granger. Although a high number of viewers traveling on Interstate 82 would be able to see the wind turbines, they are difficult to discern from this distance (approximately 15 miles), and may not be visible at all during many times of the day and year. Passing motorists would be likely to perceive the project as having a low visual impact due to the distance from the project and the limited viewing time while driving on area roads. Residents living in the area where the photograph was taken would view the proposed project frequently and for long duration; however, when viewed from this distance, the wind turbines do not dominate the landscape or substantially alter the views. The wind turbines would be barely discernable in hazy and cloudy conditions. At night-time, the flashing lights that would likely be required on some wind turbines would not dominate the landscape from this distance but would present a moderate change in the quality of views to the hills. Overall, impacts would likely be perceived as moderate by area residents. Location 3: From West Grandview Avenue in Sunnyside. Figure 3.5-4 is a visual simulation showing how the wind turbines would appear from a hilly residential area in Sunnyside. From this distance (approximately 9 miles), the wind turbines would be visible to some residents depending on the orientation of their homes. Residents may perceive the visual character and views of the hillside to be substantially altered, both during the day and at night. As seen in the visual simulation, the wind turbines would blend in with the colors of the hillside and sky background; however, the proposed project could be perceived by these residents as having a high visual impact. Location 4: From Gap Road at Hanks Road in Prosser. Figure 3.5-5 is a visual simulation showing how the wind turbines would appear from a rural area north of Prosser. The area north of Interstate 82 and Prosser is agricultural with scattered residences. Traffic on the roadways is light except at harvest times, and because there are some gently rolling hills on the roadways, views of the project site are intermittent. From this distance (approximately 9 miles), the wind turbines would be visible to some residents. Passing motorists would be likely to perceive the project as having a low visual impact due to the distance from the project and the limited viewing time while driving on area roads. Residents living in this area would view the proposed project frequently and for long duration; however, when viewed from this distance, the wind turbines do not dominate the landscape or substantially alter the views. The turbines would be barely discernable in hazy and cloudy conditions. At nighttime, flashing lights that would likely be required on some wind turbines would not dominate the landscape from this distance but would present a moderate change in the quality of views to the hills. Overall, impacts would likely be perceived as moderate by area residents. **Location 5:** From Junction of State Routes 24 and 241. Figure 3.5-6 is a visual simulation showing how the wind turbines would appear from the north side of the Rattlesnake Hills. These roadways are very lightly traveled and there are only a few scattered residences in the area. From this distance (approximately 5 miles), the wind turbines would be visible along the ridgetop and may appear prominent to the limited number of residents and motorists that would see the proposed project on a regular basis. The proposed project could be perceived by several residents as having a high visual impact, particularly at night. Overall, the visual impact likely would be considered moderate due to the distance from the hillside and the low number of viewers. Location 6: From the Junction of Crooks Road and Rotha Road. Figure 3.5-7 is a visual simulation showing how the wind turbines would appear at close range (approximately 1,200 feet). This view is representative of what the proposed project would look like to residents on or adjacent to the project site. The wind turbines would dominate the landscape and substantially alter the surroundings during the day and at night. Residents in the area would have frequent views of long duration from their homes and may consider visual impacts to be high, particularly if they are not financially benefiting from the project. # Mitigation. Among the FAA-approved lighting devices available, the developer would use those that are designed to be least visible from the ground level of the surrounding landscape. # 3.5.4.4 Decommissioning Upon decommissioning, the project facilities would be removed to below the ground surface. The landscape would no longer be impacted by the presence of wind turbines and other facilities. Visual impacts during decommissioning would be similar to those described for construction and would consist primarily of the sight of construction vehicles and dust and would be low. # 3.5.5 Impacts of the No Action Alternative Under the No Action Alternative, the visual quality of the study area and Rattlesnake Hills would not be influenced by development of the project. It is likely that alternative generation, most likely a gas-fired combustion turbine, would be developed in another location in the region. The visual impacts of a gas turbine generator would depend on its location and design. In some settings, it could be considered highly incompatible with the existing environment. However, in the appropriate location, visual impacts could be minor. # 3.6 Cultural Resources # 3.6.1 Regulatory Framework State and federal regulations require consideration of the proposed project's potential effects on historic and/or cultural resources (such as historic properties, Native American cultural resources, and archaeological sites). The SEPA process requires that impacts to cultural resources be considered in weighing the proposed project's overall impact on the environment (as stipulated in WAC 197-11-960). The Washington State Historic Preservation Office (WASHPO) must be consulted when projects are subject to review under SEPA and/or Section 106 of the National Historic Preservation Act of 1966 (NHPA). Similar to SEPA, the NHPA requires that all federal agencies consider the effect of their actions on historic properties. Requirements of Section 106 apply to any federal undertaking (action). WASHPO must be consulted to determine whether the site has been surveyed, whether historic resources have been identified onsite, and whether the property is listed or eligible for listing in the National Register of Historic Places (NRHP). If a project adversely affects property that meets NRHP criteria, then WASHPO and, as appropriate, interested tribes, would participate in finding acceptable ways to avoid or mitigate that adverse effect. Further, the Advisory Council on Historic Preservation (ACHP) must be afforded an opportunity to comment on the undertaking. The ACHP published implementing regulations for Section 106 of the NHPA in 36 *Code of Federal Regulations* (CFR) 800. Federal agencies follow 36 CFR 800 to fulfill the cultural resource coordination and compliance process. These include step-by-step procedures for the entire coordination process (including steps for conducting consultations with Native American tribes), from initial identification of a resource, through its evaluation, and to final mitigation, if required. Table 3.6-1 shows the key applicable federal and state cultural resources requirements that apply to the proposed project. **TABLE 3.6-1**Federal and State Cultural Resources Requirements | Permit or Requirement | Agency/Statute and Regulation | |---
--| | Historic Preservation/
Landmark Review | National Historic Preservation Act, Section 106 (16 USC § 470 et seq.; 36 CFR §§ 60-63, 800); Historic Sites, Buildings, Objects, and Antiquities (16 USC § 469 et seq.; 36 CFR §§ 296.1; 43 CFR §§ 7.1 et seq.) | | State Environmental Policy Act | WAC 197-11-960 | Major categories of cultural resources include the following: • **Historic Properties.** Historic properties are places eligible for inclusion in the NRHP. Historic properties eligible for inclusion in the NRHP can include districts, sites, buildings, structures, objects, and landscapes that are significant in American history, prehistory, architecture, archaeology, engineering, and culture. Historic properties include so-called "traditional cultural properties." Historic properties must be given consideration under the National Environmental Policy Act (NEPA), the NHPA, and their state law counterparts. Section 101(d)(6)(A) of the NHPA allows properties of traditional religious and cultural importance to a tribe to be determined eligible for inclusion in the NRHP where they are associated with cultural practices or beliefs (traditions, beliefs, practices, lifeways, arts, crafts, and social institutions) of a living community that are rooted in that community's history and are important in maintaining the continuing cultural identity of the community. - Native American Cultural Resources. Native American cultural resources may include human skeletal remains, funerary items, sacred items, and objects of cultural patrimony. Native American cultural items must be given consideration under NEPA, NHPA, the Native American Graves Protection and Repatriation Act (NAGPRA) (if resources are in federal possession or located on federal lands), the American Indian Religious Freedom Act (AIRFA), and their state law counterparts. - Archaeological Sites. Archaeological sites and other scientific data must be given consideration under NEPA, the Archaeological Resources Protection Act (ARPA), the Archaeological Data Preservation Act (ADPA), and to some extent under NHPA and NAGPRA and their state law counterparts. BPA has initiated the Section 106 process and is coordinating with WASHPO, the ACHP, and the affected Native American tribes. BPA's proposed action to purchase and transmit the power generated by the project would require compliance with Section 106. BPA is responsible for consulting with the tribes in recognition that cultural resources are of importance to the Indian people whose ancestors used the land in prehistoric and historic times. The interests of the tribes include burial and sacred site protection and perpetuation of traditional hunting, fishing, and native plant gathering activities. BPA hosts meetings that bring together BPA and tribal cultural resources technical staff. Since the inception of these meetings in January 2001, BPA and the project developer have attended several meetings to facilitate communication between BPA and the participating tribes and to foster opportunities for the tribes to participate in the cultural resources work tasks on a subcontract basis. # 3.6.2 Study Methodology The study area, designed to encompass all areas that could potentially be disturbed by construction and operation of the project, included all land within 50 feet of proposed temporary and permanent facilities. In most cases, the survey corridors were 150 feet wide, although in many areas several project facilities located together resulted in a wider survey area. Archaeological investigation of the potential wind turbine strings, access roads, and other facilities was conducted in July, August, and September 2001 in collaboration with representatives of the Wanapum Band of Indians. Additional details on the archaeological investigation are provided in the technical report titled Cultural Resources Assessment for Maiden Wind Farm, which will be available from Benton County and BPA in early 2002. The Yakama Nation was contacted and briefed on the proposed project but declined to participate in the archaeological surveys. The Yakama Nation also was invited to conduct any needed investigations of traditional use of the study area (such as native plant gathering and hunting) but declined to initiate such studies. The cultural resources analysis is based on information from field studies and from archival research. ### 3.6.3 Affected Environment Little cultural resource work has been conducted in the study area, which is likely due to the combination of large tracts of private land and the absence of any regulatory action that would have triggered previous cultural resource compliance studies. Areas such as the adjacent DOE Hanford Site, the nearby Yakima Training Center, and the nearby Yakama Indian Reservation have received more attention from archaeologists and ethnologists and these areas provide most of what is known about the general project vicinity. ### 3.6.3.1 Regional Archaeology and Ethnohistory The proposed project would encompass portions of three adjacent USGS quadrangle maps (Sulphur Spring, 1978; Maiden Spring, 1974; and Snively Basin, 1974). # **Cultural Chronology/Culture History.** Working with information about prehistoric cultural resources at the nearby Hanford Site, Wright (1997) summarized local and regional prehistoric cultural development sequences. These cultural sequences can be used on this project to help assign any discovered artifacts and archaeological sites into their proper placement in the overall regional framework of prehistoric cultural development. Before the disruptions caused by non-Indian settlement in the 19th century, the project study area and surrounding areas were traditional occupation and use areas used by several Native American groups now incorporated in the Yakama Nation and/or Wanapum Band. # Potential Site Types in the Study Area. Wright (1997) reviewed the various site types that occur at the Hanford Site. The site types most likely to occur in the study area are listed below: - Open Campsite - Rockshelter - Butchering/Kill Site - Hunting Station - Plant Collection - Quarry - Lithic/Tool Scatters - Plant/Seed Processing - Rock Cairn - Petroglyphs and Pictographs (rock art) - Trails # 3.6.3.2 Local Euro-American History Bard and Cox (1997) summarized the history of Euro-American resettlement of the Hanford Site, starting in 1805 (Lewis and Clark expedition) and ending with the creation of the Hanford Engineer Works in 1943. Sharpe (1999) summarized the historical development of the north face of the Rattlesnake Hills, which is the area immediately adjacent to the northeastern portion of the study area and is now known as the Fitzner-Eberhardt ALE. The ALE occupies about 120 square miles and is located on the southwest side of the 560-square-mile Hanford Site. #### The Anderson Ranch. Swedish immigrant Gust Anderson arrived in the United States in 1887 and first settled in Nebraska, where he met and married Anna Anderson, another Swedish immigrant. With two sons and a daughter, they moved to Prosser in 1905 and homesteaded 160 acres about 10 miles north of Prosser and 10 miles east of Sunnyside (Cole, 1992). Their first crops were wheat and cattle and they maintained a large garden. By 1934, the Anderson Ranch consisted of 800 acres used mostly for grazing sheep and cattle. The Andersons grew wheat, which was combined with the help of neighbors using old-fashioned threshing bees. At one time, the Anderson Ranch covered about 50,000 acres. As explained by Henry Anderson, one of Gust Anderson's sons, there were once up to 3,500 sheep in their flock and they had to pasture them from the Wenatchee National Forest all the way to Republic, Washington. In 1944, the Anderson Brothers Ranches sold off most of the sheep, fenced the land, and began raising cattle (Cole, 1992). Today, the Anderson Ranch, in its various parts owned and controlled by several Anderson family members, covers the majority of the land in and around the study area. #### 3.6.3.3 Results of Cultural Resources Survey The cultural resources of the study area were determined through survey and site recording by CH2M HILL archaeologists and members of the Wanapum Band. During the surveys of proposed wind turbine strings, access roads, underground and overhead electrical transmission lines, operation and maintenance facilities, various laydown/staging areas, and quarries, 54 individual cultural resource features and several isolated finds were identified and will be formally recorded as archaeological "sites" or "isolates" as appropriate (Table 3.6-2). **TABLE 3.6-2** Identified Cultural Resources in the Study Area | Field Number | Description | |--------------|--| | AS-1 | Chert biface fragment and nearby rock cairn | | AS-2 | Rock cairn and associated lithic scatter | | AS-3 | Rock cairn | | AS-4 | Disturbed rock cairn | | AS-5 | Rock cairn | | AS-6 | Large prominent rock cairn with possible other embedded rock circle features | | AS-7 | Large rock cairn | | AS-8 | Tall rock cairn | | AS-9 | Three rock cairns with associated lithic scatter | | AS-10 | Rock cairn with wind break | | AS-11 | Rock cairn with associated small stack | | AS-12 | Small rock cairn | | AS-13 | Stone wall/wind break feature. Large circular-shaped rock feature. End-stacked boulder feature. | | AS-14 | Circular-shaped rock feature | | AS-15 | Lithic scatters | | AS-16 | Quarry | | AS-17 | Four rock features | | AS-18 | Possible Frenchman Springs Phase projectile point fragment | | AS-19 | Lithic scatter | | AS-20 | Rock cairn | | AS-21 | Lithic scatter | | AS-22 | Small lithic
scatter | | AS-23 | Rock cairn | | AS-24 | Rock cairn with associated chert flake | | AS-25 | Three rock cairns | | AS-26 | Rock cairn | | AS-27 | Five rock cairns | | AS-28 | Rock cairn/wind break | | AS-29 | Historic farmstead site | | AS-30 | Historic farm equipment | | AS-31 | Rock alignment feature with associated chert flake | | 45-YK-61 | Sulphur Spring site | | 45-BN-195 | Maiden Spring site. Large, extensive lithic scatter and habitation debris; various artifacts and raw materials. Significant archaeological site. | **TABLE 3.6-2** Identified Cultural Resources in the Study Area | Field Number | Description | |---------------------|--| | AS-32 | Lithic scatter; chert core fragment; chert flakes and angular waste; chalcedony flakes and angular waste. Chert biface fragment. | | AS-34 | Rock cairn | | AS-35 | Lithic scatter | | AS-36 | Historic farm site | | AS-37 | Two basalt cairns | | AS-38 | Historic site | | AS-39 | Lithic scatter | | AS-40 | Rock cairns and quarry site | | AS-41 | Rock cairn | | AS-42 | Rock cairn | | AS-44 | Trail—north end | | AS-44 | Trail—south end | | AS-45 | Firehearth | | MSI-1 | Obsidian biface thinning flake | | MSI-2 | Petrified wood flake | | MSI-3 | Flake | | MSI-4 | CCS flaked chunk | | HF-1 | Fence jacks | | MSI-5 | Chert biface fragment | | MSI-6 | Cayuse Phase projectile point | | Turbine 152 isolate | Obsidian flake | # 3.6.4 Impacts of the Proposed Action #### 3.6.4.1 Evaluation Criteria Impact levels for cultural resources have not been developed for this EIS because any impact to cultural resources is considered a high impact. The proposed project would have a significant and adverse effect if it altered, directly or indirectly, the characteristics of a historic property that qualify the property for inclusion on the NRHP, or if it diminished the integrity of the property's location, design, setting, materials, workmanship, feeling, and association. Adverse effects may include reasonably foreseeable effects caused by an action that may occur later in time, be farther removed in distance, or be cumulative. #### 3.6.4.2 Construction Impacts Many of the cultural resources listed in Table 3.6-2 could be significantly and adversely affected by project construction in the study area. Formal recordation of the identified cultural features as archaeological sites will take place in early 2002. Once formally recorded, the archaeological sites will be evaluated for their potential eligibility for inclusion in either the NRHP or the Washington Register of Historical Resources (WRHR) and would be examined in relationship to the project site. Direct adverse impacts of the proposed project on archaeological sites (as recorded and potentially included in the NRHP or WRHR) cannot be fully evaluated until the exact location of all project facilities has been determined. However, most archaeological sites in the study area are small in size and appear to be avoidable with careful siting of project facilities. Mitigation measures would be developed to ensure protection of cultural resources to the extent possible during siting and construction of facilities. Cultural resources other than archaeological features, such as traditional cultural properties (TCPs), may also be present within or adjacent to the project site and could be adversely impacted. Consultation with the Yakama Nation and the Wanapum Band may result in the identification of TCPs or recommendations from the Yakama Nation and Wanapum Band to engage in oral history investigations. Oral history investigations are commonly designed to identify the presence of TCPs and to determine project effects on TCPs. Such studies, if undertaken, can help facilitate consultations regarding impacts to cultural resources among the participating tribes and BPA. If TCPs are determined to be present, mitigation measures would be developed in consultation with the Yakama Nation and Wanapum Band. Wanapum elders visited the project site in August 2001 and expressed concern about construction of the project harming archaeological sites and cultural values of high importance to the Wanapum. As explained by Wanapum elders (Robert Tomanawash and Rex Buck, Jr.), construction of project facilities on the ridgetops would be incompatible with deeply held cultural values and religious beliefs. The Wanapum elders urged avoidance of archaeological features and avoidance of all construction on the ridgetops because the top of the Rattlesnake Hills is a zone where Indian youth conducted spirit quest activities and where some individuals were buried. The Yakama Nation has declined participation in archaeological field studies and declined to undertake oral history investigations. Therefore, information about TCPs of importance to the Yakama Nation is presently lacking. The information provided by the Wanapum elders is strongly suggestive that a TCP is present on the ridgetops of the Rattlesnake Hills. Indirect impacts to cultural resources could occur due to vandalism. However, because the project site is primarily on private property and new access roads would have locked gates, the potential for public access to the project site and study area is low. #### Mitigation. Impacts to cultural resources could be mitigated following procedures outlined in 36 CFR 800. Mitigation measures could include preconstruction data recovery collections and excavations, and monitoring of earth-disturbing construction operations by one or more qualified archaeologists and representatives of the affected tribes (for areas where buried cultural deposits could be present). BPA would adopt mitigation measures in its Record of Decision and would develop contracts as necessary to establish a binding commitment to implement the mitigation measures. A cultural resources mitigation monitoring plan (CRMMP) could be prepared in consultation with the affected tribes, BPA, Benton County, and the WASHPO. It would provide a detailed plan to guide the archaeological and tribal monitoring of earth-disturbing construction and would outline specific procedures to be followed if unanticipated discoveries were made during construction. The CRMMP would include procedures for issuing stop-work orders to construction contractors if discoveries were made and would also outline possible mitigation measures (treatment plans) to be employed in the event that significant cultural resources were discovered. The CRMMP would include procedures to deal with the unanticipated discovery of Native American skeletal remains consistent with all applicable state and federal laws and regulations. To minimize the potential for indirect impacts due to vandalism, new access roads would have locked gates installed and "No Trespassing" signs. # 3.6.4.3 Operation Impacts Normal operation and maintenance of the project would not affect cultural resources. Assuming that resources were identified but significant adverse effects were successfully avoided during construction, it is unlikely that operation and maintenance activities would result in harm to the avoided cultural resources. Preparation and implementation of a carefully conceived CRMMP would further reduce the potential for harmful effects of project operation and maintenance. # 3.6.4.4 Decommissioning Impacts Potential impacts to cultural resources during decommissioning would be similar to those for project construction. Mitigation in use at the time of decommissioning would be implemented and would likely be similar to that recommended for construction. # 3.6.5 Impacts of the No Action Alternative Under the No Action Alternative, cultural resources would not be affected by the proposed project. Other generation facilities would likely be constructed in the region and could cause impacts to cultural resources depending on the location and design of the facility. # 3.7 Noise # 3.7.1 Regulatory Framework Airborne sound is a rapid fluctuation of air pressure above and below atmospheric pressure. Noise is defined as unwanted sound. There are several ways to measure noise, depending on its source, the receiver, and the reason for the noise measurement. A decibel (dB) is the unit used to describe the amplitude of sound. Noise levels are stated in terms of decibels on the A-weighted scale (dBA). This scale reflects the response of the human ear by filtering out some of the noise in the low- and high-frequency ranges that the ear does not detect well. The A-weighted scale is used in most ordinances and standards. WAC 173-60 provides the applicable noise standards for Washington, including Yakima and Benton Counties. Neither county has promulgated independent state-approved noise standards. Both counties recommend that wind turbines generate no more than a 10 dBA increase over existing noise levels at residences. WAC 173-60 establishes maximum permissible environmental noise levels. These levels are based on the Environmental Designation for Noise Abatement (EDNA), which is defined as "an area or zone (environment) within which maximum permissible noise levels are established." There are three EDNA designations: - Class A: Lands where people reside and sleep (e.g., residential uses) - Class B: Lands requiring protection against noise interference with speech (e.g., commercial/recreational uses) - Class C: Lands where economic activities are of such a nature that higher noise levels are anticipated (e.g., industrial/agricultural uses). In this section, noise-sensitive areas are equivalent to Class A EDNA areas. Table 3.7-1 summarizes the maximum permissible levels of noise received at noise-sensitive (residential) areas (Class A EDNA) and at industrial/agricultural areas (Class C EDNA) from an industrial facility. **TABLE 3.7-1**State of Washington Noise Regulations | | Maximum Permissible Noise Levels (dBA) from an Industrial Source | | |
| | |---------------------|--|---------------------------------|--|--|--| | | Class A EDNA (Residential) Receiver | | Class C EDNA
(Agricultural/Industrial) Receiver | | | | Noise
Descriptor | Daytime
(7 a.m. – 10 p.m.) | Nighttime
(10 p.m. – 7 a.m.) | Anytime | | | | L _{eq} | 60 | 50 | 70 | | | | L ₂₅ | 65 | 55 | 75 | | | | L _{16.7} | 70 | 60 | 80 | | | | L _{2.5} | 75 | 65 | 85 | | | Note: Standard applies at the property line of the receiving property. Source: Washington Administrative Code 173-60-040. The following sources are exempt from the limits presented in Table 3.7-1: - Construction noise between the hours of 7 a.m. and 10 p.m. - Motor vehicles when regulated by WAC 173-62 ("Motor Vehicle Noise Performance Standards" for vehicles operated on public highways) - Motor vehicles operated off public highways, except when such noise affects residential receivers. For the purpose of this analysis, the residences in the study area are considered Class A EDNAs while agricultural lands are considered Class C EDNAs. # 3.7.2 Study Methodology The study area for noise impact analysis included all areas where residents have the potential to hear construction or operational noise from the project. No completely satisfactory method exists to measure the subjective effects of noise, or to measure the corresponding reactions of annoyance and dissatisfaction. This lack of a common standard primarily is a result of the wide variation in individual thresholds of annoyance and habituation to noise. Thus, an important way of determining a person's subjective reaction to a new noise is by comparing it with the existing or "ambient" environment to which that person has adapted. In general, the more the tonal (frequency) variations of a noise exceed the existing ambient noise level or tonal quality, the less acceptable the new noise will be, as judged by the exposed individual (California Energy Commission [CEC], 2001). With regard to increases in noise levels, knowledge of the following relationships is helpful: - Except in carefully controlled laboratory experiments, the human ear cannot perceive a change of 1 dB. - Outside the laboratory, a 3-dB change is considered a just-perceivable difference. - A change in level of at least 5 dB is required before any noticeable change in community response can be expected. - A 10-dB increase is subjectively heard as approximately a doubling in loudness and could cause an adverse community response (Kryter, 1970). The impact analysis was based on noise level measurements taken in the field, vendor-supplied noise data from NEG Micon 900-kW wind turbines, and computer modeling of full build-out of the project with 549 wind turbines. Noise level measurements were taken from August 24 through 26, 2001, in the eastern portion of the study area where several residences are located. Wind speeds were recorded in 1-minute averages and only briefly exceeded 10 miles per hour (mph). Continuous noise measurements were recorded in 10-second intervals from which hourly statistical levels were calculated. Additional information on the noise modeling is available from BPA or Benton County on request. # 3.7.3 Affected Environment There are five residences in the eastern portion of the project site. There are no residences near proposed wind turbines in the western portion of the project site. Figure 3.7-1 shows the location of proposed wind turbines, residences, and the noise level monitoring location from which background noise measurements were taken. Table 3.7-2 indicates the distance from residences to the wind turbines. The closest residence is approximately 350 feet from a turbine string. **TABLE 3.7-2**Distance Between Closest Wind Turbine and Residence | Receptor | Description | Closest Turbine (approx. feet) | |----------|------------------------------|--------------------------------| | 1 | Section 27, southwest corner | 2,675 | | 2 | Section 32, northeast corner | 970 | | 3 | Section 36, northeast corner | 755 | | 4 | Border of sections 34 and 3 | 1,880 | | 5 | Section 35, northeast corner | 350 | Under low wind speed conditions, the entire project site is extraordinarily quiet. Occasional noise results from wind, farm machinery, vehicles, and animals. Noise level monitoring results indicated that nighttime noise levels dropped below 20 dBA and daytime levels ranged from the 30s to low 40s dBA. During significant portions of the monitoring period, noise levels dropped below the detection limit of the meter (20 dBA). Even in more windy conditions, the noise level at the project site was subjectively perceived to be low due to the absence of trees or other features that could create noise in the wind. # 3.7.4 Impacts of the Proposed Action #### 3.7.4.1 Evaluation Criteria The two kinds of noise limits are absolute and relative. An absolute limit is a noise level that should not be exceeded, while a relative limit specifies the permissible increase in noise levels above existing background levels. The state of Washington noise regulations specify absolute limits (see Table 3.7-1). A 10-dBA increase from operation of the wind turbines is used as a threshold in this analysis based on Benton and Yakima County recommendations. - Noise impacts from operation of wind turbines would be considered high (and significant) if the noise increase were 10 dBA or more above existing levels and/or WAC standards were exceeded. - Noise impacts would be considered moderate if the noise increase at residences was nearly 10 dBA above existing levels and/or very close to WAC standards. - Noise impacts would be considered low if existing residences were exposed to project-related noise that is both less than the WAC standard and less than 10 dB above the background sound level. Construction noise limits are less restrictive because the noise is temporary. Because WAC 173-60-050 specifically exempts construction activity noise impacts to Class A (residential) properties during daytime hours (between 7 a.m. and 10 p.m.), there is no absolute limit established. Construction noise is also exempt from relative noise limits. ### 3.7.4.2 Construction Impacts Both the U.S. Environmental Protection Agency (EPA) Office of Noise Abatement and Control and the Empire State Electric Energy Research Company have extensively studied noise from individual pieces of construction equipment as well as from construction sites of power plants and other types of facilities (EPA, 1971; Barnes et al., 1976). Because specific information about types, quantities, and operating schedules of construction equipment is not known at this point, information from these documents for similarly sized industrial projects has been used. Use of these data, which are 21 to 26 years old, is conservative because the evolution of construction equipment has been toward quieter designs. These data are derived from the most recent comprehensive study and are still widely used by acoustical professionals. Table 3.7-3 shows the loudest equipment types that would operate at a major construction site. The composite average or equivalent site noise level, representing noise from all equipment used during each construction phase, is also presented in the table. **TABLE 3.7-3**Construction Equipment and Composite Site Noise Levels | Construction
Phase | Loudest
Construction
Equipment | Equipment
Noise Level
(dBA) at 50 feet | Long-Term
Composite Noise
Level (dBA) at 50 feet | Long-Term Composite
Noise Level (dBA) at
1000 feet | |------------------------------|--------------------------------------|--|--|--| | Site clearing and excavation | Dump truck
Backhoe | 91
85 | 89 | 63 | | Concrete pouring | Truck
Concrete mixer | 91
85 | 85 | 59 | | Steel structure erection | Derrick crane
Jackhammer | 88
88 | 89 | 63 | | Mechanical | Derrick crane
Pneumatic tools | 88
86 | 84 | 58 | | Cleanup | Rock drill
Truck | 98
91 | 79 | 53 | Source: EPA, 1971; Barnes et al., 1976. Pile driving and blasting, if required, would result in temporary loud noise in the study area. There also would be increased noise from rock quarry activities such as crushing; however, the nearest residence to a proposed rock quarry is over 2 miles away. Construction vehicles traveling on State Route 241 and along Lewandowski, Gap, Snipes, Crosby, Crooks, Bennett, and other nearby roads would temporarily increase noise levels. While temporary construction noise may be audible and exceed current levels, because it is exempt from absolute and relative noise limits during daytime hours when construction would take place, noise impacts would be low. Implementation of mitigation measures would ensure that impacts were reduced to the lowest level possible. #### Mitigation. Mitigation measures for construction activities would include the following: - Limit construction activities within 1 mile of any residence to the hours between 7 a.m. and 7 p.m. - Notify nearby residents of planned unusually noisy construction activities (particularly blasting and pile driving) and provide them with a contact phone number for the project. ### 3.7.4.3 Operation Impacts In general, wind projects operate about one-quarter to one-third of the time, depending on the seasons and weather conditions. On the project site, winds are highest in the winter and lower in summer. The proposed wind turbines could potentially operate 24 hours per day during windy times, and not at all when the winds are calmer. Without mitigation, noise impacts at the five nearby residences would be high at nighttime when ambient noise levels are extremely low. Daytime ambient noise levels vary more than nighttime levels so
daytime noise impacts would range from low to high. Based on the results of noise modeling, development of the proposed project as currently designed would result in an increase in ambient noise levels at all five residences in the eastern portion of the study area. The analysis is based on information provided by NEG Micon for a 900-kW turbine operating at wind speeds of 18 mph and quiet conditions (10 mph winds) at the residences. Under these conditions, the potential for objectionable noise is the greatest because there is little background noise available to mask turbine noise. The wind turbines being considered begin operating at approximately 9 mph. While a single wind turbine would generate approximately 50 dBA of noise at 165 feet, the noise model assumed that all of the turbines would be operating at the same time, thereby producing significantly more noise. The predicted noise levels from the 900-kW wind turbines proposed in the eastern portion of the study area are shown in Table 3.7-4. At all five residences, nighttime noise levels would increase over existing conditions (in a range of 21 dBA at residence 3 to 31 dBA at residence 5). Nighttime noise levels at residence 5 would also exceed the WAC standard. Without mitigation, a high noise impact would occur during the nighttime at all five residences because nighttime noise levels would increase well over 10 dBA above existing levels. **TABLE 3.7-4**Comparison of Modeling Results to Nighttime WAC Noise Standard | Residence | Description | Distance to
Wind
Turbine
(feet) | Predicted
Sound
Pressure
Level
(dBA) | WAC
nighttime
Standard
(dBA) | Exceeds
WAC | Typical
Existing
nighttime
Levels
(dBA) | Exceeds Existing Nighttime Levels by (dBA) | Impact
Level | |-----------|-----------------------------------|--|--|---------------------------------------|----------------|---|--|-----------------| | 1 | Section 27,
SW corner | 2,675 | 42 | 50 | NO | 20 | 22 | High | | 2 | Section 32,
NE corner | 970 | 46 | 50 | NO | 20 | 26 | High | | 3 | Section 36,
NE corner | 755 | 50 | 50 | NO | 20 | 30 | High | | 4 | Border of
sections 34
and 3 | 1,880 | 41 | 50 | NO | 20 | 21 | High | | 5 | Section 35,
NE corner | 350 | 51 | 50 | YES | 20 | 31 | High | During the daytime, the noise levels generated by the wind turbines would not be expected to exceed the daytime WAC standard of 60 dBA at any of the five residences. Daytime ambient noise levels measured at the project site varied more than nighttime levels and ranged from about 24 to 45 dBA. Noise levels during the daytime would increase over ambient levels from zero up to 27 dBA at residence 5 (when ambient levels are at 24 dBA). Without mitigation, daytime noise impacts would range from low to high at all five residences depending on current ambient noise levels. Because noise diminishes with distance, adequate setbacks are the primary tool for preventing noise problems. Modeling results indicate that using the 900-kW turbines, a setback of 2,700 feet would still create a 20 dBA increase from operation of the wind turbines. Manufacturers data show that at a distance of 3,300 feet the noise level from a single 900-kW turbine is 30 dBA (a 10-dBA increase over existing levels). If the 900-kW turbines are used, it is likely that a minimum setback of more than 3,300 feet would be required to ensure that the noise increase is less than 10 dBA. However, other size turbines are also being evaluated for the proposed project. A 1500-kW turbine would allow generation of the same amount of electricity with 40 percent fewer turbines, and noise levels could be substantially lower. #### Mitigation. Implementing the following mitigation measures would reduce noise impacts to a low level. • The final turbine layout for the proposed project would include setbacks of turbines from all project vicinity residences to ensure that noise increases at these residences from the project would be less than 10 dBA. If 900-kW turbines are used, this setback likely would be about 3,300 feet. An acoustical analysis of the final turbine layout would be prepared for all wind turbines to be located within 1 mile of an existing residence, prior to obtaining construction permits from Benton County. The analysis would be - conducted using noise level data for the final turbine type, size, and layout and would demonstrate compliance with the 10 dBA increase criteria established by the county. - If technically and economically feasible, consider installing larger sized turbines for the project, which would require fewer turbines to be installed for the same amount of power, and thus allow turbines to be located farther from project vicinity residences. ### 3.7.4.4 Decommissioning Impacts Noise impacts from decommissioning of the project would be similar to those during construction. If roads are left in place, the duration of decommissioning noise would be significantly shorter than the construction period. No blasting or pile driving would be required, resulting in lower noise levels than for construction. The same mitigation measures used during construction could also be used during the decommissioning phase. ## 3.7.5 Impacts of the No Action Alternative Under the No Action Alternative there would not be any construction-related or operational noise impacts from the proposed project. Both the construction and operational impacts of a gas-fired CT are more noise-intensive than the proposed wind generation. Construction impacts from a conventional plant can exceed 110 dBA at 100 feet during the steam blowdown activities, and operational noise levels can exceed 80 dBA at 100 feet (CEC, 2001). The noise impacts of a gas turbine generator would depend on its location and design. In some settings, it could be considered highly incompatible with the existing environment. However, in the appropriate location, noise impacts could be minor. # 3.8 Water Resources and Wetlands # 3.8.1 Regulatory Framework - Clean Water Act, Section 404 Section 404 of the federal Clean Water Act requires a permit from the U.S. Army Corps of Engineers (ACOE) for the discharge of dredge or fill material into jurisdictional waters or wetlands of the U.S. - Clean Water Act, Section 401 Section 401 of the Clean Water Act requires state certification that the discharge of dredge or fill material will not harm jurisdictional waters or wetlands such that an exceedance of state water quality standards will occur. - Clean Water Act Section 402 A General Stormwater Permit under the NPDES is required for all soil-disturbing activities where 5 or more acres (1 or more acre beginning in December 2002) will be disturbed, and where the acreage will have a discharge of stormwater to a receiving water (for example, wetlands, creeks, unnamed creeks, rivers, marine waters, ditches, estuaries), and/or to storm drains that discharge to a receiving water. - Washington Shoreline Management Act Washington's Shoreline Management Act (SMA) applies to all marine waters, streams with a mean annual flow greater than 20 cubic feet per second, water areas of the state larger than 20 acres, upland areas called shorelands, and other associated areas (Washington State Department of Ecology [Ecology], 1999). • Benton and Yakima County Critical Areas Ordinances – Title 15 of the Benton County Ordinance and Title 16A of the Yakima County Ordinance provide county level protection of critical areas and resources. Critical areas and resources include wetlands, rivers and creeks, critical aquifer recharge and interchange areas, frequently flooded areas, geologically hazardous areas, and fish and wildlife conservation areas. Fish and wildlife conservation areas identified in Title 15 of the Benton County Code include Washington State Natural Areas Preserves and Natural Resource Conservation Areas, and WDFW Priority Habitats. The county ordinances provide guidelines for protecting and mitigating impacts to these areas. # 3.8.2 Study Methodology The study area evaluated for water resources and wetlands included all locations of project facilities, both temporary and permanent, identified in Figure 2.1-2. Fieldwork was targeted in those locations most likely to have waters or wetlands of the U.S. based on study of existing materials. Information needed to characterize water flow, quality, and use in the study area was derived from available agency information on the Internet, communications with local residents and public officials, and field reconnaissance conducted in the summer and fall of 2001. Waters and wetlands of the U.S. in the study area were initially determined by reviewing USGS 7.5-minute topographic maps, National Wetland Inventory maps, the hydric soils list for the state of Washington, and aerial photographs. Probable waters and wetlands of the U.S. included springs, creeks, intermittent drainages, and areas with listed hydric soils. These areas were visited to determine if waters and wetlands of the U.S. are present on the project site. Fieldwork was conducted from May 23 to 25, 2001, and on August 23, 2001. Wetlands were delineated in accordance with the ACOE 1987 Wetland Delineation Manual (Environmental Laboratory, 1987). ### 3.8.3 Affected Environment #### 3.8.3.1 Regional Context The proposed project would be located in the Yakima River Basin in south central Washington. The Yakima River and its tributaries drain about 6,150 square miles or 4 million acres in Washington. Some drainages on the project site eventually flow to the Yakima River, located about 10 miles south of the study area. The Yakima River Basin is bounded by the Cascade Range to the west, the Wenatchee Mountains to the north, the Rattlesnake Hills to the east, and by the Horse Heaven Hills to
