You are here

Used Fuel Disposition R&D Documents

June 30, 2012
Managing Aging Effects on Dry Cask Storage Systems for Extended Long Term Storage and Transportation of Used Fuel Rev0

The report is intended to help assess and establish the technical basis for extended long‐term storage and transportation of used nuclear fuel.  It provides: 1) an overview of the ISFSI license renewal process based on 10 CFR 72 and the guidance provided in NUREG‐1927; 2) definitions and terms for structures and components in DCSSs, materials, environments, aging effects, and aging mechanisms; 3) TLAAs and AMPs, respectively, that have been developed for managing aging effects on the SSCs important to safety in the dry cask storage system designs; and 4) AMPs and TLAAs for the SSCs that ar

June 20, 2012
Radionuclide Interaction and Transport in Representative Geologic Media

The report presents information related to the development of a fundamental understanding of disposal-system performance in a range of environments for potential wastes that could arise from future nuclear fuel cycle alternatives.  It addresses selected aspects of the development of computational modeling capability for the performance of storage and disposal options.  Topics include radionuclide interaction with geomedia, colloid-facilitated radionuclide transport (Pu colloids), interaction between iodide (accumulate in the interlayer regions of clay minerals) and a suite of clay minerals

June 15, 2012
Evaluation of Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization

The assessment of generic EBS concepts and design optimization to harbor various disposal configurations and waste types needs advanced approaches and methods to analyze barrier performance. The report addresses: 1) Overview of the importance of THMC processes to barrier performance, and international collaborations; 2) THMC processes in clay barriers; 3) experimental studies of clay stability and clay-metal interactions at high temperatures and pressures; 4) thermodynamic modeling and database development; 5) Molecular Dynamics (MD) study of clay hydration at ambient and elevated temperatures; and 6) coupled thermal-mechanical (TM) and thermo-hydrological (TH) modeling in salt.

April 30, 2012
Office of UNF Disposition International Program - Strategic Plan

The Department of Energy’s Office of Nuclear Energy, Used Nuclear Fuel Disposition Research and Development Office (UFD), performs the critical mission of addressing the need for an integrated strategy that combines safe storage of spent nuclear fuel with expeditious progress toward siting and licensing a disposal facility or facilities. The UFD International Program plays a key role in this effort.

March 30, 2012
Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities

Irradiation is known to have a significant impact on the properties and performance of Zircaloy cladding and structural materials (material degradation processes, e.g., effects of hydriding).  This UFD study examines the behavior and performance of unirradiated cladding and actual irradiated cladding through testing and simulation.  Three capsules containing hydrogen-charged Zircaloy-4 cladding material have been placed in the High Flux Isotope Reactor (HFIR). Irradiation of the capsules was conducted for post-irradiation examination (PIE) metallography.
 

January 31, 2012
Gap Analysis to Support Extended Storage of Used Nuclear Fuel

The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles.

December 31, 2011
Used Fuel Disposition Campaign Phase I Ring Compression Testing of High Burnup Cladding

The purpose of ring compression testing is to generate data to support the development of the technical basis for extended storage and transportation of high-burnup fuel. This report highlights the results of completed Phase I testing of high-burnup M5® cladding and the revised three-year test plan. The goal of the ring compression testing is to identify process conditions that would minimize radial-hydride formation and the corresponding DBTT of high-burnup fuel cladding and to generate data and models to support the development of the technical basis for extended storage and transportation of high-burnup fuel.

August 30, 2011
Generic Disposal System Modeling, Fiscal Year 2011 Progress Report

The UFD Campaign is developing generic disposal system models (GDSM) of different disposal
environments and waste form options. Currently, the GDSM team is investigating four main disposal environment options: mined repositories in three geologic media (salt, clay, and granite) and the deep borehole concept in crystalline rock (DOE 2010d). Further developed the individual generic disposal system (GDS) models for salt, granite, clay, and deep borehole disposal environments.

July 31, 2011
Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analyses

The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles.

July 15, 2011
Natural System Evaluation and Tool Development FY11 Progress Report

The report describes selected aspects of progress for four major tasks: (1) development of a detailed R&D plan for natural system evaluation and tool development; (2) in-depth analsis of key attributes and new concepts identified in the R&D plan; (3) preliminary demonstration of new modeling and experimental tools; and (4) conceptual design of a databse for natural system evaluation.

June 29, 2011
Low Level Waste Disposition – Quantity and Inventory

This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the volume of low level waste resulting from a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance.

June 15, 2011
Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation

The engineered barrier system (EBS) plays a key role in the long-term isolation of nuclear waste in geological repository environments. This report focuses on the progress made in the evaluation of EBS design concepts, assessment of clay phase stability at repository-relevant conditions, thermodynamic database development for cement and clay phases, and THMC coupled phenomena along with the development of tools and methods to examine these processes; it also documents the advancements of the Disposal System Evaluation Framework (DSEF) for the development of repository design concepts and potential variants according to waste form and disposal environment characteristics.

March 31, 2011
Used Fuel Disposition Campaign Disposal Research and Development Roadmap

The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is

March 30, 2011
Basis for Identification of Disposal