the south. Basin elevations range from 8,184 feet above mean sea level in the Cascades to 340 feet at the Yakima River and the Columbia River confluence (Ecology, 2001). The Basin consists of nearly 40 percent forest land, 40 percent rangeland, and 15 percent cropland, with the remaining 5 percent composed of other land uses and water bodies (Ecology, 2001). ### 3.8.3.2 Surface Water Hydrology Mean annual precipitation ranges from 10 to 15 inches in the Rattlesnake Hills. Approximately 70 percent of the precipitation occurs between November and April, averaging 1 inch per month as either rain or snow in mid-winter months. Water resources are limited in the study area. The only perennial creek is the portion of Sulphur Creek located below Sulphur Spring. The existing western access road, which would be improved prior to construction, is a private ranch road extending east from Lewandowski Road. The private road parallels Sulphur Creek for approximately 2.5 miles and crosses the creek once. Intermittent creeks include Snipes Creek, Spring Creek, and the portion of Sulphur Creek located above Sulphur Spring, along with numerous unnamed ephemeral (that is, lasting a very short time) drainages. Five springs occur within the study area: Bennett Spring, Maiden Spring, West Maiden Spring, Lower Maiden Spring, and Canyon Spring. Four other unnamed springs are mapped on the USGS 7.5-minute topographic maps, but no water was present at these sites during the May 2001 field visit. Sulphur Creek, Snipes Creek, and Spring Creek all would likely be considered jurisdictional Waters of the U.S. under Section 404 of the Clean Water Act because they are tributaries to other waters (e.g., Yakima River). It is unlikely that all of the unnamed ephemeral drainages would be classified as jurisdictional Waters of the U.S.; only those unnamed ephemeral drainages with defined channel beds would probably be considered Waters of the U.S. Ephemeral drainages that are simply swales or slight depressions in the landscape with no connections to jurisdictional waters (and in some cases are within plowed fields) are not Waters of the U.S. (Erkel, personal communication). None of the project facilities would be located within the 100-year floodplains identified in Benton County (Benton County, 2000) or Yakima County (Yakima County, 1997). #### 3.8.3.3 Water Quality The EPA Index of Watershed Indicators gives the Lower Yakima Basin an overall rating of "more serious problems, low vulnerability." Of most concern within the basin are population change, agricultural runoff, and hydrologic modification. These problems inhibit the river from meeting its designated uses, contribute to the presence of contaminated sediments, and result in the exceedance of conventional water quality parameters (EPA, 2001). The Yakima River is listed as being "water quality limited" in Ecology's 1998 303(d) list of streams that do not meet water quality standards. Section 303(d) of the Clean Water Act requires each state to develop a list of water bodies that do not meet state surface water quality standards after implementation of technology-based controls. The state is then required to complete a total maximum daily load (TMDL) program for water bodies on the 303(d) list. The TMDL program must address water quality on a basin-wide scale to ensure that overall water quality standards will be met. A suspended sediment TMDL has been implemented for several years in the Lower Yakima Basin. A fecal coliform TMDL has been submitted and approved for Granger Drain (Linden, personal communication). #### 3.8.3.4 Water Use Surface waters within the Yakima River Basin are fully or over appropriated (Yakima County, 1997). Groundwater right permits are not being issued until a groundwater study has been completed for the basin. Wells can be drilled for up to 5,000 gallons per day without the need for a water right (Cramer, 2001). Table 3.8-1 lists the aquifers in the Lower Yakima Basin. In general, there is little recharge to these aquifers in the higher elevations because of limited precipitation. TABLE 3.8-1 Aquifers in the Lower Yakima Basin | Aquifer | Square Miles | Rock Type | |---|--------------|---| | Columbia Plateau aquifer system | 1,195 | Basalt and other volcanic-rock aquifers | | Volcanic- and sedimentary-rock aquifers | 154 | Basalt and other volcanic-rock aquifers | | Pacific Northwest basin-fill aquifers | 1,609 | Unconsolidated sand and gravel aquifers | Source: U.S. Geological Survey. 1998. Principal Aquifers of the 48 Contiguous United States. #### 3.8.3.5 Wetlands Six sites located in the study area meet the ACOE/state of Washington criteria (soils, vegetation, hydrology) for a wetland (Environmental Laboratory, 1987; Ecology, 1997). Five sites are associated with springs. A sixth site is associated with Sulphur Creek at the location where the western access road crosses Sulphur Creek (Figure 3.8-1). These wetlands are classified as palustrine systems based on the Cowardin et al. (1979) wetland classification system. Palustrine systems include "nontidal wetlands dominated by trees, shrubs, persistent emergents, or emergent mosses or lichens, and are bounded by uplands" (Cowardin et al., 1979). The wetlands are all classified as Category III¹ based on the *Washington State Wetlands Rating System for Eastern Washington* (Ecology, 1991) and the Benton and Yakima County Critical Areas Ordinances. These rating systems are designed to assist in identifying management protection standards. The Benton and Yakima County Critical Areas Ordinances identify width requirements of buffer zones. The six wetland sites are described below and are shown in Figure 3.8-1. #### Site 1. Canyon Spring. Canyon Spring is located at the western end of the study area in a narrow, steep drainage. The wetland is approximately 12 feet wide by 150 feet long. It is associated with a series of four or five springs, one of which is piped into a water trough for cattle use. The vegetation is dominated by watercress (*Rorippa nasturtium-aquaticum*), and associated with yellow monkeyflower (*Mimulus guttatus*), celery-leaved buttercup (*Ranunculus sceleratus*), and stinging nettle (*Urtica dioica*). Chokecherry (*Prunus virginiana*) is present in the adjacent _ ¹ Category III wetlands provide important functions and values. They are important for a variety of wildlife species and occur more commonly throughout the state than either Category I or II wetlands. Generally these wetlands will be smaller, less diverse, and/or more isolated than Category II wetlands. They will occur more frequently, be difficult to replace, and need a moderate level of protection. (Ecology, 1991) uplands. The wetland receives heavy cattle use, and is likely frequented by various wildlife species because water resources are limited in the vicinity. ### Site 2. Maiden Spring. Maiden Spring, also located at the western end of the study area, is used as a water source for a cattle trough. Overflow from the trough flows for approximately 500 feet to a narrow, intermittent drainage, creating a linear wetland ranging from 2 to 20 feet wide. The vegetation is dominated by celery-leaved buttercup, yellow monkeyflower, and Kentucky bluegrass (*Poa pratensis*). Watercress, duckweed (*Lemna minor*), and stinging nettle also are present, along with scattered golden current (*Ribes aureum*), chokecherry, and red-osier dogwood (*Cornus stolonifera*). The wetland receives heavy cattle use due to the presence of the trough, and is likely frequented by various wildlife species because water resources are limited in the vicinity. ### Site 3. West Maiden Spring. West Maiden Spring, located approximately one-half mile west of Maiden Spring, creates a narrow, linear wetland approximately 12 feet wide by 150 feet long. Some of the water from the spring is diverted into a water trough for cattle. The vegetation is dominated by celery-leaved buttercup and yellow monkeyflower, with water speedwell (*Veronica anagallis-aquatica*) also present. The wetland is frequented by cattle, and probably by other wildlife species, because water resources are limited in the vicinity. ### Site 4. Lower Maiden Spring. Lower Maiden Spring is located approximately one-half mile southwest of Maiden Spring. Like the other springs, it has been modified for cattle by piping springwater into a trough. Overflow from the trough creates a small wetland approximately 12 feet wide by 35 feet long. Dominant species include celery-leaved buttercup, yellow monkeyflower, Kentucky bluegrass, and foxtail barley (*Hordeum jubatum*). Like the other springs, this site is heavily used by cattle, and probably by other wildlife species, as a watering area. #### Site 5. Bennett Spring. Bennett Spring is located in the eastern portion of the study area on the north slope of the Rattlesnake Hills. The spring is piped into a cattle trough and overflow creates a wetland approximately 50 feet wide by 50 feet long. The dominant species at this site is water speedwell. Like the other springs, this site is heavily used by cattle, and probably by other wildlife species, as a watering area. #### Site 6. Sulphur Creek. Site 6 is a wetland fringe located adjacent to Sulphur Creek. The average width of the wetland is 6 feet. Dominant species include duckweed, willow weed (*Polygonum laptifoliumi*), watercress, celery-leaved buttercup, foxtail barley, spike rush (*Eleocharus palustris*), and various rushes (*Juncus spp.*). Cottonwoods and willows are present on the adjacent upland. This area is heavily used by cattle. A wetland delineation report will be completed in early 2002 and submitted to the appropriate agencies for their review and concurrence. The report will be available from BPA and Benton County upon request. # 3.8.4 Impacts of the Proposed Action #### 3.8.4.1 Evaluation Criteria - Impacts related to water
resources and wetlands would be considered high (and significant) if the proposed project caused a water body that supports sensitive fish, waterfowl, and animal habitat, or human uses such as drinking water to become altered so as to affect its uses or integrity; or it caused water quality in drainages downstream of the project site to degrade below state or local standards; or it caused permanent changes in wetland hydrology, vegetation, or soils to the extent that the area would no longer function as a wetland. Impacts to water use would be considered high if water demand injured an existing water right or exceeded the amount available for beneficial use. - Impacts related to water resources and wetlands would be considered moderate if the proposed project did not affect a sensitive water body but caused water quality in downstream drainages to be degraded below state or local standards, which could be partially mitigated; or it caused a wetland to be partially filled or a wetland function to be partially degraded. - Impacts related to water resources and wetlands would be considered low if the proposed project did not affect a sensitive water body but caused water quality in downstream drainages to be slightly degraded (not below state or local standards) and could be fully mitigated; or it caused a short-term disturbance to a wetland or disruption of a wetland function. ### 3.8.4.2 Construction Impacts ### Surface Water Hydrology. While construction activities have the potential to create alterations to natural drainage patterns, the alterations would be temporary and localized, constituting a low impact. Natural drainage patterns would be maintained during construction to the extent practicable and all patterns would be restored post-construction. Utility crossings would be located to avoid or greatly reduce impacts. In general, the proposed layout of the project facilities avoids drainages because the nature of the project requires most facilities to be located on ridges and upland areas. The overhead transmission line would span waterways, thus avoiding drainages. However, 14 access road crossing sites were identified in the study area that may involve jurisdictional Waters of the U.S. Most of the road crossings would also have underground collector cable trench crossings adjacent to or nearby the road. Thirteen crossings occur at intermittent/ephemeral drainages, and one crossing occurs at the perennial section of Sulphur Creek (wetland impacts associated with Sulphur Creek are discussed below). Culverts or fords would be used at all drainage crossings, as specified by the County Critical Areas Ordinance. Impacts to Waters of the U.S. during construction would be low with incorporation of recommended mitigation measures. Estimates of maximum fill for each crossing are shown in Table 3.8-2. **TABLE 3.8.2** Summary of Potential Impacts to ACOE Jurisdictional Waters (Including Wetlands) | Crossing
Ref. No.* | Township,
Range, and
Section No. | Proposed
Development | Channel Width
(approximate
feet) | Channel Depth
(approximate
feet) | Area of Fill
(approximate
square feet) | Maximum Fill ¹ (approximate volume in cubic feet) | Approximate
Slope
(degree) | Designation ² | |-----------------------|--|------------------------------------|--|--|--|--|----------------------------------|--| | | T11N R 23E | | | | | | | | | 1 | 26 | Upgrade
existing
access road | 6 | 1 | 180 | 180 | <5° | Includes Sulphur
Creek (perennial
stream) and adjacent
emergent wetland
(Wetland Site 6) | | | T11N R24E | | | | | | | | | 2 | 19 | Access road | 3 | 1 | 90 | 90 | <5° | Shrub-steppe | | 3 | 19 | Access road | 3 | 1 | 90 | 90 | <5° | Shrub-steppe | | 4 | 23 | Access road | 3 | 1 | 90 | 90 | <5° | Shrub-steppe | | 5 | 25 | Access road | 4 | 4 | 120 | 480 | <5° | Shrub-steppe | | 6 | 25 | Access road | 4 | 4 | 120 | 480 | <5° | Shrub-steppe | | 7 | 25 | Access road | 4 | 3 | 120 | 360 | <5° | Shrub-steppe | | 8 | 25 | Access road | 4 | 4 | 120 | 480 | <5° | Shrub-steppe | | 9 | 25 | Access road | 4 | 4 | 120 | 480 | <5° | Shrub-steppe | | 10 | 26 | Access road | 4 | 3 | 120 | 360 | <5° | Shrub-steppe | | 11 | 26 | Access road | 4 | 3 | 120 | 360 | <5° | Shrub-steppe | | 12 | 36 | Access road | 4 | 4 | 120 | 480 | <5° | Shrub-steppe | | 13 | 36 | Access road | 4 | 4 | 120 | 480 | <5° | Shrub-steppe | | | T11N R25E | | | | | | | | | 14 | 33 | Access road | 6 | 4 | 180 | 720 | <5° | Shrub-steppe | | TOTAL | | | | | | 5,130 | | | #### Notes: ^{*}Refer to Figure 3.8-1. Assumes the proposed access road is 30 feet wide and the maximum fill area is the length of the crossing. Refers to the habitat type (see Section 3.3). Given the type and extent of impacts, activities most likely could be conducted under an ACOE Nationwide Permit #14, which covers discharges to Waters of the U.S., including wetlands, for construction of linear transportation crossings. The ACOE would be consulted to determine the appropriate ACOE permit and authorizations that may be required for the proposed project. Such activities must also meet the requirements of the Benton and Yakima Counties Critical Areas Ordinances. #### Water Quality. Construction of project facilities would require extensive earthwork and machinery operation. Erosion from earthwork could subsequently create sedimentation in surface drainages. Heavy machinery use may increase the risk of gasoline or oil spills, which could also pollute waters in the area. These potential impacts would be minimized by obtaining a NPDES General Permit for Stormwater Discharges associated with Construction Activities from Ecology and developing and implementing a Stormwater Pollution Prevention Plan (SWPPP). The SWPPP would include a variety of best management practices (BMPs) to minimize erosion and sediments from rainfall runoff at the site, and to identify, reduce, eliminate, or prevent the pollution of stormwater (see Mitigation discussion, below). This plan would allow onsite stormwater filtering and stormwater passage without damaging roads or adjacent areas and without increasing the sedimentation load to intermittent streams that flow to the Yakima River. Water quality impacts would be low with implementation of these BMPs. #### Water Use. Based on water needs during construction of a similar wind project, it is estimated that up to 18 million gallons of water would be needed for cement mixing and dust control. Given that this amount would be needed during an approximate 9-month construction period, the percentage of the total use within the basin would be less than 1 percent. Peak day demands are not expected to exceed 0.20 million gallons per day (mgd). Several water sources are being considered to satisfy project construction needs. One source involves soliciting a holder of an irrigation water right to obtain a temporary transfer that would be in place for the entire irrigation season. A corresponding reduction in irrigated agriculture would have to occur for that season. Another source would be to solicit a well owner with an approved water right to apply for a Short-term Use of Water for a nonrecurring project. Water would be transported in 5,000-gallon water trucks to the project site. Other nearby municipal sources of water are being evaluated, and appear to be available from the City of Sunnyside. The project's water demand during construction would not be expected to injure an existing water right or exceed the amount of water available for beneficial use within the watershed, and impacts from water use would be low. #### Wetlands. Based on the proposed layout of project facilities, none of the wetlands associated with springs (Canyon Spring, Maiden Spring, West Maiden Spring, Lower Maiden Spring, and Bennett Spring) would be affected, therefore, there would be no impacts. Improvements to the western access road, including installation of a culvert or upgrade to the existing ford, would impact the fringe wetland associated with Sulphur Creek (Site 6). Installation of a culvert would disturb approximately 180 square feet (0.004 acre) of wetland (assuming the access road is 30 feet wide and the average width of the wetland crossed by the access road is 6 feet). Because this wetland would be partially filled, impacts to wetlands would be moderate. *Mitigation*. Mitigation measures include complying with federal, state, and local requirements and ordinances and implementing BMPs during construction. The developer would obtain a NPDES General Permit for Stormwater Discharges associated with Construction Activities from Ecology and develop and implement a Stormwater Pollution Prevention Plan (SWPPP) that would include a variety of BMPs. BMPs include standard approved construction practices and erosion management techniques to prevent and control erosion, as follows: - Minimize vegetation removal. - Avoid construction on steep slopes or areas designated as having a high susceptibility of erosion. - Properly design cut-and-fill slopes. - Install roadway drainage to control and disperse runoff; ensure that access roads contain pervious, gravel surfaces. - Apply erosion control measures such as silt fencing, straw mulch, straw bale check dams, and soil stabilizers, and reseed disturbed areas as required. - Apply stabilization measures such as temporary seeding, permanent seeding, vegetative buffer strips, and other appropriate practices, and structural measures such as silt fences, sediment traps, and drainage swales. - Minimize construction and increase gravel cover on roads during wet weather to reduce potential rutting and soil loss.
Use culverts or hardened ford crossings at all drainage crossings. Natural drainage patterns would be maintained to the extent practicable. Slopes and vegetation would be restored after construction. Utility crossings would be located to avoid natural drainages to the extent practicable. A permit to fill the Sulphur Creek wetland and Waters of the U.S. would be required from ACOE, Ecology, and Yakima County and replacement wetlands or restoration of existing wetlands would be provided as specified by these agencies.¹ According to Ecology, the required replacement ratio for a Category III emergent wetland (as found in the study area) would be 1.5:1 (1.5 acres replaced for every acre impacted). A mitigation plan describing proposed replacement/restoration would be prepared and submitted to ACOE, the state of Washington, and Yakima County for approval, and this mitigation plan would be implemented. - ¹ A Joint Aquatic Resources Permit Application (JARPA) form can be obtained from Ecology. This single form can be used to apply for ACOE, state, and local permits involving wetlands. #### 3.8.4.3 Operation Impacts ### Surface Water Hydrology. All roads and substation sites would be gravel to reduce the amount of impervious surface on the project site. New permanent structures such as tower foundations and operation and maintenance buildings would slightly increase the amount of impervious surface area. This would be a low impact because the small area occupied by these facilities would not alter runoff rates and patterns enough to degrade water quality downstream. ### Water Quality. Water quality impacts from runoff around project facilities would be low with installation of permanent drainage and erosion control facilities. Up to about 15 full-time staff would work at up to three operation and maintenance (O&M) facilities and would use the facilities at various times of the day. The O&M facilities would provide potable drinking water and restrooms. A functioning and well-maintained septic system would not impact water quality if designed and operated correctly. #### Water Use. In very dry regions, wind turbine blade washing is required to maintain the efficiency of the turbine. The study area receives sufficient precipitation to keep the blades reasonably clean; therefore, blade wash water would not be required regularly for project operation. Occasional blade washing might be conducted by a contractor who would purchase water from a private or municipal source with a valid water right. The only water normally required for project operation would be a maximum of 5,000 gallons per day for all three O&M facilities combined for normal lavatory and kitchen uses by maintenance employees. Existing water rights would not be detrimentally affected, and sufficient water would be available for the intended uses. Impacts to water use would be low. #### Wetlands. No impacts to wetlands are anticipated from operation of the proposed project. The only wetland that could be affected is the wetland associated with Sulphur Creek where the western access road crosses the creek. However, impacts from any road maintenance activities, such as periodic grading, are not anticipated to have a measurable effect on the wetland and impacts would be low. **Mitigation.** Permanent drainage and erosion control facilities would be constructed, as necessary, to allow permanent stormwater passage without damaging the roads or adjacent areas and without increasing sedimentation and runoff to intermittent streams that flow to the Yakima River. An onsite septic field would be developed for each operation and maintenance facility and would be located according to guidelines provided by the county. #### 3.8.4.5 Decommissioning Impacts Impacts from project decommissioning would be similar to those for project construction and could temporarily affect local drainage patterns and jurisdictional Waters of the U.S. However, existing roads would be used for decommissioning activities, thereby reducing soil-disturbing activity. Roads would be removed or left in place according to the landowner's wishes. Facilities would be removed to a depth of 3 feet below grade and the soil surface would be restored as close as possible to its original condition, or to match the current land use. Reclamation procedures would be based on site-specific requirements and techniques commonly employed at the time the area would be reclaimed, and would likely include regrading, adding topsoil, and revegetating all disturbed areas. Impacts to surface water hydrology and water quality from decommissioning would be low. It is unlikely that decommissioning would require as much water as is estimated for construction because concrete foundations would not be constructed and access roads would likely remain in place. Decommissioning would result in the abandonment of up to 5,000 gallons of water used per day at the O&M facilities. Impacts to water use from decommissioning would be low. Decommissioning of project facilities would not impact any of the five wetlands associated with springs. It is reasonable to assume that the culvert or upgraded ford installed at the Sulphur Creek crossing would remain in place once the project is decommissioned. Therefore, no further impacts are expected to fringe wetlands associated with Sulphur Creek. # 3.8.5 Impacts of the No Action Alternative Under the No Action alternative, the project site would likely remain as nonirrigated agriculture, and potential impacts from the project as described in this section would not occur. Other energy resources built in the region instead of the proposed project could result in water or wetlands impacts, although the location of future generation is unknown. The most likely source would be a gas-fired CT, which for a similar-sized facility could use up to 166 million gallons of water per year, or approximately 455,000 gallons per day compared with a maximum of 5,000 gallons per day for operation of the proposed project, according to BPA's RPEIS. In addition, CTs typically must discharge "cooling tower blowdown" water (water remaining after cooling water has been recirculated and concentrated), which could create potential water quality impacts depending on the location of the facility. # 3.9 Transportation and Traffic # 3.9.1 Regulatory Framework Benton and Yakima Counties have design standards related to roadway geometry and paving materials, load limits for bridges, and weight limits or closures under defined circumstances. All new road construction in the counties must be in accordance with the current edition of the Washington State Department of Transportation's (WSDOT) *Standard Specifications for Road and Bridge Construction*. Program and project planning in Benton and Yakima Counties is reflected in their respective 6-year road construction programs. According to the Benton County Department of Public Works staff, there are currently no construction projects planned on county roads in the study area (Childress, 2001). Yakima County does not have plans to improve Lewandowski Road, the proposed main access road located southwest of the project site (Ballard, personal communication). Benton and Yakima County roads currently have very low average daily traffic volumes in the project vicinity. As described in both the Benton and Yakima County Comprehensive Plans, the counties have determined that level of service (LOS) C at peak hour is a reasonable and achievable standard for the major arterial roadways. ## 3.9.2 Study Methodology The study area for transportation and traffic impact analysis included the project site and the roadways to the south and west of the project site, as shown in Figure 3.9-1. State Route (SR) 241 and Lewandowski Road (in Yakima County) and the Benton County road network would be the primary routes used by vehicles during construction and operation of the project. Interviews with engineers from the Benton and Yakima County Public Works Departments provided baseline information about the county road systems. Information obtained from or discussed with the counties included load limits on bridges, design standards for county roads, planned repairs and construction, selected traffic counts, circumstances requiring restrictions or limits, and pavement conditions. To calculate impacts to the state and county road system, a determination was made of the likely haul routes to be used in constructing the project. The types and numbers of construction vehicles needed for various activities were estimated, and traffic volumes were projected for both the construction and operation phases of the project. #### 3.9.3 Affected Environment #### 3.9.3.1 Regional Setting The proposed project would be located in a rural area in both Benton and Yakima Counties between SR 241 (at Lewandowski Road) in Sunnyside (Yakima County) at the western end of the project site, and Pearl Road (also know as Frank's Road) north of Prosser (Benton County) at the eastern end of the project site. The intersections of SR 241 with SR 24 and Interstate 82 are to the immediate north and south of the western side of the study area, respectively. Several rural roads lead to the eastern side of the project site from I-82. These are Gap, Hinzerling, Snipes, and Crosby Roads. Figure 3.9-1 shows the study area and the roads likely to be used to access the project site. Trucks are used to transport wheat, fruit, and other locally grown crops in the eastern portion of the study area in Benton County. The primary roads used are Gap, Hinzerling, Rothrock, and Snipes Roads. The harvesting season typically falls between July and October, depending on the type of crop and weather conditions. There are no specific weight and load limits on any of the county roadways in the study area. However, Benton County sometimes imposes weight restrictions on the roads depending on weather conditions. Several of the roads just south of the eastern
portion of the project site are not snowplowed in the winter. #### Affected Roadways. SR 241 is a two-lane north/south roadway with narrow 2- to 3-foot gravel shoulders, open drainage ditches, and no sidewalks. SR 241 is classified as a rural-collector roadway by the WSDOT road classification system, and has a posted speed limit of 50 mph. The roadway provides a transportation connection from SR 24 to I-82. SR 241 extends to the City of Sunnyside and to I-82, approximately 10 miles south of the project site. To the north of the site, SR 241 connects to SR 24. Gap, Hinzerling, Snipes, and Crosby Roads, in the eastern portion of the study area, are two-lane county roadways with narrow 2- to 3-foot gravel shoulders, drainage ditches, and no sidewalks. They are classified as rural-collector roadways by the WSDOT road classification system. The roads have posted speed limits varying from 35 to 50 mph. Lewandowski Road, in the western portion of the study area (off of SR 241), is an east/west county gravel roadway, without sidewalks, and has an irrigation canal adjacent to the roadway. This gravel 35-mph roadway turns into a private road at Sulphur Springs Ranch. SR 24 is a two-lane east/west roadway with narrow 2- to 3-foot gravel shoulders, drainage ditches, and no sidewalks. SR 24 is classified as a rural-collector roadway by the WSDOT road classification system, and has variable speed limits ranging from 35 mph to 65 mph. Interstate 82 is a four-lane east/west roadway with 8-foot shoulders, drainage ditches, and no sidewalks. I-82 is classified as a rural-interstate roadway according to the WSDOT road classification system, and has a posted speed limit of 70 mph for general traffic and 60 mph for heavy vehicles. # **Existing Traffic Volumes.** Table 3.9-1 summarizes the existing roadway traffic conditions in the project vicinity. This table includes existing roadway classification, number of lanes, daily volume, design capacity, peak hour volume, and LOS. All of the roadways that would be used for the project currently provide LOS C or better. Figure 3.9-1 shows the existing 2000 average daily traffic (ADT) volumes on the roadway system. **TABLE 3.9-1**Existing Conditions of Affected Roadways | Roadway | Classification | No. of
Lanes | Average
Daily Traffic
Volume ¹ | Hourly
Design
Capacity ² | PM Peak
Hour
Volume ³ | PM Peak
Hour
LOS | |---|-----------------|-----------------|---|---|--|------------------------| | SR 241 (North of I-82) | Rural-Collector | 2 | 3,335 | 2,800 | 335 | В | | SR 241 (South of SR 24) | Rural-Collector | 2 | 1,620 | 2,800 | 165 | Α | | Gap Road (North of I-82) | Arterial | 2 | 2,375 | 2,800 | 240 | Α | | Gap Road (South of Snipes Road and North of Hanks)) | Arterial | 2 | 340 | 2,800 | 35 | Α | | Crosby Road | Arterial | 2 | N/A | N/A | N/A | N/A | | Snipes Road | Arterial | 2 | N/A | 2,800 | N/A | N/A | | Hinzerling Road (<i>North of Johnson Road</i>) | Arterial | 2 | 2,970 | 2,800 | 300 | В | **TABLE 3.9-1** Existing Conditions of Affected Roadways | Roadway | Classification | No. of
Lanes | Average
Daily Traffic
Volume ¹ | Hourly
Design
Capacity ² | PM Peak
Hour
Volume ³ | PM Peak
Hour
LOS | |---------------------------------------|-------------------------|-----------------|---|---|--|------------------------| | Hinzerling Road (North of Hanks Road) | Arterial | 2 | 415 | 2,800 | 45 | Α | | SR 24 (West of SR 241) | Rural-Minor
Arterial | 2 | 2,020 | 2,800 | 205 | Α | | SR 24 (East of SR 241) | Rural-Minor
Arterial | 2 | 2,930 | 2,800 | 295 | Α | | I-82 (West of SR 241) | Rural-Interstate | 4 | 14,140 | 11,580 | 1,415 | Α | | I-82 (East of SR 241) | Rural-Interstate | 4 | 16,160 | 11,580 | 1,620 | Α | | Lewandowski Road | Arterial | 2 | N/A | N/A | N/A | N/A | #### Notes N/A = Not available. SR = State Route. LOS is a qualitative measure describing operational conditions in a traffic stream, and the perception of traffic conditions by motorists and passengers. A LOS definition generally describes these conditions in terms of such factors as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience, and safety. The six LOS conditions are given letter designations from A to F. LOS A represents the best operation condition and LOS F the worst. The afternoon rush hour (4 p.m. to 5 p.m.) is assumed to be the period in which the maximum amount of traffic is experienced. With the exception of SR 241 (north of I-82) and Hinzerling Road (north of Johnson Road), the overall LOS for the roadways surrounding the project site is LOS A. LOS A represents free flow traffic conditions. #### Other Transportation. **Public Transportation.** There is no public transportation available to the project site. Public transit in Benton County consists of local and intercity bus service. Ben Franklin Transit operates all public transit and vanpools in Benton County serving the cities of Prosser, West Richland, Richland, and Kennewick. *Air Traffic.* Benton County is served by five public airports (Tri-Cities Airport, Richland Airport, Vista Field, Port of Sunnyside Airport, and Prosser Airport). The Sunnyside Airport is approximately 4 miles southwest of the project site and the Prosser Airport is approximately 15 miles south of the project site. The Yakima Firing Center, a military training center operated by the U.S. Army, is located approximately 8 miles northwest of the project site (see Section 3.13, Public Health and Safety, for a discussion of project impacts on local airspace). ¹ Estimated number of vehicles per day both directions. ² Maximum number of vehicles per hour both directions for level of service (LOS) D. ³ Vehicles per hour in both directions. **Rail Traffic.** Freight rail service to the area is provided by Burlington Northern and Santa Fe (BNSF) railroads. The closest line is located approximately 10 miles south of the project site. BNSF has not informed Benton or Yakima County of any future expansion of the rail lines. *Waterborne Traffic.* The Port of Benton operates a barge landing facility on its property in north Richland City. Principal use of the facility is the transport of spent U.S. Naval reactors to the 200 plateau areas of the Hanford Site for disposal by burial. # 3.9.4 Impacts of the Proposed Action ### 3.9.4.1 Evaluation Criteria - Transportation impacts associated with the project would be considered **high** (and significant) if substantial damage occurred to state highways or county roads, if normal use of the roads in the study area were halted or impaired for considerable periods each day, if the project created a substantial increase in traffic hazards, or if the established LOS were reduced to D as a result of project traffic. - Transportation impacts associated with the project would be considered moderate if some minor damage occurred to state highways or county roads, if normal use of the roads in the study area were halted or impaired for relatively short periods of time, or if the project created a minor increase in traffic hazards. - Transportation impacts associated with the project would be considered **low** if no damage occurred to state highways or county roads, or if normal use of the roads in the study area were halted or impaired for only momentary periods. ### 3.9.4.2 Construction Impacts #### Impacts to Roadways. Table 3.9-2 shows the types of construction vehicles that would be used for the project, their approximate gross vehicle weight (GVW), and their capacity in units appropriate to the materials that they would haul. The project developer and/or construction contractor would be required to obtain the proper permits for transport of any over-dimensional and overweight loads. Some vehicles would likely have a GVW of more than 80,000 pounds (maximum legal load limit) when fully loaded. **TABLE 3.9-2**Specifications of Vehicles and Equipment Used in Project Construction, Operation, and Decommissioning | Vehicle/
Equipment | Use | Approximate GVW | Legal
Load | Capacity | Nature of Trips | |--|----------------------------------|---|---------------|--|-------------------------------| | Transporter | Bring wind turbine parts to site | 90,000 pounds | No | Tower: 2-3 trips
Nacelle: 1 trip
Blades: 1 trip
Total: 4-5 trips
per turbine | Ongoing during construction | | Transformer
truck (lowboy
with many
wheels) | Haul substation transformer | Transformer weighs
200,000 pounds plus
80,000-pound
vehicle weight | No | 1 transformer | Two trips to substation sites | **TABLE 3.9-2** Specifications of Vehicles and Equipment Used in Project Construction, Operation, and Decommissioning | Vehicle/
Equipment | Use | Approximate GVW | Legal
Load | Capacity | Nature of Trips | |---|---|--|---------------|---------------------------------------|---| | Transformer trucks | Haul 35-kilovolt
transformers located
at base of each tower | 80,000 pounds | Yes | 3 to 4 trans-
formers per
truck | Ongoing during construction | | Gravel trucks with trailer | Haul road fill material | 80,0000 pounds | Yes | 22 yards gravel | Within project site | | Concrete trucks | Cement for pad construction | 80,000 pounds | Yes | 8 yards concrete |
Within project site | | Water trucks | Compaction, erosion, and dust control | 60,000 to 80,000
pounds | Yes | 5,000 gallons
water | Ongoing during construction | | Bulldozers | Leveling/earth-moving for road and pad construction | D8: 100,000 pounds
D9: 400,000 pounds | No | NA | Transported once to site for duration of construction | | Cranes | Tower/turbine erection | 80,000 pounds | Yes | NA | Transported once to site for duration of construction | | Roller/
compactor | Road and pad compaction | 24,000 pounds
to
28,000 pounds | Yes | NA | Transported once to site for duration of construction | | Road grader | Grading roads | 80,000 pounds | Yes | NA | Transported once to site for duration of construction | | Backhoe/
trenching
machine | Digging trenches for underground utilities. | 19,600 pounds | Yes | NA | Transported once to site for duration of construction | | Truck-
mounted
drilling rig | Drilling tower foundations | 80,000 pounds | Yes | NA | Driven once to site for duration of construction | | Flatbed truck | Miscellaneous equipment | 21,500 pounds | Yes | Variable | Ongoing during construction | | Pick up trucks | General use and
hauling minor
equipment | 5,000 pounds | Yes | Passengers and small equipment | Ongoing during construction | | Small hydrau-
lic cranes/fork
lifts | Loading and unloading equipment | 80,000-plus pounds | No | NA | Transported once to site for duration of construction | | Rough terrain forklift | Lifting equipment | 15,000 pounds | Yes | NA | Transported once to site for duration of construction | | Four-wheeled all-terrain vehicles | Rough grade access and underground cable installation | 6,000 pounds | Yes | NA | Ongoing during construction | GVW = gross vehicle weight. NA = not applicable. Interstate 82, SR 241, and Lewandowski, Gap, Hinzerling, Snipes, and Crosby Roads would be the primary roadways to and from the project site. The surface condition of SR 241 pavement from I-82 to Lewandowski Road is of good quality, and delivery of construction materials and equipment would not be expected to significantly degrade existing roadway conditions. Lewandowski Road is a fairly wide gravel road in good condition; however, it may need upgrading to support construction loads. Impacts to these roads would be expected to be low to moderate. The Benton County paved roads (Gap, Hinzerling, Snipes, and Crosby) are also of good quality. Construction vehicles would use these roads, in addition to portions of Rothrock, Bennett, Rotha, Crooks, Jones, and Missimer Roads, which are all gravel. However, none of these county roads were built to withstand the proposed loads. Some or all of these roads may need to be upgraded to support construction vehicles. Easements would also need to be obtained prior to reconstructing any of the roads. Construction-related impacts on the county road system are expected to be moderate to high unless the roads are improved for use by overweight vehicles. The project developer would work with both Benton County and Yakima County Public Works Departments to ensure that any roadwork was performed according to county standards. Additional right-of-way would need to be acquired before improving the roads. Implementation of recommended mitigation measures would reduce potential impacts to a low level. #### Impacts to Local Traffic. Construction of the full project would take approximately 9 months and could be complete in winter 2002-2003. The peak construction period would last for approximately 4 months with a peak workforce of approximately 350 people. This would be the period with the highest number of workers and construction vehicle traffic. The non-peak workforce would occur at both the beginning and end of project construction and would consist of approximately 150 workers. Origins of the workforce would depend on the hiring practices of construction contractors selected to perform the work. It is anticipated that the majority of the workforce would be drawn from the local labor pool. During construction, water trucks would be required to make ongoing trips to the quarry sites, as well as to the project site for compaction, erosion, and dust control uses. Each truck would hold approximately 5,000 gallons of water. It is difficult to anticipate the exact number of trips needed; however, based on the size of the project site, including two quarries, it is estimated that if the full project is built, a total of 2,300 water truck trips would be required during the 9-month construction period. Transporter trucks would bring in the wind turbines and transformers that would be located at the base of each turbine. Each turbine requires 4 to 5 truck trips to carry the tower sections, nacelle, and blades. Three or four transformers would be loaded onto one truck. Assuming 5 trips per wind turbine and a maximum of 549 turbines, delivering this equipment to the project site would require about 5,856 one-way trips. In addition, 2000 additional trips are estimated for various other vehicles listed in Table 3.9-3. To arrive at a conservative estimate of traffic impacts for the peak construction period, a 4-month schedule was assumed. This results in higher traffic volume estimates than would be the case for the forecasted 9-month construction schedule. The total number of one-way construction vehicle trips was estimated to be no more than 100 trips per day. These trips were estimated to be divided between the western and eastern entrances to the project site (SR 241 to the west and Gap Road to the east). Using an estimated 1.3 persons per vehicle average automobile occupancy rate, 538 daily trips and 269 p.m. peak hour trips would be generated by the construction workforce during the 4-month peak period. Personnel working on the project site would park at the various staging areas shown in Figure 2.1-2. The construction workers could meet at a centralized location before traveling to individual sites along the wind turbine strings. Construction workers usually begin work early (around 7:00 a.m.) and finish before dusk, limiting the number of vehicles during peak hour traffic periods, and thus reducing potential traffic effects. Table 3.9-3 summarizes the projected average daily construction-related vehicle trips and the peak hour vehicle trips. Table 3.9-4 summarizes the traffic volumes and LOS of the local roadways during the construction period. Information on existing (background) traffic and LOS for Crosby, Snipes, and Lewandowski Roads was not available; however, because background traffic on these roads is very low, it is likely that the LOS would be C or better when project traffic is added to existing conditions. For the peak construction period, LOS C and better is the estimated level of service for a peak hour impacting the roadways. According to the Benton and Yakima County Plans, LOS C and better is acceptable; therefore, construction traffic would not reduce the LOS on the roadways to an unacceptable level and would have a low impact on local traffic. **TABLE 3.9-3**Average Daily Construction-Related Vehicle Trip Generation | Type of Vehicle | Average Daily
Vehicle Trips | Peak Hour Vehicle Trips | |---------------------------|--------------------------------|-------------------------| | Construction Vehicles | 100 | 50 | | Worker vehicles* | | | | Average work force of 150 | 230 | 115 | | Peak work force of 350 | 538 | 269 | ^{*} This analysis assumes an average vehicle occupancy (AVO) of 1.3. The months of July through October are peak harvest times when trucks use the rural roadways. Once the harvest begins, haul vehicles need adequate access to the county and private road systems. These road systems do not allow safe two-way passage of large vehicles. The traffic control procedures to be outlined in the construction traffic control plan (and approved by the counties) as part of contract specifications would ensure minimal conflicts among harvest and construction vehicles and impacts would be low. The use of onsite quarries and concrete batch plants would eliminate the daily hauling of gravel and concrete on roads leading to the project site, reducing the potential for noise and dust impacts. **TABLE 3.9-4**Daily and Peak-Hour Traffic Volumes and LOS During Project Construction | | | | Daily | | | PM Peak | | | | |--|-----------------------------------|---|---------------------------------------|------------------------------|------------------------------|--------------------------|-----------------------|---------------------|-----| | Roadway | Existing
Background
Traffic | Number of
Construction
Worker Trips | Number of
Construction
Vehicles | Daily
Combined
Traffic | Construction
Worker Trips | Construction
Vehicles | Background
Traffic | Combined
PM Peak | LOS | | SR 241 (north of I-82) | 3,335 | 538 | 100 | 3,973 | 269 | 50 | 335 | 654 | С | | SR 241 (south of SR 24) | 1,620 | 538 | 100 | 2,258 | 269 | 50 | 165 | 484 | В | | Gap Road (north of I-82) | 2,375 | 538 | 100 | 3,013 | 269 | 50 | 240 | 559 | С | | Gap Road (south of
Snipes Road (north of
Hanks)) | 340 | 538 | 100 | 978 | 269 | 50 | 35 | 354 | В | | Crosby Road | N/A | 538 | 100 | N/A | 269 | 50 | N/A | N/A | N/A | | Snipes Road | N/A | 538 | 100 | N/A | 269 | 50 | N/A | N/A | N/A | | Hinzerling Road
(north of Johnson
(I-82)) | 2,970 | 538 | 100 | 3,608 | 269 | 50 | 300 | 619 | С | | Hinzerling Road (north of Hanks) | 415 | 538 | 100 | 1,053 | 269 | 50 | 45 | 364 | В | | SR 24 (west of SR 241) | 2,020 | 538 | 100 | 2,658 | 269 | 50 | 205 | 524 | В | | SR 24 (east of
SR 241) | 2,930 | 538 | 100 | 3,568 | 269 | 50 | 295 | 614 | С | | I-82 (west of SR 241) | 14,140 | 538 | 100 | 14,778 | 269 | 50 | 1,415 | 1,734 | Α | | I- 82 (east of SR 241) | 16,160 | 538 | 100 | 16,798 | 269 | 50 | 1,620 | 1,939 |
Α | | Lewandowski Road | N/A | 538 | 100 | N/A | 269 | 50 | N/A | N/A | N/A | N/A = Not available. SR = State Route. ### Mitigation. Prior to construction, the project developer would coordinate with Yakima and Benton Counties Public Works Departments to determine road capacity limits, obtain any necessary overweight permits, and agree on other steps to accommodate overweight loads or avoid road damage. Any county roads proposed to be used would be videotaped by the project developer and a representative of the County Public Works Department prior to construction. A written agreement would be established between both Benton and Yakima Counties and the project developer and construction contractor stating that all roads would be restored to the same or better condition than they were before construction. The project developer would be responsible for requiring the construction contractor to prepare a construction traffic control plan and construction management plan that addresses timing of heavy equipment and material deliveries, signage, lighting, traffic control device placement, dust and noise control, and the establishment of work hours outside of peak traffic periods. Methods for mitigating potential traffic impacts may include such activities as stationing flag persons at the access roads into the site, and placing advance warning flashes, flag persons, and signage along the roadways. ### 3.9.4.3 Operation Impacts The project developer would employ approximately 15 full-time personnel to maintain the project facilities. The majority of the personnel would likely be local (from Sunnyside, Prosser, Pasco, Richland, Kennewick, and/or Yakima). Assuming that each individual drove a personal vehicle to the site each day, there would be approximately 30 daily trips, 15 of which would occur during the peak time periods. This would have a negligible effect on the level of service of the local roadways and no impacts would result. The new access roads on private land would provide a long-term benefit to landowners and would provide increased access for emergency vehicles. ### 3.9.4.4 Decommissioning Impacts Impacts from decommissioning activities would be similar to those for construction; however, assuming that the roadways would remain in place, heavy vehicle trips would consist primarily of transporter trucks carrying wind turbines and transformers and the resulting workforce and vehicle trips would be considerably smaller. Mitigation in use at the time of decommissioning would be implemented, and would likely be similar to that recommended for construction. # 3.9.5 Impacts of the No Action Alternative Under the No Action Alternative, there would be no impacts to transportation or traffic related to project construction or operation. Construction of a power generation facility other than the proposed project could have transportation impacts. The intensity and significance of transportation impacts would depend on the design and location of the generation facility. # 3.10 Geology, Seismicity, and Near-Surface Soils # 3.10.1 Regulatory Framework The state of Washington's current regulations for foundation design use the 1997 *Uniform Building Code* (UBC). Pertinent design codes as they relate to geology, seismicity, and near-surface soils are in Chapter 16, Division IV, Earthquake Design and Division V, Soil Profile Types (International Conference of Building Officials, 1997). All facilities for the proposed project must be designed to at least these minimum standards. A number of Benton and Yakima County ordinances are applicable to development projects near mineral resources, geologic hazards, or where soil limitation ratings are of concern. These requirements include the Critical Resources Protection Ordinance, Critical Areas Protection Ordinance, and the Mineral Resources Protection Ordinance. # 3.10.2 Study Methodology The study area for geology, seismicity, and soil includes land approximately 2 miles around the project site. The study methodology for determining the affected environment and impacts from the proposed project consisted of a review of pertinent literature including DNR geology maps, Soil Conservation Service (SCS, now referred to as the Natural Resources Conservation Service) soil maps for the area, and land use plans for Benton and Yakima Counties. This published information was reviewed relative to the planned facility locations, facility developments, construction methods, long-term operations, and facility decommissioning, to evaluate potential effects to the environment. ## 3.10.3 Affected Environment #### 3.10.3.1 Study Area Features Regionally, the study area is in the Columbia River Basin where approximately 17 million years ago massive quantities of basalt lava periodically extruded from fissures located in the area of southeastern Washington. These successive basalt flows covered the central portion of Washington and large areas of northern Oregon and western Idaho. Subsequent crustal stresses created a series of anticline basalt ridges in south-central Washington. The project would be located within the Yakima Fold Belt, which is characterized by a series of eastwest trending ridges separated by broad flat valleys. Streams occupy the valleys and discharge to the Columbia and Yakima Rivers. Rattlesnake Ridge and the Yakima Valley are the nearest prominent land features to the study area. Rattlesnake Ridge is an anticline basalt ridge extending in a northwest/ southeast alignment that separates the Pasco Basin and the Yakima Valley. The western portion of the ridge, located in northeastern Yakima County and northwestern Benton County, is known as the Rattlesnake Hills. The eastern end of the ridge terminates at Rattlesnake Mountain in north-central Benton County. At an elevation of 3,629 feet, Rattlesnake Mountain is the highest point in Benton County (Benton County, 1998). The study area topography generally consists of an abrupt descent southwesterly from the crest of the Rattlesnake Hills toward the Yakima Valley. Around the project site, the Rattlesnake Hills are incised with southwesterly trending canyons and gulches. The project site falls primarily within the Snipes, Spring, and Sulphur Creek drainages. Elevations in the study area typically range from 2,600 to 3,600 feet, with slopes up to 65 percent. #### 3.10.3.2 Geologic Formations The study area is underlain by the Columbia River Basalt (CRB) Group of Miocene age. The Columbia River Basalt Group is composed of a sequence of basalt flows several thousand feet thick with a few minor interbedded sedimentary strata (Foxworthy, 1962). Shallow groundwater is scarce along the tops of the basalt ridges, which serve as recharge areas for the limited precipitation and snow melt in the area. Generally, the shallow groundwater recharge moves downward from the anticlinal ridges toward surface water bodies (Bauer and Hansen, 2000). Generally, more recent windblown and stream sediments cover the basalt bedrock of the Rattlesnake Hills. DNR surficial geology maps developed by Campbell, et al. (1979) and Reidel and Fecht (1994) indicate localized areas of landslide deposits in the vicinity of the study area. The landslide deposits consist of poorly-sorted clay, silt, sand, and gravels. Localized alluvial fan deposits consisting of unconsolidated sand and gravel are also present in the study area. ### 3.10.3.3 Faults, Seismic Hazards, and Slope Stability Shallow earthquakes caused by movements along crustal faults are generally in the upper 10 to 15 miles of the earth's crust. In Washington, these movements occur in the crust of the North America tectonic plate when built-up stresses near the surface are released. There are two substantial thrust faults identified northeast of the study area at Rattlesnake Mountain, and several smaller faults are present within the study area. Figure 3.10-1 shows the location of the faults. The study area is located in the 1997 UBC seismic zone 2B. Seismic zone 2B indicates that earthquakes up to intensity VII on the Modified Mercalli (MM) Scale can be expected to occur in the area (Benton County, 1998). The Federal Emergency Management Agency (FEMA) describes an earthquake of Intensity VII as one where people have difficulty standing, drivers feel their car shaking, loose bricks fall from buildings, and damage is slight to moderate in well-constructed buildings. Intensity VII on the MM Scale corresponds to an equivalent Richter Scale magnitude of 5.5 to 6.1. The Benton County Comprehensive Land Use Plan states, "Seismic hazards are not seen as a significant risk to development in Benton County" (Benton County, 1998). According to the University of Washington Geophysics Program Preliminary Earthquake Report (2001), the most recent earthquake in the project vicinity was a micro earthquake that occurred on October 4, 2001. The 1.2-magnitude quake was located approximately 28 miles south of Yakima at a depth of approximately 12 miles. The largest regional earthquake that has affected the study area in recent years occurred on February 28, 2001. The epicenter of this 6.8-magnitude quake, known as the Nisqually Earthquake, was approximately 60 miles south-southwest of Seattle and was felt in the Yakima area. The *Benton County Comprehensive Land Use Plan* notes that most geologic hazards in the County are associated with steep and unstable slopes. Both Benton County and Yakima County designate areas of steep slopes as critical resources. These areas are associated with landslides, slumps, unstable soils, and severe erosion. Figure 3.10-2 shows the areas of steep slopes (greater than 15 percent) in the study area. Slopes of up to 65 percent can be found in the Rattlesnake Hills (U.S. Department of Agriculture [USDA], 1971). Mass soil failure occurs when the shear strength of a soil is less than the shear stresses acting on it. Factors associated with increased shear stress include slope steepness, wet soils,
geology and soil types susceptible to failure, and vegetation removal (Satterlund and Adams, 1992). Slope steepness is likely the most important cause for mass soil failure. Historic mass soil failure activity has occurred in the study area as evidenced by localized landslide deposits identified in Township 11 N, Range 24 E, Sections 17 and 18. The potential for slope failure, or mass soil failure, is present in the areas of steep slopes shown in Figure 3.10-2. #### 3.10.3.4 Near-Surface Soils The near-surface soils within the study area were identified using the U.S. Department of Agriculture SCS Soil Survey of Benton and Yakima Counties (USDA, 1971; USDA, 1979). For purposes of discussion, the near-surface soils within the study area are grouped into two general soil associations, the Walla Walla-Endicott-Lickskillet and the Lickskillet-Starbuck soil associations. The soils within these associations are comprised of several distinct soil types that occur in similar areas and share relatively similar characteristics and engineering properties. One soil type in the study area is considered to be a prime soil—Walla Walla silt loam (WaB) on 0 to 5 percent slopes. Prime soils are those with sufficient depth, moisture, and nutrients to allow crops to achieve their maximum growth potential. General soil associations in the study area are presented in Figure 3.10-3. The soil distributions depicted in the figure represent conditions in 1964 and 1979 (the most recent information available) in Benton and Yakima Counties. The apparent change in soil type along the county line in Figure 3.10-3 is due to the use of slightly different soil associations in each county study. The Walla Walla-Endicott-Lickskillet association is identified in the Benton County soil survey and consists of gentle to steeply sloping silt loam soils to very stony silt loam soils. These soils range in thickness from very deep to shallow over basalt bedrock. Walla Walla soils range in depth from 0 to 60 inches, Endicott soils range in depth from 0 to 20 inches, and Lickskillet soils range in depth from 0 to 22 inches. In the study area where these soils are shallow and steeply sloped, the vegetation is generally grass and sagebrush. The Lickskillet-Starbuck soil association is identified in the Yakima County soil survey and consists of nearly level to steeply sloped silt loam soil to very stony silt loam soils. These soils are generally located on uplands, are well drained, and are approximately 12 to 20 inches deep. #### 3.10.3.5 Gravel Resources According to the *Benton County Comprehensive Land Use Plan*, mineral resources in Benton County are "aggregates," i.e., sand and gravel deposits and crushed quarry rock typically used for building and road construction. Onsite gravel extraction is an allowable use under Benton County Code Section 11.18.060 (uses requiring permits with director review and approval required), and are subject to appeal to the Benton County Board of Adjustment. The majority of the sand and gravel mineral sites in the County are located along the Yakima River. These sources have a limited supply of material that is in high demand by the construction industry. Unlike the sand and gravel sources, quarry rock is in ample supply but not all of it is high-grade material or is close enough to the ground surface to economically extract (Benton County, 1998). The project developer plans to obtain aggregate materials from an existing quarry located in the eastern portion of the study area and to develop a new quarry site in the western portion of the study area (see Figure 2.1.2). Should insufficient quantity or quality of quarry material be available, aggregate would be obtained from existing local sources in the area. # 3.10.4 Impacts of the Proposed Action ### 3.10.4.1 Evaluation Criteria - Impacts would be considered high (and significant) if construction or operation of the project resulted in landslides or mass soil failure, flooding, severe soil erosion or compaction, or permanently altered or inhibited natural drainage patterns; or if these events caused substantial damage to project facilities or other property. Geology impacts also would be considered high if the project caused, or was damaged by, earthquakes, landslides, erosion, excessive soil compaction, or other detrimental seismic and slope-related events. - Impacts would be considered moderate if the project did not cause landslides, if standard soil management techniques would control erosion to acceptable levels, if soil compaction in localized areas resulted in a small amount of lost agricultural productivity, or if moderate damage occurred to project facilities due to earthquakes. - Impacts would be considered low if standard soil management techniques held erosion levels to near existing levels, or if slight damage occurred to the project facilities because of seismic events. #### 3.10.4.2 Construction Impacts #### Geologic Formations. Construction of the project would alter the landscape with cuts-and-fills for roadways, installation of underground power lines, and leveling for turbine foundations. Because roads and turbine foundations would be designed and engineered according to the UBC, and would be subject to an erosion control plan, it is likely that project facilities would be constructed with more protections against erosion than currently exist in the study area. The use of an existing quarry and development of a new quarry also would temporarily alter the topography at these locations. These alterations would result in low impacts to existing topography and surface drainage with implementation of the best management practices described below. Standard approved construction practices and erosion management techniques would be employed to prevent and control erosion, and are addressed as mitigation, below. Because standard erosion control measures would be implemented, impacts to geologic formations would be low, and additional mitigation measures would not be required. ### Faults, Seismic Hazards, and Slope Stability. Seismic impact hazard during construction would be negligible. The probability that the crustal faults in the study area are active is relatively low, and, therefore, the potential for fault offsets during a large earthquake also appears to be low (Geomatrix, 1995, 1996). In addition, the study area is not generally susceptible to liquefaction or lateral spreading. The likelihood of a significant earthquake event occurring during construction of project facilities is extremely remote and no impacts would result. Steep slopes and landslide-prone areas are present in the study area. Historical landslide activity has been identified in localized areas in the greater project vicinity. No project facilities would be constructed at the landslide locations. Benton County's Critical Areas Protection Ordinance requires that these hazards be identified and considered in facility siting and design to ensure long-term structural integrity (Benton County, 1998). The ordinance requirements would be adhered to; therefore, there would be low to negligible impact from these potential geologic hazards. #### **Near-Surface Soils.** Soil erosion potential in the study area is typically moderate to high with the presence of existing vegetation. Due to steady, high wind speed, areas of vegetation removal would expose soils to accelerated water and wind erosion until stabilized. Repeated equipment and haul truck traffic could cause soil compaction over a limited area. Due to the thin soil horizon and limited water, the land within the study area is mainly suitable for rangeland grazing and dryland wheat farming. The limited areas of potential soil compaction resulting from construction activities are not likely to result in a significant amount of lost agricultural productivity. Because standard approved construction practices and erosion management techniques would be employed to prevent and control erosion, impacts would be considered low to moderate. #### **Gravel Resources.** The project would require a substantial amount of gravel for access roads and concrete for foundations. Currently, the option for supplying the required building aggregate would be to use one existing quarry pit and to develop a new quarry pit in the study area. A mobile crusher would be brought to the quarry sites and used to reduce the rubble to the required gradations. Concrete batch plants would be co-located with the quarry pits. Permitting requirements for quarry development and operation are generally based on the size of the quarry. Quarries in Benton County that are 3 acres or less require a mineral resource permit from the Benton County Planning/Building Department. Quarries greater than 3 acres in size, with highwalls greater than 30 feet with 1:1 slopes, require a surface mining permit from DNR. The project may qualify for the DNR onsite construction exemption, which allows quarry development greater than 3 acres, under specific conditions, without a surface mining permit. Conditions of the onsite construction exemption are as follows: - The quarry must be located onsite. - The quarry materials can only be used onsite. - The quarry must be reclaimed under an approved reclamation plan. Quarries developed under the onsite construction exemption can be as large as necessary; however, if the quarry exceeds the 30-foot (1:1 slope) highwall criterion, a surface mining permit must be obtained. Discussions with DNR would be necessary to confirm that the onsite construction exemption could be applied to the project. Additional quarry permit requirements may include obtaining a sand and gravel permit from Ecology. Ecology's interest in quarry development and operation is generally focused on stormwater and air issues. Discussion with Ecology would be necessary to determine if a sand and gravel permit would be necessary. The size of each quarry/batch plant is anticipated to be
approximately 8 acres. Impacts from gravel production at each quarry site would include temporary disturbance of land within the 8-acre area. Specifically, areas in the vicinity of the batch plant, crusher, stockpiles, and along access roads would be disturbed. Other impacts would include increased soil compaction potential due to haul trucks, and dust production from the crusher operation and truck traffic. With the mitigation discussed below, construction impacts would be considered low at the existing quarry site and moderate at the new quarry site. **Mitigation**. Roads would be designed by a licensed professional engineer and the turbine foundations would be designed and engineered according to the Uniform Building Code. Standard approved construction practices and erosion management techniques would be employed to prevent and control erosion (also discussed in Section 3.8, Water Resources and Wetlands). These practices and management techniques include: - Minimizing vegetation removal - Avoiding construction on steep slopes or areas designated as having a high susceptibility of erosion - Properly designing cut-and-fill slopes - Installing roadway drainage to control and disperse runoff; ensuring that access roads contain pervious, gravel surfaces - Applying erosion control measures such as silt fencing, straw mulch, straw bale check dams, and soil stabilizers, as well as reseeding disturbed areas as required - Apply stabilization measures such as temporary seeding, permanent seeding, vegetative buffer strips and other appropriate practices, and structural measures such as silt fences, sediment traps, and drainage swales - Minimizing construction and increasing gravel cover on roads during wet weather to reduce potential rutting and soil loss. In addition, haul truck traffic would be limited to improved road surfaces, minimizing soil compaction and disturbances. The project developer would comply with all land use permit requirements. All disturbed areas would be reclaimed (restored) at the completion of construction activities as outlined in a DNR/Benton County-approved reclamation plan. Water trucks would be used to control dust produced by the construction, as described in Section 3.12, Air Quality. ### 3.10.4.3 Operation Impacts ### Geologic Formations. Slightly increased runoff water would be produced due to the addition of up to 44.5 miles of gravel access roads and new impervious area from turbine pads and O&M buildings. However, implementation of an erosion control plan would eliminate the potential for significant erosion during operation. Regular maintenance of drainage facilities would ensure continued proper operation. Impacts to topography and surface drainage during operation and maintenance of the project would be low. ### Faults, Seismic Hazards, and Slope Stability. The project would operate in an area with potential for earthquake events that are considered of low risk. Because the majority of the project would be located in upland areas where saturated soils are not typically present, liquefaction and lateral spreading do not pose significant risks to the project. Landslides in steeply sloped areas could be triggered during an earthquake due to ground shaking and could potentially impact the project facilities. However, the area is considered to have low to moderate potential for such events. No project facilities would be constructed on historical landslide locations; therefore, the impacts from these geologic hazards would be low. #### **Near-Surface Soils.** Operation and maintenance activities would take place on newly constructed roadways and other existing roads. New impervious areas (i.e., operation and maintenance buildings) may cause a slight increase in runoff water. Daily operational activities would not negatively affect soil erosion by wind or water. The wind turbines would not slow winds in the area or impact the natural soil erosion process caused by high winds. Standard erosion control measures, as discussed in Section 3.10.4.2, would be implemented to prevent impacts from operation of the project. Roadways would be gravel, limiting the impact from water and wind erosion hazards. Stormwater would be collected and channeled to natural drainage paths to minimize its impact. Impacts to near-surface soils due to operational activities would be low. **Mitigation**. All facilities would be designed to current seismic standards for the 1997 UBC seismic zone 2B. Slope stability hazards would be identified and incorporated into the facility design as necessary. ### 3.10.4.4 Decommissioning Impacts #### Geologic Formations. Decommissioning would consist of removing all facilities to a depth of 3 feet below grade with unsalvageable materials disposed of at authorized waste disposal sites. Reclamation procedures would be based on site-specific requirements and techniques commonly used at the time of decommissioning, and would likely include regrading, topsoiling, and revegetation of all disturbed areas. Road decommissioning would be completed according to the preference of the landowners. It is likely that most roads would be left in place. Therefore, the recovery of the majority, if not all, of the disturbed areas would result in a low impact to topography and surface drainage. ### Faults, Seismic Hazards, and Slope Stability. Decommissioning the project would reclaim the area to near its original state and no impacts would occur. The likelihood of a significant earthquake event occurring during decommissioning of project facilities is extremely remote. #### **Near-Surface Soils.** Impacts to near-surface soils during decommissioning activities would be low; impacts after decommissioning would be negligible. Soil erosion potential in the study area is typically moderate to high with the presence of existing vegetation. Due to steady, high wind speed, areas of project facility removal would expose soils to accelerated water and wind erosion until stabilized. Repeated equipment and haul truck traffic would cause negligible soil compaction. ## 3.10.5 Impacts of the No Action Alternative Under the No Action Alternative, geology, seismicity, and near surface soil impacts would not occur. Other power generation facilities could be built in the region, most likely a gasfired CT. Construction and operation of a gas-fired CT would have the potential for similar types of geology and soil impacts as the proposed project. The proposed project has the potential for greater soil erosion than a combustion turbine plant because of the number of roads required to develop the wind farm. # 3.11 Socioeconomics and Public Services # 3.11.1 Regulatory Framework There is no regulatory framework for socioeconomic analyses except for environmental justice. In February 1994, Executive Order 12898, Federal Actions to Address Environmental Justice in Minority and Low Income Populations, was released to federal agencies. This order directs federal agencies to incorporate environmental justice as part of their missions to the greatest extent practicable and permitted by law. As such, federal agencies are specifically directed to identify and address, as appropriate, disproportionately high and adverse human health effects of their programs, policies, and activities on minority and low-income populations. Public services and utilities in the study area are regulated by ordinances and policies set forth by Yakima and Benton Counties. # 3.11.2 Study Methodology For general trends analysis, the study area includes all of Benton and Yakima Counties. For specific impacts, the study area includes those communities potentially affected by the project within a distance of 15 miles. Information about socioeconomics and public services is based on review and analysis of a variety of demographic and other information from Yakima County, Benton County, Sunnyside, Grandview, and Prosser, and discussions with local agency staff. Information sources for this socioeconomic analysis include: • U.S. Census Bureau Web site (http://www.census.gov) - Washington State Labor Market and Economic Analysis Web site (http://www.wa.gov/esd/lmea/) - Washington State Office of Financial Management Web site (http://www.ofm.wa.gov/) - Yakima County Assessor's Office Web site (http://www.co.yakima.wa.us/assessor/assessor.htm) - Harriet Mercer, Benton County Assessor's Office - Kim Bolt, Prosser School District - Grandview School District - Ruben Carrera, Sunnyside School District - Tri-City Industrial Development Council #### 3.11.3 Affected Environment The proposed project would be located in a rural agricultural area with low population density. The population centers closest to the project site are the cities of Sunnyside, about 10 miles to the southwest, Grandview, about 10 miles to the south, and Prosser, about 15 miles to the south. Larger cities nearby and easily accessible by road are Yakima, about 50 miles to the west, and Richland, about 30 miles to the east. #### **3.11.3.1 Employment** Benton County's largest employment sectors are services, retail trade, government, public utilities and transportation, and agriculture. Yakima County's largest employment sectors are services, agriculture, government, retail trade, and manufacturing. Between 1991 and 2000, employment in Benton County grew by 10,400 jobs, or 16.94 percent. The percentage of the labor force unemployed in 2000 was 6.4 percent. Between 1991 and 2000, employment in Yakima County grew by 7,100 jobs, or 6.99 percent. The percentage of the labor force unemployed in 2000 was 10.6 percent (Washington State Employment Security Department, 2001). Continued employment growth is projected for the future. Between 1998 and 2008, a 14 percent increase in total non-farm employment is projected for Benton County (this percentage includes the Tri-Cities area, which covers other counties). Between 2001 and 2006, a 7.8 percent increase in total non-farm employment is projected for
Yakima County. #### 3.11.3.2 Population Population in Benton and Yakima Counties has increased steadily in the past 30 years. The total population of Benton County for 2000 was 142,475; the population of Yakima County was 222,581. Table 3.11-1 shows study area demographics with respect to race, ethnicity, and poverty status. Data are from the 2000 U.S. Census. **TABLE 3.11-1**Study Area and County Demographics (2000 U.S. Census Data) | | Bento | n County | Yakima County | | | |---|---------------------|--------------------------|---------------|--------------------------|--| | Demographic Group | Number ¹ | Percent of
Population | Number | Percent of
Population | | | Households | 52,866 | NA | 73,993 | NA | | | Population | 142,475 | 100% | 222,581 | 100% | | | White | 122,879 | 86.2% | 146,005 | 65.6% | | | Black | 1,319 | 0.9% | 2,157 | 1.0% | | | American Indian, Eskimo, or Aleut | 1,165 | 0.8% | 9,966 | 4.5% | | | Asian or Pacific Islander | 3,297 | 2.3% | 2,327 | 1.1% | | | Other race | 13,815 | 9.7% | 62,126 | 27.9% | | | Hispanic origin ² | 17,806 | 12.5% | 79,905 | 35.9% | | | 1998 Median household income | \$ | 44,219 | \$ | 31,522 | | | Persons below 1997 poverty level ³ | 12,859 | 9.3% | 40,192 | 18.3% | | #### Notes: ### 3.11.3.3 Housing A variety of housing exists in the study area and there are numerous homes for rent and for sale. The median home price in Benton County as of September 2001 was \$119,000 (Mercer, 2001). The median home price in Yakima County in 2000 was \$112,904 (Wilbert, 2001). At present, temporary lodging in the study area includes 12 motels and bed and breakfasts. #### 3.11.3.4 Schools Yakima County is divided into fifteen public school districts. Two districts, Sunnyside and Grandview, are located in the general project vicinity. Benton County is divided into seven public school districts, with Prosser being the closest to the project site. The approximate total school enrollment of the three districts is 10,970. Several private and parochial schools also are located within 15 miles of the project site. Post-secondary schools in Yakima County include Yakima Valley Community College, which has campuses in Grandview, Yakima, and Goldendale. Post-secondary schools in Benton County include branch campuses of Washington State University and City University, which are both located in Richland. ### 3.11.3.5 Local Government Taxation and Revenue A variety of taxes are collected by the various levels of government in Washington. Washington has no income tax and relies on consumer taxes, including the retail sales tax, for revenue. Property taxes are another source of revenue and are collected by each county for local jurisdictions with taxing authority. Property owners in the study area are assessed taxes for public services such as police and fire, roads, and schools. ¹ The percent of population numbers may add up to more than the total population and the six percentages may add up to more than 100 percent because individuals may report more than one race. ² Hispanic origin is not a racial category. It may represent ancestry, national group, or country of birth. Persons of Hispanic origin may be of any race. ³ U.S. Census Bureau, Housing and Household Economic Statistics Division, Small Area Estimates Branch. NA = not applicable. #### 3.11.3.6 Public Facilities and Services The proposed project would be located in an unincorporated area. No accessible public facilities or infrastructure (with the exception of county roads) are located on the proposed project site. Utilities crossing the study area include BPA's 500-kV and 230-kV overhead transmission lines. There are no known gas pipelines or county water supply or wastewater treatment facilities on the project site. Some landowners may have private irrigation lines within the study area. The nearest fire service to the western portion of the project site is provided by the Sunnyside Fire Department (Sunnyside Fire District #5), which would provide fire service to the portion of the project in Yakima County. The Benton County Fire Department in Prosser (Benton County Fire District #3) provides fire service to a small portion of the project site. The majority of the project site is not currently included in a county fire district. Private ambulance service is available from Yakima and Benton Counties. Police services are provided by the respective county Sheriffs' Departments. ## 3.11.4 Impacts of the Proposed Action #### 3.11.4.1 Evaluation Criteria Socioeconomic impacts associated with the proposed project were assessed as **beneficial**, **adverse**, or **no impact**. A **beneficial** socioeconomic impact would provide employment, increase tax revenues, increase property values, increase revenue from rents and home sales, or create other enhancing effects on the social and economic vitality of the nearby communities. An impact on socioeconomics would be considered adverse if it resulted in: - Population growth beyond the capacity of affected communities to provide adequate housing and public services or to otherwise adapt to growth-related social and economic changes - More than a 10 percent decrease in a taxing district's annual tax revenue (for example, from changes in assessed property value or from adding or removing property from the tax rolls) - Revenue flows and expenditures by local, county, or state governments that are inadequate to maintain public services and facilities at established levels - Any permanent displacement of residents or users of affected areas - Perceived detrimental changes in existing ways of life - Substantial change in current or projected employment trends in the study area (such as a "boom and bust" cycle of employment) and related economic growth and decline - Disproportionately high adverse effects to minority and low-income populations. #### 3.11.4.2 Construction Impacts ### Employment. Because the proposed project is located in two counties, it is likely local workers from both Benton and Yakima counties would be hired for construction jobs. Full project construction is anticipated to take about 9 months, with preconstruction activities beginning in summer 2002. During construction, an estimated average of 150 people would be employed at the site, with a maximum of 350 during peak periods. The average wage for construction workers would likely be from \$15-\$25 per hour. Most workers would be employees of construction and equipment manufacturing companies contracted by the project developer. For the purposes of analysis, it is assumed that approximately 50 percent of construction workers would be hired locally and the remainder would be from outside the area. This represents about 0.1 percent of total employment in the two counties. There would be a slight beneficial impact on employment if workers were hired locally. Local hiring would depend upon the availability of workers with appropriate skills. #### Population. Population in the study area would change little as a result of constructing the project. Assuming conservatively that only 50 percent of the 350 maximum construction workers would be local residents (Sunnyside, Grandview, Prosser, Tri-Cities, and Yakima), about 175 new workers would be temporary residents (in-migrants) of the project vicinity. This represents about 0.05 percent of the total population in the two counties. These residents would likely settle over a dispersed geographic area. No adverse impacts would be expected. The proposed project has been evaluated for potential disproportionately high environmental effects on minority and low-income populations. There would not be human health or environmental impacts on minority and low-income populations from the proposed project because the project would be located on private property and not in the vicinity of any low-income or minority populations. Impacts associated with the proposed project would not have an adverse effect on minority or low-income segments of the population. These individuals could experience a beneficial impact from construction of the project if they became part of the workforce. #### Housing. Based on employment projections for the project, and assuming an average household of 2.0 workers during the peak construction period, up to 88 temporary housing units could be required. Because the project is located in two counties and there are a variety of housing types and locations available, it is not known where temporary construction employees would settle. Temporary workers frequently choose short-term housing options including campgrounds (where workers can park trailers or other mobile housing), motels and hotels, and other short-term rentals. These facilities are available in the general project vicinity. No adverse impacts on housing in nearby communities are anticipated from the proposed project. #### Schools. No impacts on schools are anticipated as a result of temporary residents associated with the project. Temporary workers would be employed primarily during the summer months when school is not in session. Given the number of schools available in the study area and the small number of temporary residents, it is unlikely that any one school would receive more new students than could be accommodated. Impacts would be low. #### **Public Facilities and Services.** The need for firefighting, medical, and police services at the project site could increase during construction as a result of the number of vehicles and employees on the site. Medical and police services would not need to be expanded by adding additional personnel or equipment. In the event that medical or police services are needed on the project site prior to road construction, access for emergency and police vehicles could be difficult. An emergency response plan would be prepared and kept onsite and personnel would be trained in basic emergency procedures. No adverse impacts to
public facilities and services are anticipated as a result of the project. Construction of the proposed project could increase the potential for fires due to typical construction activities such as installation of electrical equipment, increased traffic, and use of vehicles on the project site, especially in the summer when vegetation is dry. Because portions of the proposed project site are not located in a fire protection district, a fire emergency plan would be developed prior to project construction and submitted to Benton and Yakima County fire marshals for approval and shared with the Hanford Fire Department. Because firefighting services would be provided primarily by the project developer, there would be no impacts to local fire districts. Section 3.13, Public Health and Safety, provides additional information on fire safety. ### 3.11.4.3 Operation Impacts. ### Employment. Up to 15 full-time operation and maintenance staff would be permanently employed at the project site. Average wages for these long-term staff are estimated to range from \$10-\$25 per hour. Most of the staff would be hired locally, with the exception of one or two supervisors with experience at other wind generation facilities. Some specialized outside contractors may also be required on occasion. It is assumed that project operations would begin in winter 2002-2003 and would operate year-round for at least 20 years. The number of new permanent full-time jobs created by the project would be less than 0.02 percent of total county employment for either Benton or Yakima County. Because the project and the jobs would be located in a rural area of the county, they would not affect the employment base of a specific city or town. The permanent jobs created through the project would result in very minor long-term benefits to overall county employment. No adverse impacts on county employment would be anticipated. ### Population and Housing. An estimated maximum of 15 permanent employees could be hired for operation and maintenance positions. Assuming conservatively that five (33 percent) of these employees would be in-migrants and an average household of 3.0 (higher than for temporary employees), as many as 15 new permanent residents could be added to the population. Given that the number of permanent employees would be very small compared to overall county population, no impacts on population are anticipated. The project would have a minor beneficial financial impact on the local economy through purchases of goods and services and increased property tax revenues. The proposed project has been evaluated for potential disproportionately high environmental effects on minority and low-income populations. There would not be human health or environmental impacts on minority and low-income populations from the proposed project because the project would be located on private property and not in the vicinity of any low-income or minority populations. Impacts associated with the proposed project would not have an adverse effect on minority or low-income segments of the population. These individuals could experience a beneficial impact from operation of the project if they become part of the workforce. #### Schools. The addition of up to 15 new permanent residents would have a negligible impact on schools DNR would receive lease payments from the project developer for the portion of the project on DNR lands. This would result in a beneficial impact to local school districts because they would receive the income from the lease payments. #### Local Government Taxation and Revenue. Although specific information about the value and finances of the proposed project is confidential, wind generation typically costs from \$800,000 to \$1 million per MW energy capacity. The maximum build out of the 494-MW project would represent an investment of about \$445 million. It is estimated that about 10 percent of that total project investment would be spent on goods and services locally. Thus, about \$44 million would be added to the local economies of Benton and Yakima Counties in the form of goods and services purchased as part of project construction. This would be a beneficial impact. However, the purchase and installation of machinery and equipment for wind generation facilities are exempt from sales tax under Washington Administrative Rules (¶68-663 WAC 458-20-263). Therefore, no new sales taxes would be generated directly by the project. All project facilities would be placed on property leased from landowners. The assessed value of affected properties would increase when project facilities are added. This would lead to an increased tax base for Yakima and Benton Counties based upon the assessed property values. Values would depend on market conditions, tax benefits, incentives, or similar programs that may apply to this type of project, and actual property tax revenues could vary but would likely have a beneficial impact to county revenues. Landowners would be compensated for the use of their property and for any increases in property taxes by the project developer. #### Public Facilities and Services. The slight population increase associated with the project would not require the construction or expansion of new community facilities or infrastructure in local communities. No adverse impacts would be anticipated. The proposed project would require electricity, water, telephone, and sewer services, none of which are currently available on the project site. However, because these services are readily available in the project vicinity, there would be no impact to these service providers as a result of the project. Electricity would be provided by the project itself and/or the local utility district, Benton REA. Telephone service would be provided by various companies. There is sufficient water for the project as discussed in Section 3.8, Water Resources and Wetlands. Sewage from the operations and maintenance buildings would be treated with an onsite septic system that would be developed according to Benton County requirements. Solid waste would be collected and disposed of in compliance with all applicable regulations. No adverse impacts to service providers are expected. Impacts to fire, medical, and police services would be similar to those described for construction of the proposed project and would not be adverse. ### 3.11.4.4 Decommissioning Impacts Upon decommissioning, up to 15 full-time jobs created as part of the project would be eliminated. It is assumed that persons employed in these jobs would seek employment from other sources and that this loss of employment would have an adverse impact on the individuals involved. However, the number of jobs eliminated would be extremely small compared to the number of jobs in Benton and Yakima Counties as a whole. Therefore, a very minor adverse impact to county employment would be anticipated as a result of the proposed project. If the project were decommissioned (instead of being "repowered" with more modern equipment) and facilities removed from properties, property tax revenues would decrease accordingly. This loss of revenue would likely have a slight adverse impact on the local economy. Decommissioning the facility would require removal of most project facilities and reclamation of disturbed areas. These activities would result in beneficial but temporary construction employment similar to that projected for facility construction. ## 3.11.5 Impacts of the No Action Alternative Under the No Action Alternative, the project would not be constructed or operated. The counties would not benefit from the tax revenues and employment opportunities resulting from the proposed project. If the proposed project were not constructed, the region's power needs could be delivered through development of other generation facilities, most likely gas-fired CTs. Although the impacts of a CT would depend on its location, the socioeconomic impacts would likely be of a similar magnitude to the proposed project. BPA's RPEIS shows that a CT generating about 150 aMW would employ about 27 people, almost double the projected operation employment for the proposed project. # 3.12 Air Quality # 3.12.1 Regulatory Framework Both the federal government (through EPA) and the state government (through Ecology) regulate and permit sources of air emissions. In Benton County, the authority to regulate and permit sources of air emissions has been delegated to the Benton Clean Air Authority (BCAA) and in Yakima County to the Yakima Regional Clean Air Authority (YRCAA). EPA has established National Ambient Air Quality Standards (NAAQS) for certain pollutants, which are air pollution concentration levels against which all areas of the country are evaluated. If an area meets the standards, it is in "Attainment," and if it does not, it is considered a "Nonattainment Area." New stationary sources of air emissions in nonattainment areas must undergo more rigorous permitting than equivalently-sized sources in attainment areas, in an effort to improve the air quality to the standards. Rules have been established by the various regulatory agencies previously mentioned for permitting of new sources in both attainment and nonattainment areas of the state. In general, if potential emissions from stationary sources exceed certain thresholds, approval from the local agency is required before beginning construction. The proposed project would not be required to go through the permitting process because wind turbines have no emissions and therefore do not exceed thresholds for regulated pollutants. Mobile sources (for example, construction equipment and maintenance vehicles) are regulated separately under the federal Clean Air Act, such as through vehicle inspection and maintenance programs, and are not included when determining if a source requires permitting. According to WAC 173-400-300, "fugitive" air emissions are those that "do not pass and which could not
reasonably pass through a stack, chimney, vent or other functionally equivalent opening." These emissions include fugitive dust from unpaved roads, construction sites, and tilled land. Fugitive emissions are considered in determining the level of air permitting required only for a certain subset of sources, not including wind generation plants. Construction emissions are not included in permitting of stationary sources. Only emissions from operations are considered in the new source permitting program. Regulation 3 of the YRCAA rules requires a construction dust control plan to be filed with, and approved by, the YRCAA. Additionally, in Regulation 3, reasonable precautions must be taken to prohibit the transport of dust. The BCAA does not require a construction dust control plan to be filed, unless it is specifically requested by another party. # 3.12.2 Study Methodology The study area for air quality consists of Benton and Yakima Counties, Washington. The analysis of air quality impacts consisted of a review of applicable regulations and information on existing attainment areas, followed by a qualitative review of project impacts. ### 3.12.3 Affected Environment The study area is classified as attainment for all pollutants. This means that the ambient air quality standards, as established by EPA, are met in the study area. Dust storms are a problem in the project vicinity. Agricultural development in the area, particularly crops not requiring irrigation, has contributed to the dust storms. EPA issued a policy for air pollution from natural events in June 1996, which states that natural events would not cause an area to be designated nonattainment, provided a plan is in place to respond to public health effects from human-made sources of particulate matter (such as plowed fields) (EPA, 1996). ## 3.12.4 Impacts of the Proposed Action #### 3.12.4.1 Evaluation Criteria - Air quality impacts would be considered **high** (and significant) if the proposed project created noticeable or measurable air emissions that exceeded NAAQS. - Air quality impacts would be considered moderate if the proposed project created noticeable or measurable air emissions that did not exceed NAAQS, and which could be partially mitigated with standard control practices. - Air quality impacts would be considered low if the proposed project created small amounts of noticeable or measurable air emissions that did not exceed NAAQS, which could be substantially mitigated with standard control practices. ### 3.12.4.2 Construction Impacts The air quality impacts from construction of the project would be temporary and low, and would be limited to vehicle emissions and fugitive dust emissions. Vehicle emissions would occur from construction vehicles, such as trucks, bulldozers, and portable cement mixers. Fugitive dust emissions would be caused by disturbing the land for construction of project facilities. As long as reasonable precautions are taken to minimize fugitive dust emissions, EPA considers windblown dust to be a natural event that does not contribute to the nonattainment status of an area. *Mitigation.* Prior to construction, a dust control plan would be submitted for approval by the YRCAA and the BCAA, in accordance with their regulations. The plan would be implemented to reduce the impact of construction dust, including watering gravel roads to suppress nuisance levels of dust, as appropriate. ### 3.12.4.3 Operation Impacts The generation of electricity with wind turbines does not produce air emissions. During operation of the project, limited amounts of fugitive dust emissions would be caused by traveling on the gravel access roads. However, the number of vehicle trips associated with ongoing operations and maintenance would be limited and it is unlikely that the resulting dust would reach nuisance levels. Operation of the proposed project would not result in emissions that exceed the significant emission rates and would not contribute to violations of the NAAQS. Impacts to air quality from operation of the project would be low. ### 3.12.4.4 Decommissioning Impacts Impacts during decommissioning of the project would be similar to those described for construction. However, access roads may be left in place so impacts would likely be lower. Mitigation in use at the time of decommissioning would be implemented and would likely be similar to that recommended for construction. # 3.12.5 Impacts of the No Action Alternative Under the No Action Alternative, the project would not be built and temporary dust from construction and operation activities would not occur. The most likely resources to be built in the region would be combined cycle CTs. BPA's RPEIS estimated emission rates of CTs on a per aMW per year basis at 5.81 tons of nitrogen oxides and 3,904 tons of carbon dioxide. Although improvements in air emission control technology and the increasing stringency of air quality permit requirements by state agencies have led to lower emission rates, CTs still remain a significant source of air emissions. Nitrogen oxides contribute to ozone generation in the lower atmosphere and carbon dioxide is considered a greenhouse gas. In addition to the emissions from generation itself, a gas turbine generation facility also would have emissions of sulfur oxides, nitrogen oxides, and particulates associated with the extraction of natural gas and transportation by pipeline. # 3.13 Public Health and Safety ### 3.13.1 Regulatory Framework A variety of federal and state safety regulations and guidelines would apply to project design and construction. Federal safety regulations are issued under the authority of the Occupational Safety and Health Act. State safety regulations are issued under the Washington Industrial Safety and Health Act. In addition, the National Electrical Manufacturers Association and the Institute of Electrical and Electronics Engineers issue standards for the design of electrical equipment and controls. The Yakima County Building Code, Title 13 Buildings and Construction, provides standards for life, health, property, and general public welfare by regulating and controlling the design, construction, quality of materials, use and occupancy, location, placement, repair, and maintenance of all buildings and structures within Yakima County. The Benton County Building Code, Title 3, Building and Construction also provides safety standards for building and construction in Benton County. The federal regulation governing the handling of hazardous materials that would potentially be applicable to the project is 40 CFR 112 (Spill Prevention Control and Countermeasures). Whether this regulation applies to the project would depend on the exact quantities and type of hazardous materials stored on the site. Regulations would be enforced by Ecology. Materials that potentially would be considered hazardous are batteries used in the substations, mineral oil used as a coolant in substation transformers, fuel for vehicles, cleaning solvents, and lubrication fluids. New transformers do not contain polychlorinated biphenyls (PCBs). In addition, development of a Hazardous Materials Management Plan in accordance with the *Uniform Fire Code* would be required by the local fire districts. The FAA establishes requirements for towers and other tall structures that could potentially interfere with aircraft safety. The FAA generally regulates structures 200 feet and higher and may require that they be lighted for aircraft safety. The FAA requires a Notice of Proposed Construction or Alteration be filed for this project. This section discusses potential health and safety risks associated with construction, operation, and decommissioning of the project. Health and safety risks consist of those that could be experienced by construction and O&M personnel at the facility, as well as by the general public. ### 3.13.2 Study Methodology The study area relevant to health and safety includes the project site and the roads in the surrounding area that would be used to access the site for construction and operation. The primary sources of information for this section are published information and discussions with individuals experienced with general construction and the types of health and safety risks related to major wind energy construction projects. ### 3.13.3 Affected Environment The project site is located in a sparsely populated rural agricultural area consisting of rangeland and wheat farms, with some relatively steep hillsides. Potential hazards on the site include the fire hazard presented by dry crops and grasses (especially in the summer months), steep hills, and utility crossings. ### 3.13.4 Impacts of the Proposed Action Potential health and safety risks associated with construction and operation of the proposed project could include personal injury, electrical shock, fires, hazardous materials spills, and general worker safety. Two conditions must exist to create a health or safety risk: a potential hazard (such as an open ditch or flammable materials) and exposure of an individual to the hazard in such a way as to result in a health effect. ### 3.13.4.1 Evaluation Criteria - Impacts to health and safety from the proposed project would be considered high (and significant) if exposure to a site-related hazard resulted in a substantial increased risk to human health and safety for site personnel or the general public, assuming those exposed were following site safety procedures and obeying applicable laws (for example not trespassing). - Impacts to health and safety from the proposed project would be considered **moderate** if exposure to a site-related hazard resulted in some risk to human health and safety for site personnel or the general public (assuming those exposed were following site safety procedures and obeying applicable laws). - Impacts to health and safety from the proposed project would be considered low if exposure to a site-related hazard
resulted in a minor risk to human health and safety for site personnel or the general public (assuming those exposed were following site safety procedures and obeying applicable laws). ### 3.13.4.2 Construction Impacts Potential health and safety risks to workers during project construction include risk of electric shock from electrical equipment and power lines; fire hazards; hazardous materials spills (for example, fuel tanks); and injury associated with the use of heavy equipment and installation of elevated structures. Implementation of a health and safety plan and fire prevention plan would ensure that impacts would be low. Construction of the proposed project could increase the potential for brush fires, particularly in the summer months, due to typical construction activities such as installation of electrical equipment, increased traffic and use of vehicles on the project site, and the addition of up to 350 employees accessing the site during construction. This would be considered a low to moderate impact. Potential health and safety risks to landowners and the general public could occur during construction. However, access by the general public would be considered trespassing on private property. Assuming observance of private property, no health and safety impacts to landowners or the general public would be anticipated as a result of construction activities. ### Mitigation. To reduce the potential for health and safety risks, the project developer would require that all onsite construction contractors prepare a site health and safety plan before initiating construction activities. The plan would inform employees and others on site what to do in case of emergencies. The plan would include the locations of fire extinguishers and nearby hospitals, important telephone numbers, and first aid techniques. The plan would be maintained during the life of the project. Accidental injury would be minimized by: - Maintaining fencing and access gates around dangerous equipment or portions of the site as feasible - Posting warning signs near high-voltage equipment - Offering specific job-related training to employees, including cardiopulmonary resuscitation, first aid, tower climbing, rescue techniques, and safety equipment inspection - Requiring each worker to be familiar with site safety - Assigning safety officers to monitor construction activities and methods during each work shift - Ensuring that workers on each shift are certified in first aid - Ensuring that a well-stocked first-aid supply kit is accessible on site at all times and that each worker knows its location - Conducting periodic safety meetings for construction and maintenance staff. If indicated, additional prevention measures such as briefings with local hospitals and emergency service providers, identification of an emergency helicopter or aircraft landing area, and coordination with local fire officials, could be included. Because a significant portion of the proposed project site is not currently located within a county fire protection district, a fire emergency plan would be developed prior to project construction and submitted to Benton and Yakima County fire marshals for approval. It would also be shared with the Hanford Fire Department. This plan would outline onsite fire prevention and suppression methods that would be used during the construction period. The plan would require onsite water tanks containing sufficient water to fight grass fires (as determined by the fire districts). The plan would require that workers be instructed in basic fire suppression techniques, vehicle traffic be limited to access roads and gravel areas, and smoking be permitted only inside vehicles. With implementation of these measures and approval of the fire emergency plan by local fire agencies, the risk of fire-related impacts would be low. Potential risks to landowners would be minimized by coordinating construction activities with access needs and landowner schedules. Unauthorized visitors would be discouraged during construction hours by the presence of construction workers, warning signs, and gates. ### 3.13.4.3 Operation Impacts Potential health and safety risks to workers during operation and maintenance of the project include the potential for electric shock from working in the vicinity of electrical equipment and power lines; the potential for injury related to maintenance of elevated structures such as transmission towers that are accessed with ladders or cranes; and the potential for fire resulting from maintenance activities. Impacts would be considered low to moderate. Potential health and safety risks to landowners would be minimized by coordinating maintenance activities with access needs and schedules of the landowners. Because the project site is primarily on private property and is remotely located, there is little potential for unauthorized access. Onsite maintenance personnel would discourage unauthorized access to and use of the site; however, public access to the site would be possible in the event of trespass. Although a variety of health and safety risks could be experienced by trespassers on the property, contact with electrical equipment would be avoided through facility compliance with building codes. To prevent access to the turbines, turbine tower doors would be locked and there would be no outside ladders on the towers. The substations would be fenced and locked. Prevention of accidental grass or crop fires during operation of the project would include avoiding idling vehicles in grassy areas, and keeping welding machines and similar equipment away from grass. Health and safety impacts to landowners or to the general public from project operation and maintenance would be low. Similar to the plan prepared for construction, a fire emergency plan for operation of the proposed project would be submitted to Benton and Yakima County fire marshals for approval and would be shared with the Hanford Fire Department. Implementation of this plan would reduce potential fire impacts to a low level. ### Hazardous Materials and Wastes. Small amounts of fuels (diesel and/or gasoline), lubricating or other oils, and possibly small amounts of solvents likely would be stored onsite during operation of the project for use in refueling and maintaining vehicles as well as for maintaining wind turbines. Activities at the site would comply with all applicable local, state, and federal environmental laws and regulations in a manner that would be protective of human health and the environment. In the event of an accidental hazardous materials release, possible impacts to soils, surface and groundwater resources, and wildlife could result. Because project operations would comply with relevant federal and state laws and because only relatively small amounts of such materials would be stored onsite, impacts would be low. ### Air Traffic Safety. The maximum height of the wind turbines, including one blade in the vertical position, could be as high as 390 feet. Because this height exceeds 200 feet, the FAA requires that a Notice of Proposed Construction or Alteration (Form 7460-1) be filed for the project. The FAA review process would determine whether the wind turbines could be permitted as airspace obstructions. Lighting of the facilities likely would be required by the FAA for aircraft safety. Preliminary coordination with FAA staff indicates that there are no high-use public, private, or military airports in the study area (Johnson, 2001). However, some military training flight routes from the Yakima Training Center and the Naval Air Station at Whidbey Island do use the general area. The FAA may notify the responsible military branch and request that the routes be adjusted. Impacts to air traffic safety as a result of the proposed project would be low. ### **Electric and Magnetic Fields.** Electric and magnetic fields (EMF) are associated with electric transmission and distribution lines. BPA completed an extensive review of EMF in its *Electrical and Biological Effects of Transmission Lines: A Review* in December 1996. Although the study focused on high-voltage transmission lines, it also reviewed related research on distribution lines. In general, reviews of the epidemiological and biological research on EMF consistently conclude that no causal link has been established between EMF and adverse human health effects. However, since most of the studies acknowledge there are still unanswered questions, steps to prevent or reduce exposures are recommended. The strength of electric and magnetic fields diminishes rapidly as the distance from the source increases. During project operation, the overhead power lines connecting the turbine strings, the proposed 4-mile transmission line, and the two substations would produce EMF in the immediate vicinity of these facilities. No residences are located near the proposed substations or the proposed transmission line. Proposed wind turbines would be sited to comply with noise mitigation to achieve no more than a 10 dBA increase in noise at nearby residences (see Section 3.7, Noise). Because this mitigation would likely require setbacks of about 3,300 feet from all residences if 900-kW turbines are used, underground or overhead power lines would also likely be about 3,300 feet from any residence. At this distance, any fields generated by these low voltage lines would diminish to background levels at nearby residences. The power generated by the project would not raise the background EMF to levels that would be substantially different from existing levels. As a result, there would be no EMF exposure to residences and no significant increase in background levels of exposure to the general public; therefore, no impacts would result. *Mitigation.* Operation and maintenance workers would have a detailed safety manual and frequent safety meetings which would reduce health and safety risks to a low level for personnel.
Contact with electrical equipment would be avoided through facility compliance with building codes. To prevent unauthorized access to the turbines, turbine tower doors would be locked and there would be no outside ladders on the towers. The substations would be fenced and locked. To prevent accidental grass or crop fires during operation of the project, workers would avoiding idling vehicles in grassy areas and keep welding machines and similar equipment away from grass. Similar to the plan prepared for construction, a fire emergency plan specifically for operation of the proposed project would be developed and submitted to Benton and Yakima County fire marshals for approval. It would also be shared with the Hanford Fire Department. Any spills or releases of hazardous materials would be cleaned up, and disposed of or treated according to applicable regulations. Accidental releases of hazardous materials to the environment would be prevented or minimized through the proper containment of oil and fuel in storage areas and by locating these facilities away from drainages or sensitive resources. The project developer would submit to the FAA a Notice of Proposed Construction or Alteration (Form 7460-1) to determine whether the wind turbines could be permitted as airspace obstructions. Lighting of the facilities likely would be required by the FAA for aircraft safety. The FAA may notify responsible military branches and request that routes be adjusted. ### 3.13.4.4 Decommissioning Impacts If the project were decommissioned, potential health and safety risks would be similar to those described for project construction. Mitigation measures in use at the time of decommissioning would be implemented and would likely be similar to those recommended for construction. ### 3.13.5 Impacts of the No Action Alternative Under the No Action Alternative, the project would not be constructed or operated and existing health and safety risks associated with ongoing agricultural activities and with existing transmission lines in the study area would continue. If the project were not constructed, the region's power needs could be addressed through development of a gasfired CT. Potential health and safety risks of a gas fired combustion turbine would depend on the location in which it was constructed. # 3.14 Relationship Between Short-Term Uses of the Environment vs. the Maintenance and Enhancement of Long-Term Productivity The proposed action under consideration does not pose short-term impacts that would significantly alter the long-term productivity of the affected environment. The turbines and associated facilities would take 251 acres of agricultural land out of production, and the remainder of the land could still be used for agricultural purposes. After decommissioning of the project, all of the land could revert to previous uses. Little change in the long-term environmental productivity of the land would have been caused. # 3.15 Irreversible or Irretrievable Commitments of Resources The proposed project would include the use of steel, gravel, and other nonrenewable material to construct the wind turbines, access roads, electrical power lines, O&M buildings, and substations. Materials would come from outside sources and onsite quarries. Petroleum-based fuels for vehicles and equipment would also be required. Development of the proposed project would result in the irretrievable commitment of a small amount of agricultural land. These commitments are irretrievable rather than irreversible because the project would likely be decommissioned in the future and previous land uses could be restored. In addition, many materials used to construct and operate the project could be recycled upon decommissioning. # 3.16 Unavoidable Adverse Impacts Unavoidable adverse impacts are the environmental consequences of the proposed project that would occur even with implementation of mitigation measures. For the proposed wind project, unavoidable adverse impacts include: ### 3.16.1 Land Use and Recreation Approximately 251 acres would be permanently converted from agriculture to energy production, including less than 100 acres of CRP land. In addition, about 1063 acres would be temporarily impacted by project construction activities. Scoping comments raised a concern about a potential adverse impact to operations at the LIGO and BGRO facilities from project-generated vibration, and that this impact could be significant. Such an impact is not expected due to the expected low levels of vibration that would be generated by the project and the distance between the project and these facilities. However, further studies will be conducted in consultation with the facilities to determine whether operation of the proposed project would disrupt the research facilities, and the results of these studies will be discussed in the Final EIS. # 3.16.2 Vegetation Approximately 57.5 acres of priority shrub-steppe habitat would be permanently displaced by project facilities and 174.4 acres would be temporarily impacted by project construction activities. Approximately 12.2 acres of priority lithosol habitat would be permanently impacted and 50.9 acres temporarily impacted by project facilities. Several special status plant species would be directly impacted, including Columbia milkvetch, a federal species of concern and state threatened species. Noxious weed seeds could be transported to the project site by construction equipment and vehicles. This could be a significant impact if weeds are not controlled adequately. ### 3.16.3 Wildlife Birds and bats may collide with wind turbines or meteorological tower guy wires. Annual passerine mortality is estimated at between 360 and 1565, and raptor mortality is estimated at 0-9 raptors per year. Bat mortality is estimated at about 400 bats per year. Several special status wildlife species could be directly and indirectly impacted by the project, including bald eagle, ferruginous hawk, peregrine falcon, loggerhead shrike, sage thrasher, sage sparrow, golden eagle, and merlin. Because of the proximity of a ferruginous hawk nest to a proposed turbine string, the project could result in about one ferruginous hawk death per year. This potential impact to ferruginous hawk would be considered a significant impact. Other impacts could occur through disruption to ground- and shrub-nesting avian species, habitat destruction, and displacement. ### 3.16.4 Visual Resources Development of the proposed project would result in a substantial alteration to the existing visual character and quality of the study area during the day and at night. The wind turbines would be visible to residents, agricultural workers, recreationists, and highway travelers in the project vicinity. This impact would be considered significant. ### 3.16.5 Cultural Resources There are 54 cultural resource features and several isolated finds identified in the study area that could potentially be affected by project construction. Traditional cultural properties may also be present in the project vicinity. ### 3.16.6 Noise Increased noise levels would be experienced by some area residents during construction, operation, and decommissioning. ### 3.16.7 Water Resources and Wetlands The proposed project could create minor alterations to natural drainage patterns, increase erosion potential in the study area, and disturb about 0.004 acre of wetland. Up to 18 million gallons of water may be needed for construction of the project, and a maximum of 5,000 gallons per day (about 1.8 million gallons per year) for operation and maintenance building use. ## 3.16.8 Transportation and Traffic Minor delays and interruptions in local traffic could occur during construction and decommissioning. # 3.16.9 Geology, Seismicity, and Near-Surface Soils Construction of the project would alter the landscape with cuts-and-fills for roads, installation of underground power lines, leveling for turbine foundations, and development of a quarry. Soil erosion and compaction could occur ### 3.16.10 Socioeconomics and Public Services Construction activities could increase the potential for fires, and the need for fire-fighting services. Decommissioning of the project would result in the loss of up to 15 full-time jobs and a decrease in property tax revenues. # **3.16.11** Air Quality Low levels of combustion pollutant and dust emissions could occur during construction, operation or decommissioning of the project. ### 3.16.12 Public Health and Safety Accidental fire, release of hazardous materials, or injury could occur during construction, operation, or decommissioning of the project. Wind turbines could potentially interfere with military training flight routes from the Yakima Training Center and the Naval Air Station at Whidbey Island. # 3.17 Cumulative Impacts NEPA regulations define a cumulative impact as "the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions." Cumulative impacts can also result from individually minor but collectively significant actions taking place over a period of time (40 CFR 1508.7). Previous sections of this chapter have addressed the environmental effects of past actions (described in the "Affected Environment" sections), as well as the potential effects of the proposed project. The proposed project is the only known wind energy development planned in the Rattlesnake Hills area. Expansion of wind facilities in the Rattlesnake Hills beyond the 494 MW covered in this EIS is not likely in the near future, if at all, considering that full build-out of the Maiden Wind Farm would cover the primary wind resource areas available. No other developments, projects, or changes of any type are planned or foreseen in the immediate vicinity of the Rattlesnake Hills area that would affect any
aspect of the physical and biological environment. No cumulative impacts are anticipated from a local resource perspective. A list of present and reasonably anticipated future projects that would be expected to produce related or cumulative impacts within a reasonable distance of the Rattlesnake Hills is presented in Table 3.18-1. The information in this table was gathered from Benton and Yakima Counties' planning departments and BPA's public documents. **TABLE 3.17-1**Current, Approved, or Proposed Projects with Potential Contributions to Cumulative Impacts | Project/Status | Location | Description | |---|--|--| | Nine Canyon Wind Project:
Conditional Use Permit granted | Benton County, south of the Finley area | 48 MW, 37 turbine wind project on about 50 acres of agricultural land. | | Horse Heaven Wind Project:
Conditional Use Permit Application
submitted, EIS underway | Benton County, approximately
10 miles north of the Plymouth
area | Up to 225 MW, using up to 250 wind turbines, on about 200 acres of agricultural land. Also would include about 12 miles of transmission line. | | Zintel Canyon Wind Project In planning stages | Benton County, south of
Kennewick | 50 MW, 38 turbine wind project on about 50 acres of agricultural land. | | Black Rock Reservoir:
Being studied. An EIS has not yet
been initiated. | Yakima County, about 30 miles east of Yakima and 18 miles north of Sunnyside | Proposed reservoir would cover about 10 square miles (6700 acres) of shrub-steppe habitat and provide up to 1.7 million acre-feet of water to the Yakima Basin's total storage capacity. | **TABLE 3.17-1**Current, Approved, or Proposed Projects with Potential Contributions to Cumulative Impacts | Project/Status | Location | Description | |--|---|--| | Badger Mt. Golf and Country Club
Planned Development:
Housing development preliminary
Plat Approval granted | Benton County, adjacent to the Cities of Richland and Kennewick | 867 units of housing to be located on 1,707 acres of agricultural land. | | The Vineyards development:
Hearing on the Conditional Use
Permit held, no decision yet | Yakima County near Moxee | 500 dwelling units, hotel, and golf course on 360 acres of shrub-steppe. | | Plymouth CT:
Conditional Use Permit application
submitted, EIS underway | Near Plymouth in Benton County | 305 MW natural gas fired combined cycle combustion turbine on about 45 acres of agricultural land. | | Mercer Ranch CT:
Washington State EFSEC
application submitted | Southwest Benton County, east of Alderdale | 850 MW natural gas fired combined cycle combustion turbine on about 40 acres of agricultural land. | | Schultz-Hanford Transmission
Line:
EIS underway | From the Schultz Substation, north of Ellensburg, to a proposed substation just south of Hwy 24 in Benton County, near the Yakima County border | The preferred alternative for this 500-kV line would be about 63 miles long and would require clearing approximately 580 acres of shrub-steppe and grassland vegetation. | | McNary-John Day Transmission
Line:
EIS underway | Benton and Klickitat Counties along the Columbia River | 79 mile, 500-kV transmission line, mostly in existing right-of-way paralleling existing transmission lines. | These projects are far enough away from the proposed Maiden Wind Farm to have relatively minor cumulative impacts to land use and recreation, geology, fish, water resources, cultural resources, transportation, air quality, noise, and public health and safety. However, potentially significant cumulative impacts might occur to socioeconomic, visual, vegetation, and wildlife resources. ### 3.17.1 Land Use and Recreation The proposed project would remove approximately 250 acres of agricultural land from production, including less than 100 acres of CRP land. Combined with the wind projects and the transmission line projects, cumulative impacts on land use would be low because these projects would be located mainly on agricultural land and agricultural activities could continue up to the edge of the project facilities. The wind and transmission projects would take a very small proportion of agricultural land out of production without changing the overall agricultural usefulness of the land. The proposed development projects and reservoir would permanently take large areas of agricultural land use and convert them to other uses. All of the projects together would result in the conversion of over 2,350 acres of agricultural land, resulting in a potentially significant cumulative land use impact. The proposed Maiden Wind Farm would have minor (if any) impacts on recreation. It is unknown to what extent the various project areas are currently used for recreation (presumably mostly hunting), but it is expected that the cumulative effects to recreation would be low. However, construction of the Black Rock Reservoir would significantly enhance water recreation in the region. ### 3.17.2 Vegetation Implementation of the proposed project and other proposed and planned projects would impact vegetation in the area. Cumulative impacts to vegetation would result from loss of vegetation through clearing and ground disturbance, or, in the case of the Black Rock reservoir, through inundation with water. All of the projects combined would result in about 10,000 acres of vegetation disturbance. The Maiden Wind Farm would result in the conversion of 128 acres of native habitat to project facilities, which is approximately 0.016 percent of the total acreage of disturbance to native habitats from all of the proposed or planned projects (approximately 7,768 acres). At this level, the proposed project would not contribute significantly to the cumulative loss of native vegetation, particularly in light of the proposed mitigation in Section 3.3, Vegetation. Historically, 10.7 million acres of Eastern Washington was covered in shrub-steppe vegetation; today, about 60 percent of that area has been converted to agricultural, industrial, residential, and other uses (Larson, 2002). While the proposed and planned projects result in only about 0.002 percent of shrub steppe conversion (out of approximately 4.3 million acres), the overall impact to shrub steppe habitat could be considered cumulatively significant for Benton and Yakima Counties. Much of the remaining shrub-steppe habitat in Eastern Washington is subject to intense grazing, recurrent fire, or other non-historic land uses. It is generally recognized that preserving large, unbroken tracts of high quality shrub-steppe vegetation is important for maintaining populations of shrub-steppe dependent species such as sage grouse, sage sparrow, Washington ground squirrel and others (Johnson and O'Neil, 2001). Construction of the Maiden Wind Farm, the proposed transmission lines, and the Black Rock Reservoir in shrub-steppe habitat would increase the existing levels of habitat fragmentation and reduce the amount of shrub-steppe habitat available for wildlife. Over time, native vegetation may recolonize the disturbed areas. However, construction of these projects would increase the potential for the spread of weeds into previously undisturbed areas. The presence of weeds makes the recolonization of disturbed areas with native vegetation difficult, and generally leads to a long-term reduction in quality wildlife habitat. Invasion by weeds is considered one of the biggest threats to biodiversity in the region (The Nature Conservancy, 1999). Special status plant species on private lands receive little to no protection under federal and state rare and endangered species legislation. Special status species may be impacted by a variety of land uses typical of private lands, including farming, grazing, and development. However, all of the proposed and planned projects discussed in this section would likely have some impact mitigation required by NEPA, SEPA, or the county permitting process which would minimize individual as well as cumulative impacts to vegetation. Impacts to special status plant species from the proposed or planned projects would depend on the location of the projects and applied mitigation measures, and could potentially be cumulatively significant. ### **3.17.3** Wildlife Implementation of the proposed project, combined with the other proposed or planned projects, could result in cumulative impacts to wildlife habitat and special status wildlife species from loss of habitat through vegetation clearing and ground disturbance. In addition, the proposed project, combined with the other wind projects, and the transmission lines, would impact avian and bat species likely to collide with wind turbines, meteorological towers, and transmission towers and conductors. It can be assumed that cumulative bird and bat mortality would occur, and an undetermined number of mortalities would be migrants that could possibly pass through more than one wind project or transmission line area during migration. While it is speculative to provide mortality projections for these projects without additional information on habitat, bird and bat utilization, and species composition of the project sites, there are several wind projects
in the country that have completed one or more years of mortality studies, which can be useful in predicting mortality at new wind projects. The average bird fatalities from Vansycle (Oregon), Buffalo Ridge (Minnesota), and Foote Creek Rim (Wyoming) wind plants equal 1.74 birds/turbine/year (Johnson et al., 2000; Young et al., 2001). The combined wind projects would use a maximum of 819 wind turbines, depending on turbine models chosen for Maiden and Horse Heaven and the ultimate size of the projects. Using the average of 1.74 birds/turbine/year, these four wind projects could result in the cumulative loss of approximately 1425 birds per year in Benton County. While the significance of this level of mortality is unknown, other sources of avian mortality in Benton County include collision with communications towers, windows, vehicles, and powerlines. In addition, domestic/feral cats and pesticides are other substantial sources of avian mortality that undoubtedly occur in Benton County. Erickson et al. (2001) provide estimates of avian mortality for these other collision sources. While it is hard to predict numbers of bird deaths for Benton County from other sources, it is safe to say that it would be substantially higher than 1425, based on the amount of powerlines, roads, communications towers, and agriculture in the county. ### 3.17.4 Visual Resources Construction of the proposed project, combined with the other proposed or planned projects, would contribute to a cumulative change in the existing visual character of the region by adding more development. However, the overall cumulative visual impact from all projects would likely be low to moderate due to the abundance of open, undeveloped areas in the region. Other wind projects in the area, combined with the Maiden project, could create a moderate to high impact to views of the various ranges and hillsides in the region. It is likely that Nine Canyon, Zintel Canyon, and Horse Heaven wind projects would be within view of each other. To many viewers, wind farms are a visual attraction. However, if they were to become more commonplace on the landscape, the novelty would likely diminish. ### 3.17.5 Cultural Resources The proposed project, in conjunction with the other proposed or planned projects, would result in ground disturbance that could potentially impact identified and unidentified prehistoric and/or historic sites, as well as cause impacts to traditional cultural properties. Cultural resource surveys and coordination with affected Tribes, as required prior to construction of all projects under NEPA and SEPA, would identify the locations of these resources so they could be avoided to the extent possible. While impacts to cultural resources from all projects could result in a net cumulative loss of cultural resource values in the region, implementation of mitigation programs would help reduce cumulative impacts to the extent possible. ### 3.17.6 Noise All the proposed or planned projects are sufficiently distant from each other so that cumulative impacts from noise are not expected. ### 3.17.7 Water Resources and Wetlands Impacts to water resources and wetlands from the proposed project would be very low. It is likely that impacts from the other wind projects and transmission line projects would also be low, due to the similar designs of these linear projects. Impacts to water use from the housing developments and combustion turbines would likely be moderate to high; while the proposed reservoir would significantly increase the amount of water available in the Yakima Valley. Impacts to streams and wetlands would depend on the final designs of the proposed or planned projects. ### 3.17.8 Transportation and Traffic A cumulative impact could potentially occur if several of the projects were to be constructed at the same time. If this were to happen, truck traffic could noticeably increase on the highways, but it is unlikely that levels of service or safety on any highways would be measurably affected. Local roads around the individual projects would not experience cumulative impacts. # 3.17.9 Geology, Seismicity, and Near-Surface Soils Since the proposed project would not alter the geology or seismicity of the project site, no contribution to cumulative change is likely. Ground disturbance of near-surface soils would occur from all of the projects, primarily from construction activities. The intensity of impacts to near-surface soils would depend on the location, construction practices employed, and mitigation measures required, but would likely be low to moderate due to standard construction practices and erosion measures implemented for these types of projects. ### 3.17.10 Socioeconomics and Public Services The proposed project and the other proposed and planned projects could contribute to increases in temporary and permanent job opportunities and populations within the region. Temporary population increases could result from the construction work forces for the proposed and planned projects. These temporary increases would be spread over a wide geographic area and would not be cumulative if construction periods for each project occurred at different times. Existing housing in each project area is expected to be sufficient to accommodate any influx of population for construction or operations jobs related to the proposed and planned projects. The proposed and planned projects would increase demands on schools, police, fire protection, emergency services, water supply, sanitary sewer, solid waste, or public utility systems. Demand for public services would generally be on a temporary basis, and would be dispersed throughout the region, which would minimize the potential for a significant cumulative effect to these services. The permanent demand for these services by the permanent employees and residents of the projects would be expected to be accommodated without adversely affecting the capacities and performance of the public service systems. The proposed and planned projects would likely have a cumulatively beneficial economic effect to the local economy. The projects would generate tax revenues, royalties, employee salaries, and some increase in retail sales. Cumulative tax revenues and royalties would be paid to the federal, state, or local governments. Further, the projects could have a positive cumulative effect on total regional employment. ### **3.17.11** Air Quality Construction of the proposed project would result in temporary dust emissions, as is likely with all of the proposed or planned projects. Whether these impacts would be cumulatively significant would depend on construction timing, the effectiveness of dust mitigation measures employed, and the distance between the projects. Operation of the proposed project would not impact air quality and therefore would not contribute to cumulative impacts to air quality in the region. ### 3.17.12 Public Health and Safety All of the proposed and planned projects could potentially affect public health and safety, especially during construction activities. However, these effects would not result in significant cumulative effects as the potential impacts would be localized within close proximity to each projects. FIGURE 3.5-2 Simulation of Proposed Project, Location 1 View from State Route 241 at Van Belle Road FIGURE 3.5-4 Simulation of Proposed Project, Location 3 View from West Grandview Avenue in Sunnyside FIGURE 3.5-5 Simulation of Proposed Project, Location 4 View from Gap Road at Hanks Road in Prosser FIGURE 3.5-6 Simulation of Proposed Project, Location 5 View from the Junction of State Routes 24 and 241 FIGURE 3.5-7 Simulation of Proposed Project, Location 6 View from the Junction of Crooks Road and Rotha Road # References and Literature Cited ### **Summary** Avian Power Line Interaction Committee (APLIC). 1996. Suggested Practices for Raptor Protection on Power Lines: the State of the Art in 1996. Edison Electric Institute and the Raptor Research Foundation. Washington, D.C. Richardson, S.A. 1996. *Washington State Recovery Plan for the Ferruginous Hawk*. Washington Department of Fish and Wildlife, Wildlife Management Program. Olympia, Washington. ### Chapter 1 National Energy Policy Development Group. May 2001. Natural Energy Policy. Northwest Power Planning Council (NWPPC). March 6, 2000. Northwest Power Supply Adequacy/Reliability Study Phase I Report. U.S. Department of Energy, Bonneville Power Administration (BPA). February 1993. *Resource Programs Final Environmental Impact Statement EIS-0162*. U.S. Department of Energy, Bonneville Power Administration. June 1995. *Business Plan Final Environmental Impact Statement*, EIS-0183. U.S. Department of Energy, Bonneville Power Administration. 1999. *Pacific Northwest Loads and Resource Study.* U.S. Department of Energy, Bonneville Power Administration. January 2000. *Power Business Line Strategic Plan*. # Chapter 2 Avian Power Line Interaction Committee (APLIC). 1996. Suggested Practices for Raptor Protection on Power Lines: the State of the Art in 1996. Edison Electric Institute and the Raptor Research Foundation. Washington, D.C. ## Chapter 3 ### Section 3.2—Land Use and Recreation Benton County Planning and Building Department. September 20, 1995. *Benton County Zoning Ordinance*. Benton County Planning and Building Department. November 27, 2000. Benton County Comprehensive Land Use Plan. Boynton, Dr. Paul, University of Washington. 2001. Personal Communication. September 6, 2001. Brunkal, H., U.S. Fish and Wildlife Service. Personal Communication. July 30, 2001. Sanders, G.H., and D. Beckett. 2000. "L160: An Antenna Tuned to the Songs of Gravity," *Sky and Telescope*. October 2000. Yakima County Planning Department. May 20, 1997. Plan 2015: A Blueprint for Yakima County Progress, Volumes 1 and 2. Yakima County. February 8, 2000. Yakima County Zoning Ordinance. ### Section 3.3—Vegetation Benton County Planning and Building Department.
September 20, 1995. *Benton County Zoning Ordinance*. Benton County Planning and Building Department. November 27, 2000. Benton County Comprehensive Land Use Plan. Cassidy, K. M., M.R. Smith, C.E. Grue, K.M. Dvornich, J.E. Cassady, K.R. McAllister, and R.E. Johnson. 1997. "Gap Analysis of Washington State: An evaluation of the protection of biodiversity." Volume S in *Washington State Gap Analysis - Final Report* (K.M. Cassidy, C.E. Grue, M.R. Smith, and K.M. Dvornich, eds.). Washington Cooperative Fish and Wildlife Research Unit, University of Washington, Seattle. Daubenmire, R. 1970. *Steppe Vegetation of Washington*. Originally Agriculture Experiment Station Publication XT0062. Reprinted in 1988 as EB1446, U.S. Department of Agriculture and Home Economics, Washington State University, Pullman. Eagle Cap Consulting Inc. (ECCI). 2001. Draft Technical Report: An Investigation of Rare Plant Resources Associated with the Maiden Wind Power Project – Benton and Yakima Counties, Washington. July 31, 2001. Beaverton, Oregon. Franklin, Jeny F. and C.T. Dyrness. 1988. *Natural Vegetation of Oregon and Washington*. Oregon State University Press, Corvallis, Oregon. Hitchcock, C. Leo, and Arthur Cronquist. 1973. *Flora of the Pacific Northwest*. University of Washington Press, Seattle, Washington. Hitchcock, C. Leo, Arthur Cronquist, Marion Ownbey, and J.W. Thompson. 1964. *Vascular Plants of the Pacific Northwest* (5 volumes). University of Washington Press, Seattle, Washington. Sheley, R.L., B.E. Olson, and C. Hoopes. 1998. What Is So Dangerous About the Impacts of Noxious Weeds On the Ecology and Economy of Montana? Montana State University Extension Service, EB#152. Soll, Jonathan, John A. Hall, Robert Pabst, and Curt Soper, eds. 1999. *Biodiversity Inventory and Analysis of the Hanford Site: Final Report:* 1994 – 1999. The Nature Conservancy of Washington, Seattle, Washington. The Nature Conservancy of Washington. October 15, 1999. *Biodiversity Inventory and Analysis of the Hanford Site, Final Report:* 1994 – 1999. U.S. Department of Agriculture (USDA). 2001. The PLANTS Database: Version 3.1. National Plant Data Center, Baton Rouge, LA. http://plants.usda.gov U.S. Fish and Wildlife Service (USFWS). 2001. Section 7 Guidelines – Snake River Basin Office: *Spiranthes diluvialis* Ute Ladies-tresses (threatened). April 24, 2001. USFWS Snake River Basin Office, Boise, Idaho. Washington Department of Fish and Wildlife (WDFW). 2000. The Rattlesnake Hill (Hanford) Elk Strategic Management Plan. September 2000. Washington Natural Heritage Program (WNHP). 1999. Field Guide to Selected Rare Vascular Plants of Washington. Washington Department of Natural Resources, Olympia, Washington. Washington Natural Heritage Program. 2000. *Field Guide to Washington's Rare Plants*. A Cooperative Project Between WNHP, the Washington Department of Natural Resources, and Spokane District U.S.D.I. Bureau of Land Management. Olympia, Washington. Welsh, Stanley L., Florence Caplow, and Kathryn Beck. 1997. "New Variety of Astragalus conjunctus S. Watson from Benton County, Washington." *Great Basin Naturalist* 57:4, October 1997. Yakima County Planning Department. May 20, 1997. Plan 2015: A Blueprint for Yakima County Progress, Volumes 1 and 2. Yakima County. February 8, 2000. Yakima County Zoning Ordinance. ### Section 3.4— Wildlife Avian Power Line Interaction Committee (APLIC). 1996. Suggested Practices for Raptor Protection on Power Lines: the State of the Art in 1996. Edison Electric Institute and the Raptor Research Foundation. Washington, D.C. Benton County Planning and Building Department. November 27, 2000. Benton County Comprehensive Land Use Plan. Best, T.L. 1996. "Lepus californicus." Mammalian Species 530:1-10. Chapman, D., C. Peven, T. Hillman, A. Giorgi, and F. Utter. 1994. *Status of Summer Steelhead in the Middle Columbia River*. Don Chapman Consultants, 235 pp. Crockford, N.J. 1992. *A Review of the Possible Impacts of Wind Farms on Birds and Other Wildlife*. JNCC Report No. 27. Joint Nature Conservancy Committee, Peterborough, UK. 60pp. Csuti, B., T.A. O'Neil, M.M. Shaughnessy, E.P. Gaines, J.C. Hak. 2001. *Atlas of Oregon Wildlife: Distribution, Habitat, and Natural History. Second Edition.* Oregon State University Press, Corvallis, Oregon. 526 pp. Eagle Cap Consulting Inc. (ECCI). 2001. *An Investigation of Rare Plant Resources Associated with the Maiden Wind Power Project – Benton and Yakima Counties, Washington*. Technical report prepared by Eagle Cap Consulting, Inc., Beaverton, Oregon. September 17, 2001. Ennor, H.R. 1991. *Birds of the Tri-Cities and Vicinity*. Lower Columbia Basin Audubon Society, Richland, Washington. Erickson, W.P., G.D. Johnson, M.D. Strickland, and K. Kronner. 2000. *Avian and Bat Mortality Associated with the Vansycle Wind Project, Umatilla County, Oregon:* 1999 Study Year. Technical report prepared by WEST, Inc., for Umatilla County Department of Resource Services and Development, Pendleton, Oregon. 21pp. Erickson, W.P., G.D. Johnson, M.D. Strickland, D.P. Young, Jr., K.J. Sernka, R.E. Good. 2001. *Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States*. National Wind Coordinating Committee (NWCC) Resource Document. August 2001. Fitzner, R.E. and R.H. Gray. 1991. *The Status, Distribution, and Ecology of Wildlife on the U.S. DOE Hanford Site: A Historical Overview of Research Activities*. Environmental Monitoring and Assessment 18:173-202. Hays, D., M. Tirhi, and D. Stinson. 1998a. *Washington State Status Report for the Sage Grouse*. Washington Department of Fish and Wildlife, Wildlife Management Program. March 1998. 63 pp. Hays, D., M. Tirhi, and D. Stinson. 1998b. *Washington State Status Report for the Sharp-tailed Grouse*. Washington Department of Fish and Wildlife, Wildlife Management Program. March 1998. 57 pp. Howell, P., K. Jones, D. Scarnecchia, L. LaVoy, W. Knedra, and D. Orrmann. 1985. *Stock Assessment of Columbia River Anadromous Salmonids. Volume II: Steelhead Stock Summaries Stock Transfer Guidelines – Information Needs.* Final report to Bonneville Power Administration, Project 83-335. Johnson, G.R., D.P. Young, Jr., W.P. Erickson, M.D. Strickland, R.E. Good, and P. Beckers. 2000a. *Avian and Bat Mortality Associated with the Initial Phase of the Foote Creek Rim Windpower Project, Carbon County, Wyoming: November 3, 1998 - October 31, 1999.* Technical Report prepared by WEST, Inc., for SeaWest Energy Corporation and Bureau of Land Management. August 2000. Johnson, G.R., W.P. Erickson, M.D. Strickland, M.F. Shepard, and D.A. Shepard. 2000b. *Avian Monitoring Studies at the Buffalo Ridge Wind Resource Area, Minnesota: Results of a Four-Year Study*. Technical report prepared for Northern States Power Co., Minneapolis, MN. September 2000. Johnson, G.R., D. P. Young, Jr., W.P. Erickson, C.E. Derby, M.D. Strickland, and R.E. Good. 2000c. *Final Report, Wildlife Monitoring Studies, SeaWest Windpower Project, Carbon County, Wyoming, 1995-1999.* Technical report prepared for SeaWest Energy Corporation, San Diego, California, and Bureau of Land Management, Rawlins, Wyoming. August 9, 2000. Kunz, T.H., and R.A. Martin. 1982. "Plecotus townsendii." Mammalian Species 175:1-6. LaFramboise, B., and N. LaFramboise. 1999. *Birds of the Fitzner-Eberhardt Arid Lands Ecology Reserve*. Technical report prepared for the Nature Conservancy of Washington. April 1999. LaRiviere, Paul, Washington Department of Fish and Wildlife. Personal Communication. December 11, 2001. Leddy, K.L. 1996. Effects of Wind Turbines on Nongame Birds in Conservation Reserve Program Grasslands in Southwestern Minnesota. M.S. Thesis, South Dakota State University, Brookings, SD. 61pp. Leddy, K.L., K.F. Higgins, and D.E. Naugle. 1999. *Effects of Wind Turbines on Upland Nesting Birds in Conservation Reserve Program Grasslands*. Wilson Bull. 111:100-104. Lim, B.K. 1987. "Lepus townsendii." Mammalian Species 288:1-6. Marr, V. 1997. Washington Ground Squirrel and Pygmy Rabbit Surveys, North Slope and Central Hanford, Hanford Nuclear Reservation, Washington, 1997. Technical report for The Nature Conservancy of Washington, Seattle, Washington. 10 pp. McAllister, K. R., and W.P. Leonard. 1997. *Washington State Status Report for the Oregon Spotted Frog*. Washington Department of Fish and Wildlife, Wildlife Management Program. October 1997. 38 pp. McAllister, K. R., W.P. Leonard, D.W. Hays, and R.C. Friesz. 1999. *Washington State Status Report for the Northern Leopard Frog*. Washington Department of Fish and Wildlife, Wildlife Management Program. October 1999. 36 pp. Nussbaum, R.A., E.D. Brodie, Jr., and R.M. Storm. 1983. *Amphibians and Reptiles of the Pacific Northwest*. University of Idaho Press, Moscow, Idaho. 332 pp. Orloff, S., and A. Flannery. 1992. Wind Turbine Effects on Avian Activity, Habitat Use, and Mortality in Altamont Pass and Solano County Wind Resource Areas, 1989-1991. Final report to Alameda, Contra Costa, and Solano Counties and the California Energy Commission. Biosystems Analysis, Inc. Tiburon, CA. Pederson, M.B. and E. Poulsen. 1991. *Impact of a 90m/2MW Wind Turbine on Birds – Avian Responses to the Implementation of the Tjaereborg Wind Turbine at the Danish Wadden Sea*. Dansek Vildundersogelser, Haefte 47. Miljoministeriet & Danmarks Miljoundersogelser. Peterson, B.S., and H. Nohr. 1989. *Consequences of Minor Wind Mills for Bird Fauna*. Ornis Consult, Kopenhagen. Potter, A., J. Fleckenstein, S. Richardson, and D. Hays. 1999. *Washington State Status Report for the Mardon Skipper*. Washington Department of Fish and Wildlife, Wildlife Management Program. October 1999. 39 pp. Richardson, S.A. 1996. *Washington State Recovery Plan for the Ferruginous Hawk*. Washington Department of Fish and Wildlife, Wildlife Management Program. Olympia, Washington. Smith, M.R., P.W. Mattocks, Jr.,
and K.M. Cassidy. 1997. *Breeding Birds of Washington State: Location Data and Predicted Distributions*. Seattle Audubon Society Publications in Zoology No. 1. Seattle, Washington. 538 pp. The Nature Conservancy (TNC). 1999. *Biodiversity Inventory and Analysis of the Hanford Site: Final Report* 1994-1999. The Nature Conservancy of Washington, Seattle, Washington. URS Corporation and WEST, Inc. 2001. *Avian Baseline Study for the Stateline Project, Vansycle Ridge, Oregon and Washington*. Technical report prepared for ESI Vansycle Partners, L.P. URS Corporation, WEST, Inc., and Northwest Wildlife Consultants. 2001. *Final Report: Ecological Baseline Study for the Condon Wind Project*. - U.S. Fish and Wildlife Service (USFWS) and National Marine Fisheries Service (NMFS). 1998. *Endangered Species Consultation Handbook: Procedures for Conducting Consultation and Conferencing Activities Under Section 7 of the Endangered Species Act.* U.S. Fish and Wildlife Service and National Marine Fisheries Service. March 1998 Final. - U.S. Fish and Wildlife Service. 1999a. Endangered and Threatened Wildlife and Plants: Final Rule to Remove the American Peregrine Falcon from the Federal List of Endangered and Threatened Wildlife and to Remove the Similarity of Appearance Provision for Free-Flying Peregrines in the Conterminous United States. Fed. Reg. 64(164):46542-46558. - U.S. Fish and Wildlife Service. 1999b. *Endangered and Threatened Wildlife and Plants:* Proposed Rule to Remove the Bald Eagle in the Lower 48 States from the List of Endangered and Threatened Wildlife. Fed. Reg. 64(128):36453-36464. - U.S. Fish and Wildlife Service. 2001. Endangered and Threatened Wildlife and Plants: 12-month Finding for a Petition to List the Washington Population of Western Sage Grouse (Centrocercus urophasianus phaios). Fed. Reg. 66(88):22984-22994. Vauk, G. 1990. Biological and Ecological Study of the Effects of Construction and Operation of Wind Power Sites. Jahrgang/Sonderheft, Endbericht. Norddeutsche Naturschutzakademie, Germany. Washington Department of Fish and Wildlife. 1995. Washington State Recovery Plan for the Pygmy Rabbit. Washington Department of Fish and Wildlife, Wildlife Management Program. July 1995. Washington Department of Fish and Wildlife. 2000. *Species of Concern Lists, June 21, 2000.* Washington Administrative Code 232-12-297. Washington Department of Fish and Wildlife. 2000. *Bull Trout and Dolly Varden Management Plan*. Washington Department of Fish and Wildlife, Fish Program, September 2000. 20 pp. Washington Department of Fish and Wildlife. 2001. *Habitats and Species Maps: Sulphur Spring, Maiden Spring, Snively Basin*. Washington Department of Fish and Wildlife Priority Habitats and Species. Watson, G., and T.W. Hillman. 1997. "Factors Affecting the Distribution and Abundance of Bull Trout: An Investigation at Hierarchical Scales. North American Journal of Fisheries Management 17:237-252. West, S.D., R. Gitzen, and J.L. Erickson. 1998. *Hanford Vertebrate Survey: Report of Activities for the 1997 Field Season*. Technical Report to The Nature Conservancy of Washington. West, S.D., R. Gitzen, and J.L. Erickson. 1999. *Hanford Vertebrate Survey: Report of Activities for the 1998 Field Season*. Technical Report to The Nature Conservancy of Washington. WEST, Inc. 2001. *Interim Report, Avian Baseline Study for the Maiden Wind Power Project, Yakima and Benton Counties, Washington*. April - October 2001. Technical report prepared by Western EcoSystems Technology, Inc. Cheyenne, Wyoming. Winkelman, J.E. 1989. *Birds at a Wind Park Near Urk: Bird Collision Victims and Disturbance of Wintering Ducks, Geese, and Swans*. Rijksinstutuut voor Natuurbeheer, Arnhem. RIN-Rapport 89/15. Winkelman, J.E. 1990. Disturbance of Birds by the Experimental Wind Park Near Oosterbierum (Fr.) During Building and Partly Operative Situations (1984-1989). Institute for Forestry and Nature Research, Arnhem. RIN/Report 90/9. Winkelman, J.E. 1992. *The Impact of the SEP Wind Park near Oosterbierum (Fr.), the Netherlands, on Birds, 4: Disturbance*. Institute for Forestry and Nature Research, Arnhem. RIN/Report 92/5. Winkelman, J.E. 1994. *Bird/Wind Turbine Investigations in Europe*. Pp. 43-47 in Proceedings of the National Avian-Windpower Planning Meeting. National Wind Coordinating Committee/RESOLVE. Washington, D.C. Young, Jr., D.P., W.P. Erickson, G.D. Johnson, M.D. Strickland, and R.E. Good. 2001. *Final Report, Avian and Bat Mortality Associated with the Initial Phase of the Foote Creek Rim Windpower Project, Carbon County, Wyoming*. November 3, 1998 - December 31, 2000. Technical report prepared by WEST, Inc., for SeaWest Windpower, Inc., San Diego, California, and Bureau of Land Management, Rawlins, Wyoming. October 1, 2001. #### Section 3.6—Cultural Resources Bard, J.C., and J.B. Cox. 1997. Euro-American Resettlement of the Hanford Site (Lewis and Clark 1805 – Hanford Engineer Works 1943), Washington. In, Department of Energy National Register of Historic Places Multiple Property Documentation Form—Historic, Archaeological and Traditional Cultural Properties of the Hanford Site, Washington. Document DOE/RL-97-02 (Revision 0), Department of Energy, Richland, Washington. Bard, J.C., with R. McClintock. 1997. *Ethnographic/Contact Period (Lewis and Clark 1805 – Hanford Engineer Works 1943) of the Hanford Site, Washington*. In, Department of Energy *National Register of Historic Places Multiple Property Documentation Form* — Historic, Archaeological and Traditional Cultural Properties of the Hanford Site, Washington. Document DOE/RL-97-02 (Revision 0), Department of Energy, Richland, Washington. California Energy Commission (CEC). 2001. Metcalf Energy Center Final Staff Assessment. Cole, D. 1992. Anderson Legacy Is Still Alive: It Was a Life of Land, Sheep, Cattle and More Land – Says Henry Anderson, Prosser! Home Reporter, Prosser, Washington. Meninick, Johnson, Yakima Nation Tribal Staff. Personal Communications. Spring-Summer 2001. Sharpe, J.J. 1999. *Archaeological Survey of 56 Preselected Parcels on the Arid Lands Ecology Reserve*. Document BHI-01268 (Revision 0), Department of Energy, Richland, Washington. Tomanawash, Robert, and Rex Buck, Jr., Wanapum Tribal Elders. Personal Communication. August 2001. White, Bill, Yakama Nation Tribal Staff. Personal Communications. Spring-Summer 2001. Wright, M.K. 1997. *The Prehistoric Period of the Hanford Site and Associated Portion of the Columbia River, Washington, Circa* 10,000 B.P. – A.D. 1805. In, Department of Energy National Register of Historic Places Multiple Property Documentation Form – Historic, Archaeological and Traditional Cultural Properties of the Hanford Site, Washington. Document DOE/RL-97-02 (Revision 0), Department of Energy, Richland, Washington. #### Section 3.7—Noise Barnes, James D., L.N. Miller, and E.W. Wood. 1976. *Prediction of Noise from Power Plant Construction*. Bolt Beranek and Newman, Inc., Cambridge, Massachusetts. Prepared for Empire State Electric Energy Research Corporation, Schenectady, New York. Barnes, James D., N. Laymon, L.N. Miller, and Eric W. Wood. 1977. *Power Plant Construction Noise Guide*. New York: Empire State Electric Energy Research Corp. Beranek, L.L. *Noise and Vibration Control*. 1988. New York: Institute of Noise Control Engineering. California Department of Health Services, Office of Noise Control. 1977. *Model Community Noise Control Ordinances*. California Energy Commission (CEC). June 15, 2001. Presiding Member's Proposed Decision, Metcalf Energy Center. pp. 411-412. Sacramento, CA. EPA. See U.S. Environmental Protection Agency. International Organization for Standardization, Geneva. 1989. *Acoustics-Attenuation of Sound during Propagation Outdoors*, Part 2, "A General Method of Calculation." ISO 9613-2. International Electrotechnical Commission, IEC 61400-11. 1998. Wind Turbine Generator Systems, Part 11, "Acoustic Noise Measurement Techniques." Geneva. Kryter, Karl D. 1970. The Effects of Noise on Man. New York: Academic Press. Miller, Laymon N., et al. 1984. *Electric Power Plant Environmental Noise Guide*, 2nd Edition. New York: Edison Electric Institute. Miller, L.N., E.W. Wood, R.M. Hoover, A.R. Thompson, S.L. Thompson, and S.L. Paterson. 1978. *Electric Power Plant Environmental Noise Guide*, Vol. 1. Bolt Beranek & Newman, Inc., Cambridge, MA. Prepared for the Edison Electric Institute, New York, NY. Peterson, Arnold P.G., and Ervin E. Gross, Jr. 1974. *Handbook of Noise Measurement*, 7th ed. GenRad, Concord, MA. U.S. Environmental Protection Agency (EPA). 1971. *Noise from Construction Equipment and Operations, US Building Equipment, and Home Appliances*. Prepared by Bolt Beranek and Newman for USEPA Office of Noise Abatement and Control, Washington, D.C. U.S. Environmental Protection Agency. 1974. *Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety*. 550/9-74-004, USEPA Office of Noise Abatement and Control, Washington, D.C. Washington Administrative Code (WAC) 173-60. May 18, 1994. *Maximum Environmental Noise Levels*. #### Section 3.8—Water Resources and Wetlands Benton County Planning and Building Department. November 27, 2000. Benton County Comprehensive Land Use Plan. Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. *Classification of Wetlands and Deepwater Habitats of the United States*. FWS/OBS-79/31. Cramer, P., Department of Ecology. Personal Communication. July 31, 2001. Ecology. See Washington State Department of Ecology. Elliott, T., Washington State University Cooperative Extension Service. Personal Communication. August 1, 2001. Environmental Laboratory, Department of the Army. 1987. *Corps of Engineers Wetlands Delineation Manual*. Technical Report Y-87-1. Waterways Experiment Station, Vicksburg, MS. EPA. See U.S. Environmental Protection Agency. Erkel, T., U.S. Army Corps of Engineers. Personal Communication. September 20, 2001. Inman,
R., Washington State Department of Ecology. Personal Communication. July 3, 2001. Linden, Max, Washington State Department of Ecology. Personal Communication. January 7, 2002. Neve, B., Walla Walla District Water Master, Washington State Department of Ecology. Personal Communication. October 13, 2000. U.S. Department of Agriculture (USDA) Natural Resource Conservation Service. Hydric Soils List for Washington State. http://www.statlab.iastate.edu/soils/hydric. Viewed July 2001. - U.S. Department of Agriculture Soil Conservation Service. 1971. Benton County Soil Survey. - U.S. Department of Agriculture Soil Conservation Service. 1979. Yakima County Soil Survey. - U.S. Department of Energy, Bonneville Power Administration (BPA). 1993. Resource Programs Final Environmental Impact Statement: Volume 1, Environmental Analysis EIS-0162. - U.S. Department of the Interior. National Wetland Inventory maps. - U.S. Environmental Protection Agency (EPA). http://www.epa.gov/iwi/hucs/17030003/score.html. Viewed July 19, 2001. - U.S. Geological Survey (USGS). 1998. Principal Aquifers of the 48 Contiguous United States. - U.S. Geological Survey. http://water.usgs.gov/watuse. Viewed July 26, 2000. Washington State Department of Ecology (Ecology). 1991. Washington State Wetlands Rating System for Eastern Washington. Washington State Department of Ecology. 1997. Washington State Wetlands Identification and Delineation Manual. Ecology Publication #96-94. March 1997. Washington State Department of Ecology. December 1999. *Introduction to Washington's Shoreline Management Act* (RCW 90 58), Publication 99-113. Washington State Department of Ecology. http://www.ecy.wa.gov/programs/eap/wrias/index. Viewed July 10, 2001. WEST, Inc. 2001. *Wetlands and Waters of the U.S. – Maiden Wind Project*. Technical report prepared by WEST, Inc., Cheyenne, WY. Yakima County Planning Department. May 20, 1997. Plan 2015: A Blueprint for Yakima County Progress, Volume 2. #### Section 3.9—Transportation and Traffic Ballard, Greg. Senior Planner, Yakima County Planning Department. Personal Communication. November 11, 2001. Benton County Planning and Building Department. November 27, 2000. Benton County Comprehensive Land Use Plan. Childress, Norman. Benton County Traffic Engineer. Personal Communication. July 18, 2001. City of Sunnyside Staff. Personal Communication. December 31, 2001. Keller, Scott. Port of Benton (Prosser Airport), Airport Director. Personal Communication. August 1, 2001. Kilpatrick, Jerry. Yakima Airport Operations Director. Personal Communication. July 25, 2001 Maggard, Bill. Yakima Public Works Department Engineer. Personal Communication. August 1, 2001. Shuttleworth, Mike. Benton County Senior Planner. Personal Communication. July 26, 2001. Thorp, Brian. Benton County Roadway Engineer. Personal Communication. August 2, 2001 Washington State Department of Transportation. <u>http://www.wsdot.wa.gov/fossc/maint/motor/</u> (Weight restrictions). Viewed July 18-19, 2001. Washington State Department of Transportation. http://www.wsdot.wa.gov/ (Traffic Data and Roadway Logs). Viewed July 18-19, 2001. Yakima County Planning Department. May 20, 1997. Plan 2015: A Blueprint for Yakima County Progress, Volumes 1 and 2. #### Section 3.10—Geology, Seismicity, and Near-Surface Soils Bauer, H.H. and A.J. Hansen, Jr. 2000. *Hydrology of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho*. U.S. Geological Survey (Tacoma, Washington) Water-Resources Investigations Report 96-4106. 61 pages. Benton County Planning and Building Department. 1998. *Critical Areas Protection Ordinance*. Benton County Planning and Building Department. November 27, 2000. Benton County Comprehensive Land Use Plan. Campbell, N.P., J.T. Lillie, and G.D. Webster. 1979. *Surficial Geologic Map of the Walla Walla Quad, Washington*. Washington Department of Natural Resources, Division of Geology and Earth Resources. Open File Report 79-13. Foxworthy B.L. 1962. *Geology and Groundwater Resources of the Ahtanum Valley, Yakima County, Washington*. U.S. Geological Survey Water-Supply Paper 1598. Geomatrix Consultants. 1995. *Seismic Design Mapping, State of Oregon*. Prepared for Oregon Department of Transportation. Project No. 2442. Geomatrix Consultants. 1996. *Probabilistic Seismic Hazard Analysis, DOE Hanford Site, Washington*. Prepared for Westinghouse Hanford Company. Project No. 2169. WHC-SD-W23A-TI-002, Rev. 1A. February 1996. International Conference of Building Officials. 1997. *Uniform Building Code*. Volume 2, Structural Engineering Design Provisions. Reidel, S.P., and K.R. Fecht. 1994. *Geologic Map of the Richland 1:100,000 Quadrangle, Washington*. Washington Department of Natural Resources, Division of Geology and Earth Resources. Open File Report 94-8. Satterlund, D.K., and P.W. Adams. 1992. Wildland Watershed Management, 2nd Edition. John Wiley and Sons, Inc. New York. University of Washington Geophysics Program. *Preliminary Earthquake Report*. http://www.geophys.washington.edu/recenteqs. Viewed October 2001. - U.S. Department of Agriculture (USDA), Soil Conservation Service. 1971. Benton County Soil Survey. - U.S. Department of Agriculture (USDA), Soil Conservation Service. 1979. Yakima County Soil Survey. - U.S. Department of Energy, Bonneville Power Administration (BPA). 1993. Resource Programs Final Environmental Impact Statement: Volume 1, Environmental Analysis EIS-0162. - U.S. Geologic Survey (USGS). 2001. Maiden Spring 7.5-minute Quadrangle. - U.S. Geologic Survey. 2001. Snively Basin 7.5-minute Quadrangle. - U.S. Geologic Survey. 2001. Sulphur Spring 7.5-minute Quadrangle. Yakima County Planning Department. May 20, 1997. Plan 2015: A Blueprint for Yakima County Progress, Volume 2. #### Section 3.11—Socioeconomics and Public Services Bolt, K., Prosser School District. Personal Communication. July 19, 2001. Carrera, R., Sunnyside School District. Personal Communication. July 19, 2001. Curfman, S., Grandview School District. Personal Communication. August 3, 2001. Kimm, M., Sunnyside Fire District #5. Personal Communication. July 23, 2001. Mendoza, H., Sunnyside Chamber of Commerce. Personal Communication. August 7, 2001. Mercer, H., Benton County Assessor's Office. Personal Communication. August 3, 2001. Merritt, D., Benton County Fire District #3. Personal Communication. July 24, 2001. Prosser Economic Development Association. Personal Communication. August 7, 2001. U.S. Census Bureau. http://www.census.gov/. Viewed July 12, 2001. Washington State Employment Security Department. http://www.wa.gov/esd/lmea/labrmrkt/sed/bentsed.htm and http://www.wa.gov/esd/lmea/labrmrkt/sed/yakised.htm. Viewed July 19, 2001. Washington State Office of Financial Management. http://www.ofm.wa.gov/. Viewed July 12, 2001. Wilbert, K., KMW Enterprises. Personal Communication. September 17, 2001. Yakima County Assessor. http://www.co.yakima.wa.us/assessor/assessor.htm. Viewed July 20, 2001. #### Section 3.12—Air Quality U.S. Department of Energy, Bonneville Power Administration (BPA). 1993. Resource Programs Final Environmental Impact Statement: Volume 1, Environmental Analysis EIS-0162. U.S. Environmental Protection Agency (EPA). 1996. Memo signed by Mary D. Nichols, Assistant Administrator for Air and Radiation on 5/30/96. "Areas Affected by PM-10 Natural Events." http://www.epa.gov/tn/oarpg/tl/meta/m32461.html. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Office of Air and Radiation. April 2000. *Compilation of Air Pollutant Emission Factors (AP-42), Volume I: Stationary Point and Area Sources, Section 3.1.* #### Section 3.13—Public Health and Safety Johnson, P., Federal Aviation Administration. Personal Communication. August 1, 2001. U.S. Department of Energy, Bonneville Power Administration (BPA). December 1996. *Electrical and Biological Effects of Transmission Lines: A Review*. #### Section 3.17—Cumulative Impacts Erickson, W.P., G.D. Johnson, M.D. Strickland, D.P. Young, Jr., K.J. Sernka, R.E. Good. 2001. *Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States*. National Wind Coordinating Committee (NWCC) Resource Document. August 2001. Johnson, G.R., D.P. Young, Jr., W.P. Erickson, M.D. Strickland, R.E. Good, and P. Beckers. 2000. *Avian and Bat Mortality Associated with the Initial Phase of the Foote Creek Rim Windpower Project, Carbon County, Wyoming: November 3, 1998 - October 31, 1999.* Technical Report prepared by WEST, Inc., for SeaWest Energy Corporation and Bureau of Land Management. August 2000. Johnson, David H., O'Neil, Thomas A. 2001. Managing Directors. *Wildlife-Habitat Relationships in Oregon and Washington*. Oregon State University Press, Corvallis, Oregon. Larson, Don, Biologist, Washington Department of Fish and Wildlife. Personal Communication. January 7, 2002. The Nature Conservancy, 1999. *Biodiversity Inventory and Analysis of the Hanford Site Final Report:* 1994-1999. The Nature Conservancy of Washington. Seattle, Washington. Young, Jr., D.P., W.P. Erickson, G.D. Johnson, M.D. Strickland, and R.E. Good. 2001. *Final Report, Avian and Bat Mortality Associated with the Initial Phase of the Foote Creek Rim Windpower Project, Carbon County, Wyoming*. November 3, 1998 – December 31, 2000. Technical report prepared by WEST, Inc. for SeaWest Windpower, Inc, San Diego, California and Bureau of Land Management, Rawlins, Wyoming. October 1, 2001. #### **CHAPTER 5** # **List of Preparers** The Maiden Wind
Project EIS is being prepared by BPA with the technical assistance of environmental consultants. Individuals responsible for preparing the Draft EIS, along with their affiliation, experience, and education, are listed below. **Bard, James**, Cultural Resource Specialist, CH2M HILL. Twenty-five years of experience in cultural resource management. Education: Ph.D. Anthropology/Archaeology. **Bastasch, Mark**, Acoustical Technical Lead, CH2M HILL. Six years of experience preparing environmental documents and acoustical evaluations. Education: B.S. and M.S. Environmental Engineering. Registered Professional Engineer in Oregon. **Branum**, Sarah, Environmental Project Lead, BPA. Two years of experience in environmental analysis and NEPA documentation. Education: B.S. Environmental Studies. **Carter, Mickey**, Environmental Protection Specialist, BPA. Eighteen years of experience in NEPA and natural resources management. Education: B.S. Forest Resource Management. **Erickson, Wally**, Statistician, WEST, Inc. Ten years of experience in statistical design, conduct, and analysis of natural resource studies. Education: B.S. and M.S. Statistics. **Hopper, Amy**, Urban/Regional Planner, CH2M HILL. Four years of experience in environmental analysis and NEPA documentation. Education: B.A. Public Administration. **Krichbaum, Randy**, Environmental Scientist/Botanist, Eagle Cap Consulting Inc. Thirteen years of experience performing and managing impact assessment studies for energy projects. Education: B.S. Zoology; M.S. Resources and the Environment. **Kronner, Karen**, Senior Wildlife Biologist, Northwest Wildlife Consultants. Twenty-six years of experience in wildlife and terrestrial ecology, impact assessment, mitigation, and regulatory compliance. Education: B.S. Outdoor Education/Wildlife Ecology. **Lack, Elizabeth**, Wetland and Vegetation Task Leader, WEST, Inc. Nine years of experience in wetland delineations, vegetation studies, and NEPA analysis. Education: B.S. Forest Biology; M.S. Botany (in progress). Lanier, Alicia, Water Resources Engineer, CH2M HILL. Eleven years of experience in water resource analysis, with 2 years of environmental analysis and NEPA documentation. Education: M.S. Biological and Agricultural Engineering. **Linehan, Andy**, Senior Project Manager, CH2M HILL. Seventeen years of experience in managing environmental analysis and NEPA documentation projects, including several wind energy projects. Education: M.S. Public Policy. **Miller, Michael**, GIS Task Lead, CH2M HILL. Twenty-five years of GIS experience, including environmental analysis and EIS support. Education: B.S. Biology. LIST OF PREPARERS PAGE 5-1 **Rice, Mian**, Transportation Planner/Engineer, CH2M HILL. Ten years of experience in transportation planning analysis. Education: M.S. Civil Engineering. **Sharpe, Jim,** Cultural Resource Specialist, CH2M HILL. Ten years of experience in cultural resource management. Education: B.S. Anthropology; M.S. Resource Management. **Shuttleworth, Michael,** Senior Planner, Benton County. Sixteen years of experience in planning and environmental review. Education: B.A. Economics. **Sowa, Cathy**, Air Quality Lead, CH2M HILL. Eleven years of experience in air quality permitting. Education: B.S. Chemical Engineering. Registered Professional Engineer in Oregon. **St. Hilaire, Kimberly**, Environmental Protection Specialist, BPA. Ten years of experience as a natural resources consultant specializing in wetlands, rare plant issues, and regulatory compliance and documentation. Education: B.S. and M.S.T. Biology; J.D.; Environmental Law Certificate. **Stout, Erin**, GIS Analyst, CH2M HILL. Three years of experience in GIS analysis, including environmental analysis and EIS support. Education: B.S. Geosciences; M.S. Geography/Land Use Planning. **Thoman, Connie,** Consultant Project Manager, CH2M HILL. Twelve years of experience in environmental analysis and documentation, project management, planning, and public involvement. Education: B.A. Communications; M.S. Education. **Trotman, Kenneth**, Senior Hydrogeologist/Project Manager, CH2M HILL. Twenty years of experience in consulting geology and hydrogeology. Education: B.S. Geology; M.S. Hydrology. Registered Geologist in Oregon and Geologist/Hydrogeologist in Washington. **Young, David**, Wildlife Biologist/Project Manager, WEST, Inc. Nine years of experience in environmental analysis, NEPA documentation, and Endangered Species Act compliance and documentation. Education: B.S. Biology; M.S. Zoology. PAGE 5-2 LIST OF PREPARERS #### **CHAPTER 6** # Agencies, Organizations, and Persons Receiving This Draft EIS The project mailing list contains about 325 affected landowners, tribes, local, state, and federal agencies, utility customers, public officials, interest groups, and the media. All parties have directly received or been given instructions on how to receive all project information made available so far and will have an opportunity to review the Draft and Final EIS. # 6.1 Federal Agencies National Marine Fisheries Service Portland, Oregon Northwest Power Planning Council Jeff King Portland, Oregon U.S. Department of the Interior Fish and Wildlife Service Portland, Oregon Ephrata, Washington U.S. Department of the Interior Fish and Wildlife Service Hanford Reach National Monument/ Saddle Mountain National Wildlife Refuge Richland, Washington U.S. Department of the Interior Fish and Wildlife Service Arid Lands National Wildlife Refuge Richland, Washington U.S. Department of the Interior Bureau of Indian Affairs Yakama Agency Toppenish, Washington U.S. Department of the Interior Bureau of Land Management Spokane, Washington U.S. Department of the Interior Bureau of Reclamation Yakima, Washington U.S. Army Corps of Engineers Seattle, Washington U.S. Department of Energy Richland Operations Office U.S. Department of Energy Office of NEPA Compliance Washington, DC U.S. Department of Transportation Federal Aviation Administration Yakima, Washington U.S. Environmental Protection Agency Region 10, Seattle, Washington U.S. Environmental Protection Agency Washington, DC ## 6.2 Tribal Government Confederated Tribes of the Umatilla Indian Reservation Armand Minthorn, Chairman Board of Trustees Pendleton, Oregon Confederated Tribes of the Umatilla Indian Reservation Audie Huber, Manager Department of Natural Resources Pendleton, Oregon Confederated Tribes of the Umatilla Indian Reservation James D. Williams, Tribal Attorney Economic Development Power Plant Project Pendleton, Oregon Nez Perce Tribe Samuel N. Penney, Tribal Chairman Lapwai, Idaho Nez Perce Tribe Vera Sonneck Lapwai, Idaho Wanapum Band Rex Buc, Jr. Yakama Nation Department of Cultural Resources Johnson Meninick, Manager Chris Landeau, Archaeologist Yakama Nation Department of Natural Resources Carrol E. Palmer, Deputy Director Yakama Nation Fisheries Resource Management Program Paul Ward, Resource Manager Yakama Nation Johnny Jackson, Chief Yakama Nation Leo Elek Yakama Nation Tribal Council Lonnie Selam, Sr., Chairman Yakama Nation Water Program Stuart Crane, Program Engineer Yakama Nation Wildlife Resource Management William S. White, Wildlife Biologist and Archaeologist # 6.3 Public Officials State of Washington House of Representatives District 15 Honorable Bruce Chandler, Representative State of Washington House of Representatives District 15 Honorable Barb Lisk, Representative State of Washington Office of the Governor Honorable Gary Locke, Governor State of Washington State Senate, Dist. 15 Honorable Jim Honeyford, Senator U.S. House of Representatives, House District 4 Honorable Richard Hastings, Representative U.S. Senate Honorable Maria Cantwell, Senator U.S. Senate Honorable Patty Murray, Senator # 6.4 State Agencies State of Washington Office of Archaeology and Historic Preservation Olympia, Washington State of Washington Department of **Ecology** **Environmental Coordination Section** Olympia, Washington State of Washington Department of **Ecology** SEPA Review Section Olympia, Washington State of Washington Department of **Ecology** Yakima, Washington State of Washington Department of Fish and Wildlife Rattlesnake Slope Wildlife Area Mabton, Washington State of Washington Department of Fish and Wildlife Regional Ecosystems Yakima, Washington State of Washington Department of Fish and Wildlife Yakima, Walla Walla, Kennewick, & Spokane, Washington 6.5 Regional Government Yakima Valley Conference of Governments Yakima, Washington 6.6 Local Government Benton Clean Air Authority Richland, Washington Benton County Assessor Benton County Board of Adjustment State of Washington Department of Health Spokane, Washington State of Washington Department of Highways Spokane, Washington State of Washington Department of **Natural Resources** Ellensburg, Washington State of Washington Department of Natural Resources Washington Natural Heritage Program Olympia, Washington State of Washington Department of Natural Resources SEPA Center Olympia, Washington State of Washington Department of Transportation Division of Aviation Seattle, Washington State of Washington Department of Transportation Yakima, Washington **Benton County Commissioners** Benton County Department of Planning and Building Olympia, Washington Benton County Department of Public Works Prosser, Washington Benton County Fire Marshall Kennewick, Washington Benton County Noxious Weed Board Prosser, Washington Benton County Sheriff's Office Kennewick, Washington City of Benton City Department of Planning City of Benton City Office of the Mayor City of Grandview Office of the Mayor City of Granger Office of the Mayor City of Mabton Office of the Mayor City of Prosser Office of the Mayor City of Sunnyside City Manager City of Sunnyside Department of Planning City of Sunnyside Mayor Fire District No. 2 Benton City, Washington Fire District No. 3 Prosser, Washington Fire District No. 4 West Richland, Washington Fire District No. 5 Zillah,
Washington Natural Resource Conservation Service Prosser & Zillah, Washington Yakima County Assessor Yakima, Washington Yakima County Commissioners Yakima, Washington Yakima County Department of Planning Yakima, Washington Yakima County Department of Public Works Yakima, Washington Yakima County Fire Marshall Yakima, Washington Yakima County Regional Clean Air Authority Yakima, Washington Yakima County Sheriff's Department Yakima, Washington Yakima Health District Yakima, Washington # 6.7 Libraries and Educational Institutions Bleyhl Community Library Grandview, Washington Central Washington University Library Ellensburg, Washington City of Sunnyside, Public Library Grandview School District Kennewick School District 17 Mid-Columbia Library Benton City, Washington Prosser City Library Prosser School District 116 State of Washington Joel M. Pritchard Library Sunnyside School District 201 University of Washington Physics and Astronomy Washington State University Richland, Washington ## 6.8 Media Benton City Bulletin Benton City, Washington KALE AM/KIOK FM Kennewick, Washington KAPP ABC TV Yakima, Washington KEPR TV Pasco, Washington KIMA TV Yakima, Washington KNDO TV Yakima, Washington KNDU TV Kennewick, Washington KOLU FM Pasco, Washington KONA AM/FM Pasco, Washington KOTY and KTCR AM Radio Kennewick, Washington KYVE TV Yakima, Washington Marathon Media Pasco, Washington Prosser Record Bulletin Tri City Herald Pasco, Washington Yakima Herald Republic Sunnyside, Washington Yakima Valley Business Times Yakima, Washington # 6.9 Utilities Benton Public Utility District Kennewick, Washington Benton Rural Electric Association Prosser, Washington Energy Northwest Richland, Washington Pacific Power and Light Yakima, Washington PacifiCorp Power Marketing Portland, Oregon ## 6.10 Businesses Anderson Land Livestock, Inc. Sunnyside, Washington Ater Wynne, LLP Portland, Oregon Battelle Richland, Washington Henwood Energy Services, Inc. Sacramento, California K2H Farms, Inc. Utah Idaho Sugar Company Pasco, Washington LIGO Hanford Observatory Richland, Washington Pacific Northwest National Laboratory Hanford Site Ecosystem Monitoring Project Richland, Washington Power Engineers Boise, Idaho Tetra Tech, Inc. Albuquerque, New Mexico TRC Solutions, Inc. Laramie, Wyoming United Telephone Company Shawnee Mission, Kansas United Telephone Northwest Hood River, Oregon # **6.11 Interest Groups** American Rivers, Inc. Seattle, Washington Bonneville Environmental Foundation Portland, Oregon Climate Solutions Olympia, Washington **Ducks Unlimited** Moses Lake, Washington Environment Canada Edmonton, Alberta Eugene Future Power Committee Eugene, Oregon Franklin County Cattlemen Pasco, Washington Friends of Earth Northwest Rivers Project Hop Growers Yakima, Washington Ironworkers Local 19 Pasco, Washington Lower Columbia Basin Audubon Society Benton City, Washington National Audubon Society Olympia, Washington National Wildlife Federation Northwestern Natural Resource Center Seattle, Washington Natural Resource Defense Council San Francisco, California Northwest Energy Coalition Seattle, Washington Northwest Sustainable Energy for Economic Development Seattle, Washington Peregrine Fund Boise, Idaho Pheasants Forever Nampa, Idaho Prosser Chamber of Commerce Renewable Northwest Project Portland, Oregon Sunnyside Chamber of Commerce Washington Association of Wheat Growers Ritzville, Washington Washington Association of Wine Grape Growers Cashmere, Washington Washington Cattlemans Association Ellensburg, Washington Washington Environmental Council Seattle, Washington Washington Native Plant Society Seattle, Yakima, & Tenio, Washington Yakima Audubon Society Yakima, Washington # 6.12 Individuals Henry Anderson J. Wesley Alexander Claude and Patricia Fredricks Fredricks Family Ltd. Partnership Peter Gier Kelly Anderson Brandon Hamilton Evan Hamilton Kirk Anderson Marshall and Treva Anderson Steve and Deborah Harrison Anderson Brothers Barbara and Dennis Houghton Richard E. Anderson Beth Ice Henry Anderson, Jr. Donna Ice Janet Anderson-Crawford Herbert and Beverly Ice Lynn Beightol Herbert Wayne Ice Michael E. Berumen Woodrow, Neal, and Frances Ice Mary E Bowers Jerry Johnson Lawrence E. Bowman John Klingele Keith Burkhart Lyle E. Klostermeyer Linda and Charlie Card Duane Laurich Helen Carrell Sara Longan Susan L. Chapman Daniel T. Martinez David and Elizabeth Croney Michael J. Martinez Darwin Crosby Steve and Carol Martinez Debbi Dye Simon Martinez Livestock, Inc. Ethel and Joyce Edwards James and Helen McCarthy Living Toyce A.G. Edwards, Inc. Living Trust Steve Erickson Richard and J.B. McWhorter Lisa Fitzner Todd and Amy Means Jose Medelez Benito Medelez, Jr. Chuck and Marcy Mercer Gordon and Glenda Miller Susan L. Miller Todd Newsome Linda Northspaulding Marilyn, Richard, Etta, David, and Clara Pearson Estate of William S. Pearson Agnes Marie Petersen, Trustee Daniel Polotto Molly Puter Mary Quillen Vera, Raymond, and Vella Ruth Quillen Robert Ramirez G.A. Reese Family Trust R.A. Reese Family Trust John Ripley Victor and Martha Robert Emile L. Robert, Jr. Robin Robert Robert and Sons Dr. Lee Rogers Russell Schutz Howard Schutz, Trustee Lenora, Frank, and Joseph Seelatsee Craig Siegenthaler Allan and Susan Simmelink Neil H. Simmelink Altha M. Simmelink, Trustee Credit Shelter Trust Dorothy H. Simmelink, Trustee Wayne and Kay Smith Henry, Alice and Hank Tessitore Tessitore Farms, Inc. Roberta Vandehey Glenda White Arva Whitney Larry and Lori Wilkerson Wilkerson Ranches Vera L. Wilkerson, Trustee Audrey and Glenn Williams # **Index** | Air quality | 26, 3-119, 3-128, 3-129, 3-130, 3-131, 3-138 , 3-140 , 3-144 | |--------------------------------------|---| | | nted2-19 | | Archaeological surveys | 3-76 | | | 3-33 | | Bald Eagle Protection Act | 3-31 | | Bat mortality | | | Bats | | | | | | | | | | 3-51, 3-58 | | · · | 3-3 | | | | | | 3-74 , 3-75, 3-76, 3-77, 3-78 | | - | 3-139 | | Decommissioning 5, 2-18, 3-8, | 3-29 , 3-60, 3-67, 3-81, 3-89, 3-99 , 3-110 , 3-120, 3-128, 3-136 | | | 2-16, 3-62, 3-106 , 3-129 | | O | | | ± | 3-111, 3-112, 3-116 | | · · | 3-135 | | ± , | | | 0 1 | | | | 3-121 | | | | | | | | · · | | | | 3-124, 3-126 | | | 2-8 | | <u> -</u> | | | 03 | 3-111 | | | 3-40, 3-45, 3-49, 3-53 | | | 3-131, 3-134 | | Irreversible or irretrievable commit | 3-123 | | | | | | 3-1, 3-3, 3-6, 3-7 | | o o | | | | | | | | | | 3-30 | | | 3-30 | | | | | | 2-11 | | 1NO ACTION AITERNATIVE 2-19, 3-8, 3 | -30 , 3-61, 3-67, 3-81, 3-89, 3-100 , 3-110 , 3-121, 3-128, 3-136 | INDEX PAGE I-1 | Noise | | |--|---| | Operation and maintenance building | | | | 3-43, 3-57 | | Police | 3-123, 3-124, 3-126 | | Population | 3-61, 3-63, 3-122 , 3-124, 3-125 | | Preferred alternative | | | | , 3-10, 3-16, 3-22, 3-23, 3-24, 3-30 , 3-31, 3-32, 3-90 | | • | | | , 1 | | | , | 3-123 | | 1 , | 3-131 | | 5 | | | 1 | 2-15 , 2-17, 3-1, 3-6, 3-7, 3-77, 3-79, 3-86, 3-107 , 3- | | Raptor | 14 | | Raptors 12, 13, 14, 15, 2-14 , 3-14, 3-15, 3-16, 3-48, 3-51, 3-52, 3-57, 3-59, 3-60, 3-137 | 32, 3-33, 3-34, 3-40 , 3-41, 3-44, 3-45, 3-46, 3-47, 3- | | Recreation | | | Roads | 4, 2-6, 2-14 , 3-105 , 3-110 | | | 4, 2-8, 3-57 | | | . 3-104 , 3-126, 3-131 , 3-132, 3-133, 3-134, 3-135, 3- | | Scoping | 1-7 | | Seismicity | 3-111 | | Shrub-steppe | 3-12, 3-13, 3-14, 3-15, 3-24, 3-33 | | | | | Soils | 3-111 , 3-113, 3-118, 3-120, 3-121 | | | 3-9 | | Streams | | | | Alternatives2-21 | | | 3-100 , 3-103 , 3-104 , 3-105 , 3-107 , 3-109 , 3-134 | | | 3-100, 3-104 | | | 3-74 | | | 2-1, 2-7, 2-21, 3-63, 3-88 | | | 3-137 | | | 3-121, 3-124 | | 0 | | | | 3-61 | | | | | | 3-44 | | 94, 3-137, 3-141 | 22, 3-23, 3-24, 3-25, 3-26, 3-27, 3-28, 3-29, 3-30, 3- | | | 3-15, 3-89, 3-92 , 3-97 , 3-99 | | | 3-30 | | | | | | F 0 10 6 10F | PAGE I-2 INDEX # APPENDIX A Public Involvement Comments received on the Draft EIS will be addressed in the Final EIS, expected in summer, 2002. When the Final EIS is published, BPA will provide everyone on the mailing list an opportunity to receive a copy. Documents in this appendix include the following: - BPA News Release distributed May 4, 2001 - Notice of Intent published in the Federal Register on June 12, 2001 - BPA letter to mailing list describing the proposed project and inviting recipients to the public meeting, mailed June 11, 2001 - BPA letter to mailing list describing some of the comment comments received during the public scoping process and explaining how they will be used in drafting the EIS, mailed October 22, 2001 - Benton County letter to Yakima County assuming lead agency status for the Maiden Wind Project dated May 3, 2001 - Benton County Determination of Significance and Request for Comments on Scope of EIS, dated June 11, 2001 - Benton County Conditional Use Permit Application and SEPA Environmental Checklist - Amendment to SEPA Environmental Checklist dated June 12, 2001. ## Wind Farm Blows into Mid-Columbia Click here for other BPA news releases **Bonneville Power Administration FOR IMMEDIATE RELEASE: FRIDAY, May 4, 2001**PR 29 01 CONTACTS: Tom Osborn, BPA (509) 527-6211 **PORTLAND, Ore.** – The Bonneville Power Administration and Washington Winds Inc. announced today they are working together to develop and build a 150-megawatt wind farm that will generate enough electricity on average to serve more than 36,000 Northwest homes. The Maiden Wind Farm would be located
about 15 miles north of Prosser, Wash., in Benton and Yakima counties. "This is one of several wind projects BPA is looking to acquire," said BPA Acting Administrator Steve Wright. "Harvesting the strong, steady winds of the Columbia River Basin works especially well with our hydro power base," Wright said. "When the winds blow, we can save more water in reservoirs. When the winds are still, we can release the river's power. Wind farms add to our local renewable resources." Washington Gov. Gary Locke said of the project, "The Maiden Wind Farm will help alleviate the current energy crisis and provide clean, renewable energy for Washington. And because a portion of the project is located on state land, it also will help fund our schools. It's a double win for Washington." Under a predevelopment agreement, Washington Winds Inc. will secure the necessary permits for the wind farm. BPA will prepare an environmental impact statement. Public involvement is slated to begin this June, when BPA will invite landowners, citizens and governments to suggest issues that should be addressed in the EIS. "We are excited about the opportunity to bring a world class wind ranch to the Pacific Northwest and provide clean, low-cost, renewable energy to enhance our quality of life which we have come to expect," said Rick Koebbe, president of Washington Winds Inc. BPA will purchase 150 megawatts of power from the wind farm for 20 years with an option for up to another 250 MW if siting and environmental reviews prove successful. The first turbines could begin producing power in late 2002. Power would be integrated into the BPA power lines that already cross the project site. Each wind turbine would produce approximately 1 to 2 megawatts and sit atop a 200-foot tower. The three-bladed turbines spin at 20 to 30 rpm and are easy to construct and maintain. Each \$1 million machine will have its own computer to keep the turbine facing into the wind for maximum efficiency. "Wind power finally has traction in the Northwest. Today's announcement affirms that wind will be supplying several thousand megawatts of clean electricity to our region within the next few years. BPA deserves credit for realizing this potential sooner than almost any other regional player," said Angus Duncan, president of the Bonneville Environmental Foundation. Chuck Dawsey, manager of Benton Rural Electric Association said, "Bonneville and co-ops need to work together to bring more cost effective renewable power resources to the region." "This project is yet another example of BPA's significant leadership on wind energy and its commitment to bring new renewable energy resources to the Northwest," said Peter West, Green Program director for the Renewable Northwest Project, a regional environmental group. "We look forward to participating in the EIS process." Gary Ballew, Benton County Sustainable Development manager, added, "The Maiden Wind Farm not only helps the local economy through the creation of 100 construction jobs and highly skilled permanent workers, but the addition of wind energy also supports Benton County's efforts to become a regional leader in energy production and energy research." "This project will help build local infrastructure and expertise to enable the development of thousands of megawatts of wind generation in smaller-scale installations throughout the region – locally owned clusters or single turbines providing clean, affordable energy for irrigation, ranches and rural utilities," noted Heather Rhoads-Weaver of Northwest Sustainable Energy for Economic Development (SEED). "Mid-Columbia may well become the hub for construction, operations and maintenance of satellite wind turbines across the Pacific Northwest." Ed Prilucik, mayor of Sunnyside added, "Modern wind projects are a great way to diversify Sunnyside's economic base. This area of the state has an abundance of wind energy, and we welcome efforts to utilize the renewable resource in a manner that will add capacity and diversity to the Pacific Northwest's electrical distribution system." Washington Winds Inc. is a subsidiary of Pacific Winds Inc., based in Boise, Idaho. The company owns and operates over 900 wind turbines in California. #### **CONTACTS FOR MORE INFO:** Tom Osborn, BPA; 509-527-6211, e-mail trosborn@bpa.gov; Rick Koebbe, Washington Winds Inc.; (208).853.4602, e-mail rskoebbe@powerworksinc.com; Angus Duncan, Bonneville Environmental Foundation, (503) 248-1905; Heather Rhoads-Weaver, NW SEED 206-755-2064; Pete West, Renewables NW Project 503-223-4544; Ed Prilucik, Mayor or Dave Fonfara, City of Sunnyside, (509) 837-3997; Access at: http://www.access.gpo.gov/nara/index.html. Program Authority: 20 U.S.C. 7909. Dated: June 7, 2001. #### Thomas M. Corwin, Acting Deputy Assistant Secretary for Elementary and Secondary Education. [FR Doc. 01–14765 Filed 6–11–01; 8:45 am] BILLING CODE 4000-01-U #### **DEPARTMENT OF ENERGY** #### Environmental Management Site-Specific Advisory Board, Los Alamos **AGENCY:** Department of Energy. **ACTION:** Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Los Alamos. The Federal Advisory Committee Act (Pub. L. No. 92–463, 86 Stat. 770) requires that public notice of these meetings be announced in the Federal Register. DATES: Wednesday, June 20, 2001, 6 p.m.–9 p.m. **ADDRESSES:** Hotel Santa Fe, 1501 Paseo de Peralta, Santa Fe, New Mexico. FOR FURTHER INFORMATION CONTACT: Ann DuBois, Northern New Mexico Citizens' Advisory Board, 1640 Old Pecos Trail, Suite H, Santa Fe, NM 87505. Phone (505) 989–1662; fax (505) 989–1752 or e-mail: adubois@doeal.gov. **SUPPLEMENTARY INFORMATION:** Purpose of the Board: The purpose of the Board is to make recommendations to DOE and its regulators in the areas of environmental restoration, waste management, and related activities. #### Tentative Agenda - 1. Opening Activities—6-7 p.m. - 2. Public Commentsz—7-7:30 p.m. - 3. Discussion on Community Communication and Coordination. - 4. Committee Reports: Monitoring and Surveillance, Waste Management, Environmental Restoration, Community Outreach, Bylaws, Budget. - 5. Other Board business will be conducted as necessary. This agenda is subject to change at least one day in advance of the meeting. Public Participation: The meeting is open to the public. Written statements may be filed with the Committee either before or after the meeting. Individuals who wish to make oral statements pertaining to agenda items should contact Ann DuBois at the address or telephone number listed above. Requests must be received five days prior to the meeting and reasonable provision will be made to include the presentation in the agenda. The Deputy Designated Federal Officer is empowered to conduct the meeting in a fashion that will facilitate the orderly conduct of business. Each individual wishing to make public comment will be provided a maximum of five minutes to present their comments at the beginning of the meeting. This Federal Register notice is being published less than 15 days prior to the meeting due to programmatic issues that had to be resolved prior to the meeting date. This notice is being published less than 15 days before the date of the meeting due to the late resolution of programmatic issues. Minutes: Minutes of this meeting will be available for public review and copying at the Freedom of Information Public Reading Room, 1E-190, Forrestal Building, 1000 Independence Avenue, SW., Washington, DC 20585 between 9 a.m. and 4 p.m., Monday-Friday, except Federal holidays. Minutes will also be available at the Public Reading Room located at the Board's office at 1640 Old Pecos Trail, Suite H, Santa Fe, NM. Hours of operation for the Public Reading Room are 9 a.m.-4 p.m. on Monday through Friday. Minutes will also be made available by writing or calling Ann DuBois at the Board's office address or telephone number listed above. Minutes and other Board documents are on the Internet at: http:www.nnmcab.org Issued at Washington, DC on June 6, 2001. **Belinda G. Hood**, Acting Deputy Advisory Committee Management Officer. [FR Doc. 01-14731 Filed 6-11-01; 8:45 am] #### **DEPARTMENT OF ENERGY** # National Nuclear Security Administration Advisory Committee **AGENCY:** National Nuclear Security Administration, Department of Energy. **ACTION:** Notice of Closed Meeting. SUMMARY: This notice announces a meeting of the National Nuclear Security Administration Advisory Committee (NNSA AC). The Federal Advisory Committee Act, 5 U.S.C. App. 2 § 10(a)(2) requires that public notice of these meetings be announced in the Federal Register. **DATES:** Tuesday, June 26, 2001, 8 a.m. to 5 p.m. and Wednesday, June 27, 2001, 8 a.m. to 5 p.m. Addresses: National Nuclear Security Administration, Department of Energy, Forrestal Building, 1000 Independence Avenue, SW, Washington, DC 20585. #### FOR FURTHER INFORMATION CONTACT: Jennifer Leonard (202–586–5555), Staff Director of NNSA AC. #### SUPPLEMENTARY INFORMATION: Purpose of the Committee: To provide the Administrator of the National Nuclear Security Administration with advice and recommendations on matters of technology, policy, and operations that lie within the mission and responsibilities of the National Nuclear Security Administration, as set forth in 50 U.S.C. 20402(b). Purpose of the Meeting: To discuss national security research, development, and policy programs. Closed Meeting: In the interest of national security, the meeting will be closed to the public, pursuant to the Federal Advisory Committee Act, 5 U.S.C. App 2 § 10 (d), and the Federal Advisory Committee Management Regulation, 41 CFR § 101–6.1023, "Procedures for Closing an Advisory Committee Meeting", which incorporate by reference the Government in the Sunshine Act, 5 U.S.C. § 552b, which, at § 552b (c)(1) and (c)(3) permits closure of meetings where restricted data or other classified matters are
discussed. *Minutes:* Minutes of the meeting will be recorded and classified accordingly. Issued at Washington, DC on June 9, 2001. **Rachel M. Samuel,** Deputy Advisory Committee Management Officer [FR Doc. 01–14897 Filed 6–11–01; 8:45 am] BILLING CODE 6450–01–P #### **DEPARTMENT OF ENERGY** #### Bonneville Power Administration; Maiden Wind Farm Project **AGENCY:** Bonneville Power Administration (BPA), Department of Energy (DOE). **ACTION:** Notice of intent to prepare an Environmental Impact Statement (EIS). SUMMARY: BPA intends to prepare an EIS on the proposed Maiden Wind Farm (Project), located northeast of the town of Sunnyside in Benton and Yakima Counties, Washington. Washington Winds, Incorporated (Washington Winds) proposes to construct and operate the 150- to 494-megawatt (MW) wind generation facility. BPA proposes to purchase the electrical output from the Project and to provide transmission services. The EIS will be site-specific as to the potential environmental impacts of the construction and operation of the wind project itself, as well as all related transmission facilities. In addition, the EIS will take a broad programmatic look at the balance of the Project study area. Benton and Yakima Counties, Washington, will be cooperating agencies because of their need to comply with the State Environmental Protection Act. **DATES:** An EIS scoping meeting will be held at the location below on June 26, 2001. Written comments are due to the address below no later than July 13, 2001. ADDRESSES: Send comment letters and requests to be placed on the Project mailing list to Communications, Bonneville Power Administration—KC-7, P.O. Box 12999, Portland, Oregon, 97212. The phone number of the Communications office is 503–230–3478 in Portland; toll-free 1–800–622–4519 outside of Portland. Comments may also be sent to the BPA Internet address: comment@bpa.gov. The scoping meeting will be held on June 26, 2001, from 4:00 p.m. to 7:00 p.m., at the Prosser Senior Citizen Center, 1231 Dudley Avenue, in Prosser, Washington. At this informal meeting, Washington Winds will provide information, including maps, about the Project. Written information will be available, and BPA staff will answer questions and accept oral and written comments on the proposed scope of the Draft EIS. #### FOR FURTHER INFORMATION CONTACT: Sarah T. Branum, Bonneville Power Administration—KEC-4, P.O. Box 3621, Portland, Oregon 97208-3621, phone number 503-230-5115, fax number 503-230-5699, email stbranum@bpa.gov. #### SUPPLEMENTARY INFORMATION: Background. Currently, there is a shortage of electricity in the Northwest; this Project would help to alleviate this shortage. In addition, there is an increased demand in the electric utility industry to diversify energy portfolios and include energy produced by new renewable resources. The Northwest Power Planning Council's Fourth Conservation and Electric Power Plan recommends that Northwest utilities offer green power purchase opportunities as a way to help the region integrate renewable resources into the power system in the future. BPA has committed to increasing its supply of conservation and renewable resources to help meet load. Purpose and Need. BPA is facing an era of growing electrical loads, increasing constraints on the existing energy resource base, and heightened customer demand for renewable resources. BPA needs to acquire additional renewable resources that will contribute to the diversification of its energy portfolio and be available promptly to help remedy BPA's power supply issues. The purposes BPA would fulfill by addressing this need include: Protecting BPA and its utility customers against risk; - Assuring consistency with BPA's responsibility under the Pacific Northwest Electric Power Planning and Conservation Act to encourage the development of renewable energy resources: - Meeting customer demand for energy from renewable energy resources, thereby assuring consistency with BPA's Business Plan EIS (DOE/ EIS-0183, June 1995) and Business Plan Record of Decision (ROD); Assuring consistency with the resource acquisition strategy of BPA's Resource Programs EIS (DOE/EIS-0162, February 1993) and ROD; and • Meeting the objective in the January 2000 Strategic Plan of BPA's Power Business Line to acquire at least 150 average MW of new renewable resources by the end of fiscal year 2006 in order to meet customer demand for new renewable resources. Proposed Action. BPA proposes to execute one or more power purchase and transmission services agreements to acquire the full electrical output of Washington Winds' proposed Maiden Wind Farm. This 150–to 494–MW wind generation facility would be located primarily in Benton County, Washington, 15 miles north of Prosser, and, to a lesser extent, in Yakima County, Washington, 10 miles northeast of Sunnyside. The proposed site is located on the southwestern slopes of the Rattlesnake Hills, which includes: portions of Sections 7, 8, 9, 10 14, 15, 16, 17, 18, 22, 23, 24, 25, 26, 35, 36, T11N, R24E, Benton County; portions of Sections 28, 30, 31, 33, T11N, R25E, Benton County; and portions of Sections 3, 10, 11, 12, 13, T11N, R23E, Yakima County; State of Washington, Department of Natural Resources public lands include portions of Sections 16 and 36, T11N, R24, Benton County; road access involves portions of Sections 14, 19, 20, 29, 30, T11N, R24E, Benton County and portions of Sections 23, 24, 25, 26, 35, 36, T11N, R23E, Yakima County. None of the Project would be located on land owned by the United States. Land uses within the Project site consist of non-irrigated agricultureprimarily cattle grazing and dryland wheat farming. Approximately 167 to 549 wind turbines would be arranged in several "strings," with approximately 250 to 450 feet between turbines in each string, depending upon the turbine size and topographical features. Washington Winds is considering using turbines ranging from 900-kilowatt (kW) to 2,000-kW output each. The proposed turbine type would be an upwind, fixedspeed turbine (i.e., the rotor always faces upwind and turns at a constant speed), mounted on tubular steel towers installed on a reinforced concrete foundation. The typical operating range of wind speeds for these turbine types is approximately 9 to 65 miles per hour (mph). At speeds greater than approximately 65 mph, the wind turbines automatically cease operating and remain stationary until the wind speeds become slower. The height of the turbines will range from approximately 246 feet to 380 feet, depending upon the turbine size. Foundations would be either caisson or pad style, ranging from approximately 15 to 50 feet in width (depending upon turbine size) and extending 20 to 50 feet underground (depending upon turbine size) and/or anchored into bedrock. Agricultural activities can continue to take place directly adjacent to the turbine pads. Power from all turbines in the Project would be collected by an underground and overhead cable system and then fed to one or two proposed substations to be located on the Project site. The fenced substation site(s) would occupy approximately two to four acres each. From the substation site(s), power from the Project would be interconnected to BPA's existing Hanford-John Day 500kilovolts (kV), Midway-Big Eddy 230kV, or the Midway-Grandview 115-kV transmission lines that transect the Project site. Other facilities required as part of the Project are small padmounted transformers located at the base of each wind turbine tower, access roads, and two or three operation and maintenance buildings. The Project is scheduled to begin construction as early as March 2002, followed by commercial operation as early as November 2002, and would operate year-round for at least 20 years. Process to Date. An application for a conditional use permit for Benton County has been submitted, plus a conditional use permit application for Yakima County is in progress. Surveys for sensitive plant and wildlife species (including birds) were initiated in the spring of 2001. Scoping will help identify what additional studies will be required. Alternatives Proposed for Consideration. The alternatives include the proposed action (executing a power purchase agreement with Washington Winds for 150 to 400 MW of electrical energy from the proposed Maiden Wind Farm and authorizing transmission over BPA power lines), and the No Action alternative. Public Participation and Identification of Environmental Issues. For other wind projects, noise, visual, and cultural resources effects, and effects on sensitive plant and animal species including migratory birds, have been identified as potential environmental issues. BPA has established a 30-day scoping period during which affected tribes, landowners, concerned citizens, special interest groups, local governments, and any other interested parties are invited to comment on the scope of the EIS. Scoping will help BPA identify the range of environmental issues that should be addressed in the EIS. When completed, the Draft EIS will be circulated for review and comment, and BPA will hold at least one public comment meeting for the Draft EIS. BPA will consider and respond in the Final EIS to comments received on the Draft EIS. The Final EIS is expected to be published in early 2002. BPA's subsequent decision will be documented in a Record of Decision. The EIS will satisfy the requirements of the National Environmental Policy Act. Issued in Portland, Oregon, on June 5, 2001. #### Steven G. Hickok, Acting Administrator and Chief Executive Officer. [FR Doc. 01–14734 Filed 6–11–01; 8:45 am] #### **DEPARTMENT OF ENERGY** # Federal Energy Regulatory Commission [Docket No. RP01-442-000] # ANR Pipeline Company; Notice of Proposed Changes in FERC Gas Tariff June 6, 2001. Take notice that on May 31, 2001, ANR Pipeline Company (ANR) tendered for filing as part of its FERC Gas Tariff, Second Revised Volume No. 1, the following tariff
sheets proposed to become effective June 1, 2001: Forty-seventh Revised Sheet No. 8 Forty-seventh Revised Sheet No. 9 Forty-sixth Revised Sheet No. 13 Fifty-seventh Revised Sheet No. 18 ANR states that the above-referenced tariff sheets are being filed to implement recovery of approximately \$3.0 million of above-market costs that are associated with its obligations to Dakota Gasification Company (Dakota). ANR proposes a reservation surcharged applicable to its Part 284 firm transportation customers to collect ninety percent (90%) of the Dakota costs, and an adjustment to the maximum base tariff rates of Rate Schedule ITS and overrun rates applicable to Rate Schedule FTS-2, so as to recover the remaining ten percent (10%). ANR advises that this filing also includes the annual restatement of the Eligible MDQ used to design the reservation surcharge. ANR also advises that the proposed changes would decrease current quarterly Above-Market Dakota Cost recoveries from \$4,003,607 to \$2,995,512. Any person desiring to be heard or to protest said filing should file a motion to intervene or a protest with the Federal Energy Regulatory Commission, 888 First Street, N.E., Washington, D.C. 20426 in accordance with Sections 385.214 or 385.211 of the Commission's Rules and Regulations. All such motions or protests must be filed in accordance with Section 154.210 of the Commission's regulations. Protests will be considered by the Commission in determining the appropriate action to be taken, but will not serve to make protestants parties to the proceedings. Any person wishing to become a party must file a motion to intervene. Copies of this filing are on file with the Commission and are available for public inspection in the Public Reference Room. This filing may be viewed on the web at http://www.ferc.fed.us/online/ rims.htm (call 202-208-2222 for assistance). Comments, protests, and interventions may be filed electronically via the internet in lieu of paper. See, 18 CFR 385.2001(a)(1)(iii) and the instructions on the Commission's web site at http://www.ferc.fed.us/efi/ doorbell.htm. #### David P. Boergers, Secretary. [FR Doc. 01-14688 Filed 6-11-01; 8:45 am] #### **DEPARTMENT OF ENERGY** # Federal Energy Regulatory Commission [Docket No. EF01-2021-000] # Department of Energy, Bonneville Power Administration; Notice of Filing June 6, 2001 Take notice that on May 30, 2001, the Bonneville Power Administration (Bonneville) filed an amendment to its December 14, 2000 filing of its proposed 2002 Transmission and Ancillary Services (2002 Transmission) rates with the Federal Energy Regulatory Commission (Commission). Any person desiring to be heard or to protest such filing should file a motion to intervene or protest with the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426, in accordance with Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214). All such motions and protests should be filed on or before June 14, 2001. Protests will be considered by the Commission to determine the appropriate action to be taken, but will not serve to make protestants parties to the proceedings. Any person wishing to become a party must file a motion to intervene. Copies of this filing are on file with the Commission and are available for public inspection. This filing may also be viewed on the Internet at http://www.ferc.fed.us/ online/rims.htm (call 202-208-2222 for assistance). Comments, protests and interventions may be filed electronically via the internet in lieu of paper. See, 18 CFR 385.2001(a)(1)(iii) and the instructions on the Commission's web site at http://www.ferc.fed.us/efi/ doorbell.htm. #### David P. Boergers, Secretary. [FR Doc. 01–14710 Filed 6–11–01; 8:45 am] BILLING CODE 6717–01–M #### **DEPARTMENT OF ENERGY** # Federal Energy Regulatory Commission [Docket No. RP01-437-000] #### Chandeleur Pipe Line Company; Notice of Tariff Filing June 6, 2001. Take notice that on May 31, 2001, Chandeleur Pipe Line Company (Chandeleur) tendered for filing as part of its FERC Gas Tariff, Second Revised Volume No. 1, the following tariff sheets, to become effective July 1, 2001. First Revised Sheet No. 7 Second Revised Sheet No. 8 First Revised Sheet No. 11 Fifth Revised Sheet No. 19B Second Revised Sheet No. 27 Second Revised Sheet No. 28 Fifth Revised Sheet No. 29 Second Revised Sheet No. 44 Third Revised Sheet No. 45 Second Revised Sheet No. 55 Third Revised Sheet No. 52 Fourth Revised Sheet No. 66 Chandeleur asserts that the purpose of this filing is to include, in its tariff, provisions relating to Chandeleur's authority to enter into operational #### **Department of Energy** Bonneville Power Administration 1520 Kelly Place Walla Walla, Washington 99362 June 11, 2001 In reply refer to: PGCM/Richland #### To: People Interested in the Maiden Wind Farm Washington Winds, Inc. is proposing to build a new wind energy facility near Sunnyside in Benton and Yakima Counties, Washington (see enclosed map). Bonneville Power Administration is proposing to purchase the electrical output from the project and provide transmission. Benton and Yakima Counties have received applications from Washington Winds for Conditional Use Permits. This letter briefly explains the proposal and invites you to a public meeting in Prosser to learn more. You are also invited to comment on the proposal. Tuesday, June 26, 2001 4:00 - 7:00 p.m. Prosser Senior Citizen Center 1231 Dudley Avenue Prosser, Washington The meeting will be an informal, open house. Come anytime between 4:00 and 7:00, when it is convenient for you. Members of the project team will be available to describe the proposal and answer your questions. We plan a brief presentation around 5:30. #### **Proposal** Washington Winds proposes to build and operate a wind generation facility on private land north of Prosser and northeast of Sunnyside. Washington Winds is studying a larger area initially and would locate the facility within that area based on wind conditions and environmental studies. The facility would generate between 150 and 494 megawatts of power. (A megawatt is an electrical unit of power equal to 1,000 kilowatts.) Washington Winds is considering using turbines ranging from 900-kilowatt (kW) to 2,000-kW output each. The height of the turbines would range from approximately 246 feet to 380 feet, depending upon the turbine size. Approximately 167 to 549 wind turbines would be arranged in several "strings," with approximately 250 to 450 feet between turbines in each string, depending upon the turbine size and topographical features. Washington Winds has not yet picked a turbine design, or decided how large a project to build, so exact numbers and distances are not yet known. Power from the turbines would be collected by an underground and overhead cable loop. It would then be fed underground to one or two proposed 2-4 acre substations located on the project site. From the substation site(s), power from the project would be interconnected to BPA's existing Hanford-John Day 500-kilovolts (kV), Midway-Big Eddy 230-kV, or the Midway-Grandview 115-kV transmission lines that transect the project site. Other facilities required as part of the project are small pad-mounted transformers located at the base of each wind turbine tower, access roads, and two or three operation and maintenance buildings. Washington Winds would like to begin construction in March 2002, with commercial operation starting in November 2002. The project would operate for at least 20 years. #### **Environmental Analysis** Bonneville, as a Federal agency, must study the environmental impacts of a proposed project before it can take action. This policy is set out in the National Environmental Policy Act (NEPA) of 1969. The Act requires that significant environmental impacts of a proposed action be discussed in an Environmental Impact Statement. Because we are proposing to purchase power from the Maiden Wind Farm, we will prepare an Environmental Impact Statement on the entire proposal. As permitting agencies, Benton and Yakima Counties are required to follow Washington's State Environmental Policy Act (SEPA). Benton and Yakima Counties will be cooperating agencies with BPA and the Environmental Impact Statement will provide the analyses needed for both NEPA and SEPA. #### To Comment If you have comments on the proposed Maiden Wind Farm, you can give them to us at the public meetings, leave a message on our toll-free comment line at 1-800-622-4519, send an e-mail to comment@bpa.gov, or mail them to: Bonneville Power Administration, P.O. Box 12999, Portland, OR 97212. If you comment by July 13, 2001, your ideas can affect the scope of our environmental studies. #### For More Information Tom Osban If you have any questions about the proposal, please call me toll-free at 1-800-282-3713, call my direct number (509) 527-6211, or send an e-mail to trosborn@bpa.gov. Thank you for your interest in our work. Sincerely, Tom Osborn Project Manager Enclosure: Map # Maiden Wind Project Washington Winds, Inc - Preliminary Site Plan #### **Department of Energy** Bonneville Power Administration 1520 Kelly Place Walla Walla, Washington 99362 October 22, 2001 In reply refer to: PTS/Walla Walla #### To: People Interested in the Maiden Wind Farm Washington Winds Inc. is proposing to build a new wind energy facility north of Prosser in Benton and Yakima Counties, Washington. Bonneville Power Administration (BPA) is proposing to purchase some or all of the electrical output from the project and provide transmission on its existing lines. This letter summarizes comments we received in June and July when the project was first announced and we held a meeting in Prosser. #### **Proposed Project** Washington Winds proposes to build and operate a wind generation facility on mostly private land north of Prosser,
Washington (see attached map). The facility would have the capacity to generate from 150 up to 494 megawatts (MW) of power (one MW of wind power can provide electricity for 250 homes). There is a relationship between the number, height, and spacing of turbines: as the size of turbines increases, the spacing between them increases, and the number needed decreases. Washington Winds has not yet chosen the turbine models, so exact numbers, distances, and heights are not yet known. The range of turbine designs being considered would produce from 900 to 2,000 kilowatts of power each (1000 kilowatts is equal to one MW). If the largest turbines were used, 75 to 247 turbines would be needed; with the smaller turbines, 167 to 549 would be needed. Turbines would be placed in strings (or rows) with 250 to 450 feet between each turbine in a string. The total turbine height, including the rotor blades, would be from 246 to 390 feet tall. Power from the turbines would be collected by underground and overhead electric cables. The first 150 MW would be transmitted to a 4-acre substation located near BPA's transmission lines that cross the project area. If full build-out occurs, a second substation in the eastern portion of the study area would be built, and a 4-mile transmission line would be constructed to connect to one of BPA's transmission lines. The power would then be transferred to either the Hanford-John Day 500-kilovolts (kV) or the Midway-Big Eddy 230-kV transmission line. The project could also connect some of its power to BPA's Midway-Grandview 115-kV transmission line, which runs just west of the project area. The project would require 18 to 60 miles of access roads and one to three operation and maintenance facilities. Washington Winds would like to begin construction in spring or summer of 2002, with commercial operation starting in late 2002. The project would operate for at least 20 years. #### **Environmental Analysis** As a Federal agency, BPA must study the environmental impacts, both adverse and beneficial, of this proposed project before it can take action. This policy is set out in the National Environmental Policy Act of 1969 that requires potential environmental impacts of a proposed action to be made public before decision-making. Environmental impacts will be discussed in an Environmental Impact Statement (EIS). The EIS will also satisfy the requirements of the Washington State Environmental Policy Act (SEPA). #### **Public Comments** In June we asked for comments on the proposal to help us develop the environmental study. We held a public meeting, and asked people to phone, write, or e-mail any comments. We received 26 written responses as well as comments received at the public meeting. In all, over 300 comments covering all aspects of the project and the EIS were received. People generally supported wind power, but wanted to know more about this project and how it works in the regional energy system. Sixty-five comments sought information about the proposed project and BPA's role. For example, people asked if wind power is economical; if the power would be sold to California; and if the project would affect any of the natural gas plants planned in the region. Questions about ownership of land where the project would be built, and whether the turbines would be removed after their useful life were also heard. Environmental topics attracted 125 comments. The category receiving most comments was vegetation and wildlife. Of particular interest was how the project would affect birds and elk, the introduction of noxious weeds, and the loss of shrub steppe habitat. BPA, in consultation with the US Fish and Wildlife Service and the Washington Department of Fish and Wildlife, originally planned a three-season avian study to help assess potential impacts to birds in the project area. As a response to comments received, BPA will continue the avian studies through the fourth season (winter). Socioeconomic issues received 23 comments focusing on benefits to the local economy through jobs, property taxes, and landowner benefits. The EIS will include an analysis estimating income to counties from increased property taxes, and local employment numbers and duration. Eleven comments were received on the visual impacts of the project. Most were concerned that the project would "ruin the view." Visual simulations are being developed and will be included in the EIS. #### **How We Use the Comments** All the comments we received will help shape the analysis in the EIS. The comments have helped us to identify the key issues to be addressed in the EIS, as well as the impacts of most concern. Everyone who commented has been added to the project mail list. #### **Project Schedule and Next Steps** Because we have decided to conduct a fourth season of avian studies, the EIS schedule has been extended. We plan to have a Draft EIS ready for public review in January. Please fill out and return the enclosed postcard to let us know if you would like to receive the entire EIS (around 250 pages), the summary (around 25 pages), or a copy by electronic mail. Even if you don't return the postcard, we will let you know when the Draft EIS is available. If you have any questions about the proposal, please call me toll-free at 1-866-879-2303, call me direct at 509-527-6211, or send an e-mail to trosborn@bpa.gov. Thank you for your interest in our work. Sincerely, Thomas R. Osborn Project Manager Tom Osban Enclosures: Map Postcard #### BENTON COUNTY PLANNING/BUILDING DEPARTMENT TERRY A. MARDEN, DIRECTOR PLANNING PLANNING ANNEX P O BOX 910, 1002 DUDLEY AVENUE PROSSER, WA 99350 PROSSER OFFICE: (509) 786-5612 FROM TRI-CITIES: (509) 736-3086 FAX: (509) 786-5629 BUILDING KENNEWICK ANNEX 5600 W. CANAL PLACE, STE. C 105A KENNEWICK, WA 99336 TRI-CITIES OFFICE: (509) 735-3500 FROM PROSSER: (509) 786-5622 FAX NUMBER: (509) 736-2732 May 3, 2001 Richard Anderwald Director Yakima County Planning 128 N. 2nd Street, Room 417 Yakima, WA 98901 RE: Assumption of lead agency status for the Maiden Wind Project. Dear Mr. Anderwald, The Benton County Planning Department has received a conditional use permit application from Washington Wind Project. The application is for the installing of approximately 167 NEG Micon NM 900/52 wind turbines and associated equipment and facilities to generate approximately 150 MW of power. Most of the project will be located within Benton County. A portion of the project will be located in Yakima County in Section 11, 12, and 13 of Township 11 North, Range 23 East. Since the greatest portion of the proposed project is located within Benton County, the Benton County Planning Department will assume SEPA Lead Agency status for this proposal. The Bonneville Power Administration will also consider this proposal under NEPA. I have been working with Greg Ballard from your department to obtain the needed mailing list for Yakima County. I will keep Mr. Ballard informed on the progress of the environmental review for the proposal. I have attached a copy of the Conditional Use Permit Application and Environmental Checklist submitted to Benton County. If you have any questions or wish to discuss this matter, please contact me at (509) 786-5612. Sincerely, Michael Shuttleworth, Senior Planner CC. Greg Ballard, Yakima County Barbara Ritchie, DOE Sarah T. Branum, BPA Connie Thoman, CH2M Hill Rick S. Koebbe, Power Works Inc. ## BENTON COUNTY PLANNING/BUILDING DEPARTMENT TERRY A. MARDEN, DIRECTOR PLANNING PLANNING ANNEX P O BOX 910, 1002 DUDLEY AVENUE PROSSER, WA 99350 PROSSER OFFICE: (509) 786-5612 FROM TRI-CITIES: (509) 736-3086 FAX: (509) 786-5629 BUILDING KENNEWICK ANNEX 5600 W. CANAL PLACE, STE. C 105A KENNEWICK, WA 99336 TRI-CITIES OFFICE: (509) 735-3500 FROM PROSSER: (509) 736-5622 FAX NUMBER: (509) 736-2732 # DETERMINATION OF SIGNIFICANCE AND REQUEST FOR COMMENTS ON SCOPE OF EIS Description of proposal is to install 167 to 549 wind turbines and associated equipment and facilities to generate approximately 150 to 494 MW of electrical power The wind turbines are rated for 900kW each and stand 75 meters/246/ feet tall at their highest point (a 52 meter rotor atop a 49 meter tower); however, turbine sizes up to 1.650 kW which stand 113 meters/380 feet (a 66 meter rotor atop a 80 meter tower) maybe considered. Major equipment and facilities that will also be installed include: one or more permanent met towers, step-up transformers at each wind turbine, underground and overhead medium voltage distribution and communications lines, a 230 kV substation and BPA transmission line interconnection equipment, an operation and maintenance facility and request access roads. Proponent Washington Winds, Inc. 5356 N Cattail Way Boise, Idaho 83703 File No. EA 01-28 Location of proposal: Located primarily in Benton County, Washington, 15 miles north of Prosser, and, to a lesser extent, in Yakima County Washington, 10 miles northeast of Sunnyside. The proposed site is located on the southwestern slopes of the Rattlesnake hills, which includes: portions of Sections 7,8,9,10,14,15,16,17,18,22,23,24,25,26,35,36 of Township 11 North, Range 24 East, Benton County; portions of Sections 28,30,31,33, of Township 11 North, Range 25 East, Benton County; and portions of Sections 3, 10, 11, 12, 13 of Township 11 North, Range 23 East, Yakima County; State of Washington, Department of Natural Resources public lands include portions of Sections 16 and 36, of Township 11 North, Range 24 East, Benton County; road access involves portions of Sections 14, 19, 20, 29, 30 of Township 11 North, Range 24 East, Benton County and portions of Sections 23, 24, 25, 26, 35, 36, of Township 11 North, Range 23 East, Yakima, County. #### Lead agencies BONNEVILLE POWER ADMINISTRATION and BENTON COUNTY The lead agencies have determined this proposal is likely to have a significant adverse impact on the environment. An environmental impact statement (EIS) is required under RCW 43.21C.030(2)(c)
and the National Environmental Policy Act. An environmental checklist or other materials indicating likely environmental impacts can be reviewed at our office. The lead agencies have identified the following areas for discussion in the EIS as being noise, visual, soils, unique physical features, plants and animal, habitat for and the diversity of species of plants, other wildlife, aesthetics, historic and cultural preservation, agricultural crops, transportation, lighting and air traffic. **SCOPING.** Agencies, affected tribes, and members of the public are invited to comment on the scope of the EIS. You may comment on alternatives, mitigation measures, probable significant adverse impacts, and licenses or other approvals that may be required. The method and deadline for giving us your comments is as follows: A public scoping meeting will be conducted on June 26, 2001, from 4 p.m. to 7 p.m. at the Prosser Senior Center – 1231 Dudley Avenue, Prosser, WA 99350. Written information will be available at the meeting and staff will be present to answer questions and accept oral and written comments on the proposed scope of the Draft EIS. Written comments may be submitted to the Benton County Planning Department P O Box 910, Prosser, WA 99350 – by 5 p.m. on July 11, 2001. Responsible Official: Terry A. Marden, Director Benton County Planning/Building Dept. P O Box 910 Prosser, WA 99359 Date June 11, 2001 Signature [X] You may appeal this determination to TERRY A. MARDEN, at the Benton County Planning Department Post Office Box 910, Prosser, WA 99350, no later than 5 p.m. Tuesday, June 19, 2001 by Written notice. You should be prepared to make specific factual objections. Contact Michael Shuttleworth, Senior Planner – Benton County Planning Department P O Box 910 Prosser, WA 99350 to read or ask about the procedures for SEPA appeals. [] There is no agency appeal. PUBLISH: Monday, June 11, 2001 DISTRIBUTION: Determination of Significance and Request for Comments on Scope of EIS sent to Applicant, Property Owners and News Media on 6/6/01. The Determination of Significance and Request for Comments on Scope of the EIS and EA sent to agencies on 6/6/01. Applicant Listing of Agencies (See attached listing) Property Owners News Media # conditional use/special permit application file No. 220-11/9901-38 | Арр | licant Name WASHINGTON WINDS TNC. licant Address: 5356 N. CATTAIL NAY BOISE, IDAHO 83703 phone number: Home N/A Work (208) 853-4602 APR 18 2001 | |----------------------------------|---| | | al owners name: SEE ATTACHED. al Owners address: | | Tele | phone number: Home Work For Office Use Only | | Leg | al description and Parcel Number of property for which permit is for: <u>SEE ΑπΑΔΗΕΟ</u> . | | If yo | ou are amending a previous conditional use/special use permit - please list the file number(s): | | USE
ACC
A | Conditional Use/Special Permit is requested to conduct the following use PLEASE BE SPECIFIC - ADDITIONAL PAPER IF NECESSARY - # OF PARKING SPOTS, SIZE, LOCATION OF STRUCTURE, ESSING OFF OF COUNTY ROAD, # OF EMPLOYEES, HOURS OF OPERATION, ETC.: INSTALLATION OF A 150 MW WIND ENERGY PROJECT CALLED THE AIDEN WIND PROJECT. | | The | property will be served by: WATER: Well X Private System City System SEWER: Septic Tank X City Sewer POWER: PUD REA BPA X PHONE: Yes X No Name of Utility LATER GAS: Yes No X Name of Utility CABLE: Yes No X Name of Utility IRRIGATION: Yes No X Name of Utility PRIVATE IRR. Yes No X | | Tota | al acres of property: APPROX.4,400 Zoning Classification of Property: GMA AGRICULTURAL apprehensive Plan Designation GMA AGRICULTURAL | | resident
LIA
Desident
R | cribe existing structures and/or uses currently existing on your property, such as well, septic dential dwelling, garage, etc.: THE EXISTING USE IS AGRICULTURAL (PRIMARI) ILE GRAZING). THERE ARE VERY LIMITED STRUCTURES (TRANSMISSIONES, COMMUNICATION) TOWERS) - SEE ATTACHED FOR MORE DETAILS, cribe existing structures and present land uses in the surrounding area of your property: RUROADS AND TRANSMISSION LINES. PRESENT USES ARE AGRICULTURAL | | | NO CONSERVATION RESERVE PROGRAM. | | | bu are applying for a Business Activity as defined in BCC 11.04.020 please answer the following stions: N/A . | | a.
b. | Is there a residence on site? Yes No Does at least one of the proprietors of the business own or lease the property where the business and the residence are located? Yes No | | c.
d. | Does at least one of the proprietors live in said residence? Yes No List the number of non-resident employees | | | What is the total square | footage of the detached building | g? | |---|--|--
--| | f. | what is the total so | quare rootage that will be t | used for the business activity? | | g. | Is only one detached bui | ilding to be used for the business | activity? Yes No | | ĥ. | | e used with the business activity? | | | | If Yes, give the nu | umber and sizes of the sign(s) | | | l. | State the number of veh | nicles marked to identify the busi | ness to be stored on site. | | j. | | | sustomer/clients and non-resident | | | | week | | | | Hours of Operation | | | | | | | f one inch equals fifty feet (1"=50') | | or | one inch equal 100 feet (| 1"=100') unless otherwise speci | fically approved by the Planning | | De | epartment, showing the follow | wing information. SEE EXHIG | BITS A AND B ATTACHED | | | Dimensions of the second | | NVIRONMENTAL CHECKLIST | | A. | | | Di | | В. | | | king spaces, etc., complete with | | c | | lings and all property lines. | ictaneas buildings and all proporty | | C. | | icing structures, complete with a | istances, buildings and all property | | L | lines. | nte and rights of way located on a | or adjacent to this property. A shall | | D. | structures and roadways | | or adjacent to this property. (Label | | E. | | • | for the Dusiness Activity | | Ε. | Label and show a floor p | plan for the structure to be used t | TOI the business Activity. | | | S OR PERTINENT INFORMATION: | | | | | | NOTHER DETAILS ON | | | SEE | ATTACHED FOR FI | | | | SEE
PRO: | SECT. BPA IS PRE | PARING AN EIS FO | R THIS PADJECT AS PART | | SEE
PROT | ATTACHED FOR FL
SECT. BPA IS PRE
HE NEPA PROCESS | PARING AN EIS FOR | POPTED FOR THE SEPA PROC | | SEE
PRO:
OF T
EASE S | ATTACHED FOR FU
SECT. BPA IS PRE
HE NEPA PADCESS
IGN AND THEN PRINT YOUR N | PARING AN EIS FOR
S- WHICH MAY BE AD
AME Signatures of all persons ho | POPTED FOR THE SEPA PROC
olding an ownership interest in the | | SEE
PRO:
OF T
EASE S | ATTACHED FOR FU
SECT. BPA IS PRE
HE NEPA PADCESS
IGN AND THEN PRINT YOUR N | PARING AN EIS FOR | POPTED FOR THE SEPA PROC
olding an ownership interest in the | | SEE
PROT
OF T
EASE S
al prop | ATTACHED FOR FUNCTION OF THE NEPA PROCESSION AND THEN PRINT YOUR NOTESTAY OF THE O | PARING AN EIS FOR SINGLE FOR SIGNATURES OF All persons hower of Attorney when signing for the significant | DOPTED FOR THE SEPA PROC
Diding an ownership interest in the
or others.) | | SEE
PRO:
OF T
EASE S
al prop | ATTACHED FOR FUNCTION OF THE NEPA PROCESSION AND THEN PRINT YOUR NOTESTAY OF THE O | PARING AN ETS FOR S- WHICH MAY SE AD AME Signatures of all persons hower of Attorney when signing for ove is true and complete to the best of the significant | DOPTED FOR THE SEPA PROC
Diding an ownership interest in the
or others.) Dest of my knowledge. | | SEE
PRO:
OF T
EASE S | ATTACHED FOR FUNCTION OF THE NEPA PROCESSION AND THEN PRINT YOUR NOTESTAY OF THE O | PARING AN ETS FOR S- WHICH MAY SE AD AME Signatures of all persons hower of Attorney when signing for ove is true and complete to the best of the significant | DOPTED FOR THE SEPA PROC
Diding an ownership interest in the
or others.) Dest of my knowledge. | | SEE
PROT
OF T
EASE S
al prop | ATTACHED FOR FUNCTION BPA IS PRE HE NEPA PADCESSIGN AND THEN PRINT YOUR NOT BETT ARE TO THE THE PRINT HOLD BETT AND THE THE THE PRINT HE THE PRINT HE THE THE PRINT HE PRINT HE THE PRINT HE THE PRI | PARING AN ETS FOR S- WHICH MAY BE AD AME Signatures of all persons hower of Attorney when signing for ove is true and complete to the table RICK. S. KOEBE | popted For the SEPA Proceeding an ownership interest in the per others.) poest of my knowledge. APRIL 18, 2001 | | SEE
PROT
OF T
EASE S
al prop
ertify t | ATTACHED FOR FUNCTION OF THE NEPA PROCESSION AND THEN PRINT YOUR NOTESTAY OF THE O | PARING AN EIS FOR S- WHICH MAY BE AD AME Signatures of all persons hower of Attorney when signing for over is true and complete to the table of the significant th | DOPTED FOR THE SEPA PROCESSION OF PR | | SEE
PROT
OF T
EASE S
al prop
ertify t | ATTACHED FOR FUNCTION BPA IS PRE HE NEPA PADCESSIGN AND THEN PRINT YOUR NOT BETT ARE TO THE THE PRINT HOLD BETT AND THE THE THE PRINT HE THE PRINT HE THE THE PRINT HE PRINT HE THE PRINT HE THE PRI | PARING AN EIS FOR S- WHICH MAY BE AD AME Signatures of all persons hower of Attorney when signing for over is true and complete to the table of the significant th | popted For the SEPA Proceeding an ownership interest in the per others.) poest of my knowledge. APRIL 18, 2001 | | SEE
PROT
OF T
EASE S
all prop
ertify t | ATTACHED FOR FUNCTION BPA IS PRESENTED PROCESSIGN AND THEN PRINT YOUR NATION are required. (Include Potential the information given about give | PARING AN EIS FOR S- WHICH MAY BE AD AME Signatures of all persons hower of Attorney when signing for over is true and complete to the table of the significant th | DOPTED FOR THE SEPA PROCESSION OF PR | | SEE PROTECTION OF TEASES Sal propertify to policant | ATTACHED FOR FUNCTION BPA IS PRESENTED PROCESSION AND THEN PRINT YOUR NOTITED ATTACHED | PARING AN EIS FOR S-WHICH MAY BE AD AME Signatures of all persons hower of Attorney when signing for ove is true and complete to the table of the significant | DOPTED FOR THE SEPA PROCESSION OF O | PLEASE MAKE YOUR CHECK PAYABLE TO BENTON COUNTY TREASURER. THERE ARE NO GUARANTEES THAT YOUR APPLICATION WILL BE APPROVED. THE APPLICATION FEES are NON REFUNDABLE. 3/19/99 ### ATTACHMENTS TO CONDITIONAL USE / SPECIAL PERMIT APPLICATION Washington Winds Inc., Boise, Idaho ### Item No. 2; Legal Owners' Names and Addresses: Anderson Land and Livestock, Inc., a Washington corporation 2240 Lewandowski Road Sunnyside, Washington 98944 Attention: Mr. Richard E. Anderson, President phone: 509.837.5111 fax: 509.839.0242 Victor E. Robert and Martha H. Robert, husband and wife 9 South 55th Avenue Yakima, Washington 98908 phone: 509.965.5786 Emil L. Robert 3406 Ahtanum Road Yakima, Washington 98903 phone: 509.452.1784 # Item No. 3 Legal Description and Parcel Number of Property for which Permit is for: Anderson Land and Livestock, Inc. Property: | <u>Section</u> | <u>Township</u> | <u>Range</u> | Parcel Number | |----------------|-----------------|--------------|---------------------| | 7 | 11 North | 24 East | 1 0714 000 0000 000 | | 17 | 11 North | 24 East | 1 1714 000 0000 000 | | 18 | 11 North | 24 East | 1 1814 000 0000 000 | #### Victor E. Robert and Martha H. Robert Property: | Section | Township | <u>Range</u> | Parcel Number | |---------|----------|--------------|---------------------| | 9 | 11 North | 24 East | 1 0914 000 0000 000 | | 10 | 11 North | 24 East | 1 1014 000 0000 000 | #### Emil L. Robert Property: | Section | Township | Range | Parcel Number | |---------|----------|---------|---------------------| | 8 | 11 North | 24 East | 1 0814 100 0000 000 | ### Legal Owners' Signatures: I certify that the information given above is true and complete to the best of my knowledge. **Elichard E. **Issourceson** date: 4/18/0/* **Anderson Land and Livestock, Inc. Richard E. Anderson, President **Dictar & Robert** date: 4/18/0/* **Mattha & Robert** date: 4/18-0/* **Mattha & Robert** date: 4/18-0/* **Mattha H. Robert** date: 4/18-0/* **Emile Z. Robert** date: 4/18-0/* APR 18 2001 Exhibit A Project Location Map Maiden Wind Project Beinton County, Washington map source DeLorme 1:150,000 Washington Winds Inc. # Exhibit B # SEPA ENVIRONMENTAL CHECKLIST ("EA") #### A. BACKGROUND - 1. Name of the proposed project, if applicable: Maiden Wind Project. - 2. Name of applicant: Washington Winds Inc. - 3. Address and phone number of applicant and contact person: California Office William Damon, Vice President Washington Winds Inc. 1185 Larch Avenue Moraga, California 94556 phone: 925.388.0072 fax: 925.388.0073 e-mail: wldamon@powerworksinc.com Headquarters Rick S. Koebbe, President
Washington Winds Inc. 5356 N. Cattail Way Boise, Idaho 83703 phone: 208.853.4602 fax: 208.853.4628 e-mail: rskoebbe@powerworksinc.com - 4. Date checklist prepared: April 18, 2001. - 5. Agency requesting checklist: Benton County Planning Department. - 6. Proposed timing or schedule (including phasing, if applicable): The tentative plan is to submit a draft Environmental Impact Statement ("EIS") for the project by October 2001, followed by the final EIS by December 2001, then commence construction of the Maiden Wind Project in April 2002. With an estimated construction period of nine (9) months, the project would achieve commercial operation by the end of December 2002. - 7. Do you have any plans for future additions, expansion, or further activity related to or connected with this proposal? The Maiden Wind Project is currently expected to generate approximately 150 MW of electrical power. The exact output of the project, and the necessary equipment/facilities associated with the size of the project, may vary somewhat as the project is further defined. A second, and similar wind project of approximately 250 MW is being considered in the Rattlesnake Hills southeast of the Maiden Wind Project, also in Benton County, consisting of approximately 278 wind turbines, generally located as follows: R24E, T11N, Sections 24, 23, 22, 15 and 14, and R25E, T11N, Sections (or any portion thereof) 34, 30, 29, 28, 27, 26, 23, 22 and 21, plus, in Yakima County, R23E, T11N, Section 11. The EIS being prepared for the Maiden Wind Project will also cover the project site of this second project. - 8. List any environmental information you know about that has been prepared, or will be prepared, directly related to this proposal. We have had preliminary discussions with the Bonneville Power Administration ("BPA"), the Washington Department of Natural Resources, Washington Department of Fish & Wildlife, Benton County planning department, and Yakima County planning department, and we are not aware of, nor do we anticipate any, significant environmental impacts associated with this proposed project. The BPA is in the process of preparing an EIS for the property for this proposed Maiden Wind Project which includes this project site. It is anticipated that the EIS will be used to jointly satisfy the NEPA and SEPA processes for this project. - 9. Do you know whether applications are pending for governmental approvals of other proposals directly affecting the property covered by your proposal? If yes, explain. The only pending application that we are aware of is our April 12, 2001 Conditional Use/Special Permit ("CU/SP") application to install temporary meteorological ("met") towers to verify the wind energy resource potential at this same project site. Any permanent met towers for this proposal are included in this CU/SP application. - 10. List any government approvals or permits that will be needed for your proposal, if known. A Conditional Use/Special Permit is required from Benton and Yakima Counties, followed by Building and Grading Permits. Other permits covering construction and long-term occupancy of the project are anticipated (though not currently defined pending completion of the EIS), such as, a county septic system permit (regarding a maintenance building), a state water quality certification and Army Corp 404 permit (regarding road and underground cable crossings of intermittent creeks), and Federal Aviation Administration notification (regarding a turbine height over 200 feet). - 11. Give brief, complete description of your proposal, including the proposed uses and the size of the project and site. There are several questions later in this checklist that ask you to describe certain aspects of your proposal. You do not need to repeat those answers on this page. (Lead agencies may modify this form to include additional specific information on project description.) We will install approximately 167 NEG Micon NM900/52 wind turbines and associated equipment and facilities to generate approximately 150 MW of electrical power (or an equivalent wind turbine and capacity, depending on final commercial evaluations, i.e., if we select a larger turbine size, less turbines would be installed to sum 150 MW). The wind turbines are rated for 900 kW each and stand 75 meters/246 feet tall at their highest point (a 52 meter rotor atop a 49 meter tower); however, we are considering turbine sizes up to 1,650 kW which stand 113 meters/371 feet (a 66 meter rotor atop a 80 meter tower). Major equipment and facilities that will also be installed include: one or more permanent met towers, step-up transformers at each wind turbine, underground and overhead medium voltage distribution and communications lines, a 230 kV substation and BPA transmission line interconnection equipment, an operation and maintenance facility, and requisite access roads. The major features of the project will be located approximately as shown on the attached Exhibit B, Preliminary Site Plan. In addition, find attached Exhibit C for information about the proposed NEG Micon wind turbines. 12. Location of the proposal. Give sufficient information for a person to understand the precise location of your proposed project, including a street address, if any, and section, township, and range, if known. If a proposal would occur over a range of area, provide the range or boundaries of the site(s). Provide a legal description, site plan, vicinity map, and topographic map, if reasonably available. While you should submit any plans required by the agency, you are not required to duplicate maps or detailed plans submitted with any permit applications related to this checklist. The project site is located primarily in Benton County, Washington, approximately 15 miles north of Prosser in the Rattlesnake Hills area. More specifically, the site is located in Township 11 North, Range 24 East and covers Sections 7, 8, 9, 10, 17 and 18 (Section 16 is expected to be included later). In addition, two contiguous Sections 12 and 13 are located in Yakima County, Township 11 North, Range 23 East. The property location, boundaries and approximate locations for the installed wind turbines and major facilities are shown respectively on the attached Exhibit A, Project Location Map, and Exhibit B, Preliminary Site Plan. #### **B. ENVIRONMENTAL ELEMENTS** #### 1. Earth - a. General description of the site (circle one): Flat, rolling, hilly, steep slopes, mountainous, other. The site is mainly rolling hills with a predominant ridgeline running NW to SE. The north face of the ridgeline and a few gullies on the south face of the ridgeline have steeper slopes. - b. What is the steepest slope on the site (approximate percent slope)? In the immediate area of the planned wind turbine and major facilities placements, the steepest slope is approximately 17%, but most are approximately 1 10%. Within the project site boundaries, but beyond any area of wind turbine or facilities installation or area of use by the project, the steepest slope is approximately 50% on the north face of the ridge. - c. What general types of soils are found on the site (for example, clay, sand, gravel, peat, muck)? If you know the classification of agricultural soils, specify them and note any prime farmland. The predominant soil is a thin layer of silty loam over basalt rock. - d. Are there surface indications or history of unstable soils in the immediate vicinity? If so, describe. There is no evidence of unstable soils. - e. Describe the purpose, type, and approximate quantities of any filling or grading proposed. Indicate source of fill. There may be some filling or grading required to construct the project, including access roads. - f. Could erosion occur as a result of clearing, construction, or use? If so, generally describe. Yes, construction of access roads, staging areas, cable trenches and wind turbine foundation areas could result in some temporary, but likely minor, erosion during construction. - g. About what percent of the site will be covered with impervious surfaces after project construction (for example, asphalt or buildings)? Less than one percent (1%). - h. Proposed measures to reduce or control erosion, or other impacts to the earth, if any: A yet undefined erosion control plan will be developed and implemented during construction. #### 2. Air - a. What types of emissions to the air would result from the proposal (i.e., dust, automobile, odors, industrial, wood smoke) during construction and when the project is completed? If any, generally describe and give approximate quantities if known. The operating wind turbines will produce no emissions, however, there will be incidental truck and automobile emissions during construction (and to a much lesser extent after the project is completed), as well as dust generated from these vehicles traveling over dirt/gravel roads. - b. Are there any off-site sources of emissions or odor that may affect your proposal? If so, generally describe. No. - c. Proposed measures to reduce or control emissions or other impacts to air, if any: A yet undefined dust control plan (i.e., watering roads, if necessary) will be developed and implemented during construction. Overall vehicle emissions are not significant. #### 3. Water #### a. Surface: 1) Is there any surface water body on or in the immediate vicinity of the site (including year-round and seasonal streams, saltwater, lakes, ponds, wetlands)? If yes, describe type and provide names. If appropriate, state what stream or river it flows into. There is no appreciable surface water body on the site, however, there are four (4) identified seasonal springs; Maiden Spring, West Maiden Spring, Lower Maiden Spring, and Section 9 Spring (plus Canyon Spring in Section 13 of Yakima County). - 2) Will the project require any work over, in, or adjacent to (within 200 feet) of the described waters? If yes, please describe and attach available plans. Some
existing access roads come within 200 feet of the identified seasonal springs, but no new construction is expected over, in or within 200 feet of these seasonal springs. - 3) Estimate the amount of fill and dredge material that would be placed in or removed from surface water, or wetlands, and indicate the area of the site that would be affected. Indicate the source of fill material. None expected. - 4) Will the proposal require surface water withdrawals or diversions? Give general description, purpose, and approximate quantities if known. No, any water required is expected to come from wells or alternative sources. - 5) Does the proposal lie within a 100-year floodplain? If so, note location on the site plan. No. - 6) Does the proposal involve any discharge of waste materials to surface waters? If so, describe the type of waste and anticipated volume of discharge. No. #### b. Ground: - 1) Will ground water be withdrawn, or will water be discharged to ground water? Give general description, purpose, and approximate quantities if known. Yes, ground water from wells is expected to be withdrawn during construction as required to produce wind turbine foundation concrete and for dust control uses. Quantities have not yet been determined. - 2) Describe waste material that will be discharged into the ground from septic waste tanks or other sources, if any (for example: domestic sewage; industrial, containing the following chemicals..., agricultural, etc.). Describe the general size of the system, the number of such systems, the number of houses to be served (if applicable), or the number of animals or humans the system(s) are expected to serve. A sanitary septic system will be constructed to serve the small number of skilled personnel working out of the operation and maintenance facility that will be constructed on the site. ### c. Water Runoff (including storm water): 1) Describe the source of runoff (including storm water) and method of collection and disposal, if any (include quantities, if known). Where will this water flow? Will this water flow into other waters? If so, describe. There will be no additional storm water runoff – the site will essentially remain in its current and natural state. - 2) Could waste materials enter ground or surface waters? If so, generally describe. No. - d. Proposed measures to reduce or control surface, ground, and runoff water impacts, if any: not applicable. #### 4. Plants - a. Circle the types of vegetation found on the site: deciduous tree: alder, maple, aspen, other; evergreen tree: fir, cedar, pine, other; shrubs; grass; pasture, crop or grain; wet soil plants: cattail, buttercup, bulrush, skunk cabbage, other; water plants: water lily, eelgrass, milfoil, other; other types of vegetation. Big sagebrush, bluebunch wheatgrass, shrubs, dryland pasture (no trees). Baseline field studies of vegetation has just commenced as part of the environmental/vegetation studies. - b. What kind and amount of vegetation will be removed or altered? Construction of access roads, staging areas, underground cable trenching, overhead transmission lines and wind turbine foundations will disturb some existing vegetation. The types and amounts have not yet been determined, but a large percentage is expected to be pasture grass over rocky surfaces. - c. List threatened or endangered species known to be on or near the site. No listed threatened or endangered plant species are known to be on or near the site. - d. Proposed landscaping, use of native plants, or other measures to preserve or enhance vegetation on the site, if any: The locations of access roads, equipment and facilities will be selected to avoid any sensitive vegetation areas. #### 5. Animals - a. Circle any birds and animals which have been observed on or near the site or are known to be near the site: birds: hawk, heron, eagle, songbirds, other; mammals: deer, bear, elk, beaver, other; fish: bass, salmon, trout, herring, shellfish, other. Observed at this time: Birds: ravens, songbirds, others. Mammals: cattle. Fish: none. - b. List any threatened or endangered species known to be on or near the site. Field baseline studies of animals (including birds) on the site for this proposed Maiden Wind Project have only just now commenced as part of the environmental studies. While not drawing any specific conclusions, preliminary discussions with the Washington Department of Natural Resources, the Washington Department of Fish & Wildlife, and Pacific Northwest National Laboratory ecosystem monitoring program (which monitors the Hanford Site and adjacent areas, including the proposed site) did not raise any concerns regarding known threatened or endangered species. - c. Is the site part of a migration route? If so, explain. No. - d. Proposed measures to preserve or enhance wildlife, if any: The locations of access roads, equipment and facilities will be selected to minimize any impacts on wildlife. #### 6. Energy and Natural Resources - a. What kinds of energy (electric, natural gas, oil, wood stove, solar) will be used to meet the completed project's energy needs? Describe whether it will be used for heating, manufacturing, etc. The wind turbines generate electrical energy in amounts far outweighing the small amount they consume to operate making them self-sufficient. Any met towers will be powered by solar panels and batteries making them self-sufficient. The operation and maintenance facility will require electrical energy for lighting, heating and the powering of tools and equipment, probably less than 2,500 kWh per month. - b. Would your project affect the potential use of solar energy by adjacent properties? If so, generally describe. No. - c. What kinds of energy conservation features are included in the plans of this proposal? List other proposed measures to reduce or control energy impacts, if any: A wind energy project utilizes very minimal amounts of energy. The met towers will use photovoltaic panels and batteries. #### 7. Environmental Heath - a. Are there any environmental heath hazards, including exposure to toxic chemicals, risk of fire and explosion, spill, or hazardous waste, that could occur as a result of this proposal? If so, describe. Yes, small amounts of vehicle fuels, lubricating oils, and cleaning solvents will be stored and used for construction and operation and maintenance. Some risk of fire exists, as it does with any electrical transmission system. - 1) Describe special emergency services that might be required. No special emergency services will be required, but a health and safety plan will be developed and implemented for use during construction and long-term operation. 2) Proposed measures to reduce or control environmental health hazards, if any: Limited amounts of oil/fuel-based materials will be stored in contained areas. Any accidental releases will be cleaned-up and contaminated soils disposed of according to applicable regulations. A health and safety plan, including worker health and safety training, will be developed and implemented for use during construction and long-term operation. #### b. Noise - 1) What types of noise exist in the area which may affect your project (for example: traffic, equipment, operation, other)? The project site is in a remote farming/pasture area and noises are related to limited agricultural activity in the area. This noise will have no affect on the project. - 2) What types and levels of noise would be created by or associated with the project on a short-term or long-term basis (for example: traffic, construction, operation, other)? Indicate what hours noise would come from the site. There will be temporary noise impacts during construction (from vehicles and construction equipment), but noise generated from wind turbine operation on an on-going basis (whenever the wind blows) will not be audible at the nearest residence, and it will not be distinguishable from normal wind and local activity background noise levels. - 3) Proposed measures to reduce or control noise impacts, if any: None. - 8. Land and Shoreline Use - a. What is the current use of the site and adjacent properties. The current use of the site and adjacent properties is primarily pasture for cattle grazing or wheat crops. - **b.** Has the site been used for agriculture? If so, describe. Yes, cattle grazing. - c. Describe any structures on the site. There are a few unpaved rural roads and 4WD primitive roads, some communication towers, an underground power line on the site to service such communication towers, two (2) parallel high voltage transmission lines—a double circuit 230 kV and double circuit 500 kV. - d. Will any structures be demolished? If so, what? No. - **e. What is the current zoning classification of the site?** GMA Agricultural District. - f. What is the current comprehensive plan designation of the site? GMA Agricultural District. - g. If applicable, what is the current shoreline master program designation of the site? Not applicable. - h. Has any part of the site been classified as an "environmentally sensitive" area? If so, explain. No. - i. Approximately how many people would reside or work in the completed project? No one would reside in the completed project, but a small number of skilled operation and maintenance people would work in the project (approximately 5 persons; exact amount to be determined). - j. Approximately how many people would the completed project displace? None. - k. Proposed measures to avoid or reduce displacement impacts, if any: None; not applicable. - I. Proposed measures to ensure the proposal is compatible with existing and projected land uses and plans, if any: The wind turbines and associated facilities are compatible with the landowners' agricultural activities. - 9. Housing - a. Approximately how many units would be provided, if any? Indicate whether high, middle, or low-income housing. None. - b. Approximately how many units, if any, would be eliminated?
Indicate whether high, middle, or low-income housing. None. - c. Proposed measures to reduce or control housing impacts, if any: None; not applicable. #### 10. Aesthetics a. What is the tallest height of any proposed structure(s) not including antennas; what is the principal exterior building material(s) proposed? The 900 kW wind turbines will be the tallest structures at approximately 246 feet; however, we are considering turbine sizes up to 1,650 kW which stand 113 meters/371 feet. Their exteriors are primarily painted steel and fiberglass, typically painted white or off-white. Any met towers will be approximately 164 feet tall and constructed of 6 inch diameter tubular towers made of galvanized steel. The operation and maintenance facility has not yet been designed, so height and building material information will not be available until later. - b. What views in the immediate vicinity would be altered or obstructed? The views of the ridge top and slopes just below the ridge tops on the southerly face will be altered by the wind turbines. No designated scenic areas or significant vistas will be within the line-of-sight of the project. The visual impact will not be significant from populated areas, many miles away. - c. Proposed measures to reduce or control aesthetic impacts, if any: None planned. - 11. Lights and Glare - a. What type of light or glare will the proposal produce? What time of day would it mainly occur? There will be no light or glare produced except that it is anticipated that the FAA will required some unknown numbers of aviation warning lights to be installed on selected wind turbines. - b. Could light or glare from the finished project be a safety hazard or interfere with views? No. - c. What existing off-site sources of light or glare may affect your proposal? None. - d. Proposed measures to reduce or control light and glare impacts, if any: None. - 12. Recreation - a. What designated and informal recreational opportunities are in the immediate vicinity? Hunting (as allowed by private landowners) may occur informally in the area. - b. Would the proposed project displace any existing recreational uses? If so, describe. No. - c. Proposed measures to reduce or control impacts on recreation, including recreation opportunities to be provided by the project or applicant, if any: None. - 13. Historic and Cultural Preservation - a. Are there places or objects listed on, or proposed for, national, state, or local preservation registers known to be on or next to the site? if so, generally describe. None on the site, however, the DOE Hanford Site (National Monument) is located northeast of the project site. - b. Generally describe any landmarks or evidence of historic, archaeological, scientific, or cultural importance known to be on or next to the site. None. - c. Proposed measures to reduce or control impacts, if any: A yet undefined plan will be developed and implemented to establish mitigation procedures during construction should archaeological or cultural artifacts be uncovered, which includes monitoring during construction. ### 14. Transportation - a. Identify public streets and highways serving the site, and describe proposed access to the existing street system. Show on site plan, if any: The project site is accessed by county and rural farm roads off of Highway 241 (in Yakima County). - b. Is the site currently served by public transit? If not, what is the approximate distance to the nearest transit stop? The site is not served by public transit. The nearest transit stop is not known, but Highway 241 is some two to five miles distant, depending on choice of private road. There is no need for public transit because the wind project will not be open to the general public. - c. How many parking spaces would the completed project have? How many would the project eliminate? Only a few parking spaces for the operation and maintenance facility will be required (private) and none will be eliminated. - d. Will the proposal require any new roads or streets, or improvements to existing roads or streets, not including driveways? If so, generally describe (indicate whether public or private). Yes, local access roads to the wind turbines and associated facilities will be widened and regraded as necessary, and new local access roads constructed where needed, all on private land (none for public use). No improvements to any County roads are required. - e. Will the project use (or occur in the immediate vicinity of) water, rail, or air transportation? If so, generally describe. No. - f. How many vehicular trips per day would be generated by the completed project? If known, indicate when peak volumes would occur. Vehicular trips will be limited to daily operation and maintenance personnel gaining access to the operation and maintenance facility and to the wind turbines and associated equipment. The trips will be few in number and will have no significant impact on county roads. - g. Proposed measures to reduce or control transportation impacts, if any: None. #### 15. Public Services - a. Would the project result in an increased need for public services (for example: fire protection, police protection, health care, schools, other)? If so, generally describe. No increased need will result. - b. Proposed measures to reduce or control direct impacts on public services, if any: Local, on-site fire prevention and protection plans will be developed and implemented. #### 16. Utilities - a. Circle utilities currently available at the site: electricity, natural gas, water, refuse service, telephone, sanitary sewer, septic system, other: None. - b. Describe the utilities that are proposed for the project, the utility providing the service, and the general construction activities on the site or in the immediate vicinity which might be needed. During construction. arrangements will be made for temporary telephone, water, sanitation, electrical power and related utilities. Upon completion of the project, water for the operation and maintenance facility (restrooms and sinks) is expected to be provided from wells, a sanitary septic system will be installed, electrical power will be available from the utility grid interconnection and the power the project generates, and telephone service will be installed. #### C. SIGNATURE The above answers are true and complete to the best of my knowledge. I understand that the lead agency is relying on them to make its decision. Washington Winds Inc. Signature: Rick S. Koebbe, President Date Submitted: April 18, 2001 Attached Exhibits: A - Project Location Map B - Preliminary Site Plan C - NEG Micon Wind Turbine Met Tower Data Exhibit A Project Location Map Maiden Wind Project Beinton County, Washington map source DeLorme 1:150,000 Washington Winds Inc. # **Exhibit B** Exhibit C Multi-power 52 NEGMICON® Powerful Simplicity Operational parameters Nominal output 900 kW Power regulation Stall Nominal wind speed 35.8 mph 16 m/s Cut-in 7.8 mph 3.5 m/s **Cut-out** 55.9 mph 25 m/s Rotor Rotor diameter 171 ft 52.2 m Rotor swept area 23,035 sq. ft 2,140 m² Number of blades Rotor revolutions 22/15 rpm Rotor placing Upwind rotor Brake system Blade tip air brake Hydraulic, fail-safe Disc brake 1 pcs. hydraulic, fail-safe Drive train Gear type Planetary - parallel axle 1:81.0 (1:67.5 on 50 Hz model) . Main shaft Forged shaft and flange Main bearing Spherical roller bearing Cooling Heat exchanger with pump Generator Type Asynchronous, 4-6 pole Nominal voltage 600 V (690 V on 50 Hz model) Nominal frequence 60 Hz (50 Hz model also available) Name plate rating 900/200 kW Cooling Liquid-cooled with pump Yaw system Type Sliding bearing Drive mechanism 3 electrical planetary gears Tower Type Conical, steel, painted **Hub** height In accordance with approvals Controller Type Computer controlling Cut-in system Soft by thyristors Phase compensation Generator no load Remote control By modem RPM sensors Temperature sensors Vibration sensor Meteorology Hydraulic systems Rotor, generator, yaw system Gear, generator, controller, ambient Nacelle, rotor Anemometer, wind vanes Pressure transducers Lightning protection According to standard Blades Nacelle IEC 1024 class 1 Receptor in the blade tips Air rod #### Power curve DANAK Please note that the power curve has been noted at standard atmospheric density according to DIN ISO 2533. Please note that the rotor and the hub heights have been approved for specific markets and wind classes - please call for further information. NEG Micon AIS reserves the right to change specifications and to use components of alternative manufacture without prior notice. Alternative components will be of the same high quality and standard as in this survey | Main Data | | | | |--------------------------|------------|----------------|--| | Nominal Power | 900 | kW | | | Rotor diameter | 52 | m | | | Swept area | 2140 | m ² | | | Hub height | 44 (49) 55 | m | | | Rotational speed approx. | 22.4/14.9 | rpm | | | TIC 029'006 GB NM 900'52 - 60 Hz Main Specification.doc | Page 2 of 9 | |---|-------------| | R&D-TIC, 09.06.00, JEL/JLA | | | Date: 9/6-00 Signature: | | # AMENDMENT TO SEPA ENVIRONMENTAL CHECKLIST ("EA") Washington Winds Inc. ("WWI") filed revised Conditional Use / Special Permit ("CUP") Application number CUP 01-11/EA 01-28 dated 18 April 2001 for the Maiden Wind Project ("Project"). The following paragraphs and exhibits from the SEPA Environmental Checklist attached to the CUP application are revised as of 12 June 2001 to reflect the current definition of the Project and to be consistent with Bonneville Power Administration's ("BPA") Notice of Intent to Prepare an Environmental Impact Statement ("NOI") published in the Federal Register 12 June 2001. Replace the same numbered paragraphs and exhibits from the 18 April 2001 CUP 01-11/EA 01-28 application with the following revised paragraphs and exhibits. - A.7. Do you have any
plans for future additions, expansion, or further activity related to or connected with this proposal? The Maiden Wind Project is currently expected to generate approximately 150 MW of electrical power, with a planned future expansion up to approximately 494 MW. The exact output of the project, and the necessary equipment/facilities associated with the size of the project, may vary somewhat as the project is further defined. The EIS being prepared for the Maiden Wind Project will also cover the expansion site areas. Future expansion beyond 494 MW (approximately up to 549 wind turbines) is not anticipated. - A.11. Give brief, complete description of your proposal, including the proposed uses and the size of the project and site. There are several questions later in this checklist that ask you to describe certain aspects of your proposal. You do not need to repeat those answers on this page. (Lead agencies may modify this form to include additional specific information on project description.) We will install approximately 167 to 549 NEG Micon NM900/52 wind turbines and associated equipment and facilities to generate approximately 150 to 494 MW of electrical power (or an equivalent wind turbine and capacity, depending on final commercial evaluations, i.e., if we select a larger turbine size, less turbines would be installed to sum the same outputs). The wind turbines are rated for 900 kW each and stand 75 meters/246 feet tall at their highest point (a 52 meter rotor atop a 49 meter tower); however, we are considering turbine sizes up to 2,000 kW which stand approximately 380 feet tall. Major equipment and facilities that will also be installed include: one or more permanent met towers, step-up transformers at each wind turbine, underground and overhead medium voltage distribution and communications lines, one or more 230 kV and/or 500 kV substations and BPA transmission line interconnection equipment, one or more operation and maintenance facilities, and requisite access roads. The major features of the project will be located approximately as shown on the attached Exhibit B, Preliminary Site Plan. In addition, find attached Exhibit C for information about the proposed NEG Micon wind turbines. A.12. Location of the proposal. Give sufficient information for a person to understand the precise location of your proposed project, including a street address, if any, and section, township, and range, if known. If a proposal would occur over a range of area, provide the range or boundaries of the site(s). Provide a legal description, site plan, vicinity map, and topographic map, if reasonably available. While you should submit any plans required by the agency, you are not required to duplicate maps or detailed plans submitted with any permit applications related to this checklist. The project site is located primarily in Benton County, Washington, approximately 15 miles north of Prosser, and, to a lesser extent, in Yakima County, Washington, approximately 10 miles northeast of Sunnyside. The proposed site is located on the southwestern slopes of the Rattlesnake Hills. which includes: portions of Sections 7, 8, 9, 10 14, 15, 16, 17, 18, 22, 23, 24, 25, 26, 35, 36, T11N, R24E, Benton County; portions of Sections 28, 30, 31, 33, T11N, R25E, Benton County; and portions of Sections 3, 10, 11, 12, 13, T11N, R23E, Yakima County; State of Washington, Department of Natural Resources public lands include portions of Sections 16 and 36, T11N, R24, Benton County; road access involves portions of Sections 14, 19, 20, 29, 30, T11N, R24E, Benton County and portions of Sections 23, 24, 25, 26, 35, 36, T11N, R23E, Yakima County. None of the Project would be located on land owned by the United States. The property location, boundaries and approximate locations for the installed wind turbines and major facilities are shown respectively on the attached Exhibit A, Project Location Map, and Exhibit B, Preliminary Site Plan. #### **B.10.** Aesthetics a. What is the tallest height of any proposed structure(s) not including antennas; what is the principal exterior building material(s) proposed? The 900 kW wind turbines will be the tallest structures at approximately 246 feet; however, we are considering turbine sizes up to 2,000 kW which stand approximately 380 feet tall. Their exteriors are primarily painted steel and fiberglass, typically painted white or off-white. Any met towers will be approximately 164 feet tall and constructed of 6 inch diameter tubular towers made of galvanized steel. The operation and maintenance facility has not yet been designed, so height and building material information will not be available until later. Revised Exhibits, attached: - A Project Location Map, dated 12 June 2001 - B Preliminary Site Plan, West and East, dated 25 May 2001 July 18, 2001 Randy Krichbaum Eagle Cap Consulting Inc 4130 SW 117th #148 Beaverton OR 97005 SUBJECT: Pacific Winds Inc – Maiden Wind Power Project, Yakima & Benton Counties (T11N R23E S12,13; T11N R24E S07-10,16-18) We've searched the Natural Heritage Information System for information on rare plant species, select rare animal species, and high quality ecosystems in the vicinity of your project. Currently we have no information on significant natural features in your project area. However, we do have information on three high quality ecosystems (Wyoming big sagebrush / bluebunch wheatgrass, threetip sagebrush / Idaho fescue, and threetip sagebrush / bluebunch wheatgrass) and a Review:Group 1 status plant species (Astragalus conjunctus var. rickardii, Idaho milk-vetch) occurring on the Hanford Site just east of your project area. You must contact the officials on the Hanford Site for permission to visit the sites. The information provided by the Washington Natural Heritage Program is based solely on existing information in the database. There may be significant natural features in your study area of which we are not aware. These data are being provided to you for informational and planning purposes only - the Natural Heritage Program has no regulatory authority. The Washington Natural Heritage Program is responsible for information on the state's rare plants as well as high quality ecosystems. We have begun to add to our database information on selected groups of animals of conservation concern, such as freshwater mussels, butterflies and bats. However, to ensure that you receive information on all animal species of concern, please contact Priority Habitats and Species, Washington Department of Fish and Wildlife, 600 Capitol Way N, Olympia, WA 98501-1091, or by phone (360) 902-2543. I can be reached at (360) 902-1667 if you have any questions. Sincerely, Sandy Swope Moody, Environmental Coordinator Washington Natural Heritage Program Sandy Swipe Moody PO Box 47014 Olympia WA 98504-7014 # United States Department of the Interior #### FISH AND WILDLIFE SERVICE Ecological Services P. O. Box 848 Ephrata, Washington 98823 Phone: 509-754-8575 June 18, 2001 Randall Krichbaum Eagle Cap Consulting, Inc. 4130 SW 117th #148 Beaverton, Oregon 97005 RE: Species List Request: Benton and Yakima Counties FWS Reference: 01-SP-E0351 #### Dear Mr. Krichbaum: This responds to your May 18, 2001, request for a list of threatened and endangered species that may occur in the vicinity of the proposed installation of 167 wind turbines south of the Hanford Site in Benton and Yakima Counties, Washington. Please use the above reference number for all future correspondence regarding this project. We have reviewed the information you provided. Our records indicate that the following listed and candidate species may occur in the vicinity of the project and could potentially be affected by it: #### **Listed Species** Threatened Ute ladies'-tresses (Spiranthes diluvialis) #### **Candidate Species** Western sage grouse (Centrocercus urophasianus) Umtanum wild buckwheat (Eriogonum codium) Mardon skipper (butterfly)(Polites mardon) If there is federal agency involvement in this project (funding, authorization, or other action), the involved federal agency must meet its responsibilities under section 7 of the Endangered Species Act of 1973, as amended (Act), as outlined in Enclosure A. Enclosure A includes a discussion of the contents of a Biological Assessment (BA), which provides an analysis of the impacts of the project on listed and proposed species, and designated and proposed critical habitat. Preparation of a BA is required for all major construction projects. Even if a BA is not prepared, potential project effects on listed and proposed species should be addressed in the environmental review for this project. Federal agencies may designate, in writing, a non-federal representative to prepare a BA. However, the involved federal agency retains responsibility for the BA, its adequacy, and ultimate compliance with section 7 of the Act. Preparation of a BA would be prudent when listed or proposed species, or designated or proposed critical habitat, occur within the project area. If the BA determines that a listed species is likely to be affected by the project, the involved federal agency should request section 7 consultation with the U. S. Fish and Wildlife Service (Service). If a proposed species is likely to be jeopardized by the project, regulations require conferencing between the involved federal agency and the Service. If the BA concludes that the project will have no effect on any listed or proposed species, we would appreciate receiving a copy for our information. Candidate species receive no protection under the Act, but are included for your use during planning of the project. Candidate species could be formally proposed and listed during project planning, thereby falling within the scope of section 7 of the Act. Protection provided to these species now may preclude possible listing in the future. If evaluation of the subject project indicates that it is likely to adversely impact a candidate species, we
encourage you to modify the project to minimize/avoid these impacts. If there is no federal agency involvement in your project, and you determine that it may negatively impact a listed or proposed species, you may contact us regarding the potential need for permitting your actions under section 10 of the Act. Several species of anadromous fishes that have been listed by the National Marine Fisheries Service (NMFS) may occur in the project area. Please contact NMFS in Seattle, Washington, at (206) 526-6150, in Portland, Oregon, at (503) 231-2319, or in Boise, Idaho, at (208) 378-5696 to request a list of these species. If you would like information concerning state listed species or species of concern, you may contact the Washington Department of Fish and Wildlife, at (360) 902-2543, for fish and wildlife species; or the Washington Department of Natural Resources, at (360) 902-1667, for plant species. This letter fulfills the requirements of the Service under section 7 of the Act. If the project plans change significantly, or if the project is delayed more than 90 days, you should request an update to this response. Thank you for your efforts to protect our nation's species and their habitats. If you have any questions concerning the above information, please contact Gregg Kurz at (509) 754-8580. Sincerely, Supervisor Med D. Miller # Responsibility of Federal Agencies under Section 7 of the Endangered Species Act ## Section 7(a) - Consultation/Conferencing Requires: 1) Federal agencies to utilize their authorities to carry out programs to conserve endangered and threatened species; - 2) Consultation with the U.S. Fish and Wildlife Service (Service) when a federal action may affect a listed species to ensure that any action authorized, funded, or carried out by a federal agency will not jeopardize the continued existence of listed species, or result in destruction or adverse modification of critical habitat. The process is initiated by the federal agency after determining that the action may affect a listed species; and - 3) Conferencing with the Service when a federal action may jeopardize the continued existence of a proposed species, or result in destruction or adverse modification of proposed critical habitat. ### Section 7(c) - Biological Assessment for Major Construction Activities Requires federal agencies or their designees to prepare a Biological Assessment (BA) for major construction activities¹. The BA analyzes the effects of the action, including indirect effects and effects of interrelated or interdependent activities, on listed and proposed species, and designated and proposed critical habitat. The process begins with a request to the Service for a species list. If the BA is not initiated within 90 days of receipt of the species list, the accuracy of the list should be verified with the Service. The BA should be completed within 180 days after its initiation (or within such a time period as is mutually agreeable between the Service and the involved federal agency). We recommend the following for inclusion in a BA: an onsite inspection of the area to be affected by the proposal, which may include a detailed survey of the area to determine if listed or proposed species are present; a review of pertinent literature and scientific data to determine the species' distribution, habitat needs, and other biological requirements; interviews with experts, including those within the Service, state conservation departments, universities, and others who may have data not yet published in scientific literature; an analysis of the effects of the proposal on the species in terms of individuals and populations, including consideration of cumulative effects of the proposal on the species and its habitat; and an analysis of alternative actions considered. The BA should document the results of the impacts analysis, including a discussion of study methods used, any problems encountered, and other relevant information. The BA should conclude whether or not any listed species may be affected, proposed species may be jeopardized, or critical habitat may be adversely modified by the project. Upon completion, the BA should be forwarded to the Service. Major concerns that should be addressed in a BA for listed and proposed animal species include: - 1. Level of use of the project area by the species, and amount or location of critical habitat; - 2. Effect(s) of the project on the species' primary feeding, breeding, and sheltering areas; - 3. Impacts from project construction and implementation (e.g., increased noise levels, increased human activity and/or access, loss or degradation of habitat) that may result in disturbance to the species and/or their avoidance of the project area or critical habitat. Major concerns that should be addressed in a BA for listed or proposed plant species include: - 1. Distribution of the taxon in the project area; - 2. Disturbance (e.g., trampling, collecting) of individual plants or loss of habitat; and - 3. Changes in hydrology where the taxon is found. ### Section 7(d) - Irreversible or Irretrievable Commitment of Resources Requires that, after initiation or reinitiation of consultation required under section 7(a)(2), the Federal agency and any applicant shall make no irreversible or irretrievable commitment of resources with respect to the action which has the effect of foreclosing the formulation or implementation of any reasonable and prudent alternatives which would avoid violating section 7(a)(2). This prohibition is in force during the consultation process and continues until the requirements of section 7(a)(2) are satisfied. ¹ A major construction activity is a construction project, or other undertaking having similar physical impacts, which is a major action significantly affecting the quality of the human environment as referred to in the National Environmental Policy Act [42 U.S.C. 4332 (2)(c)].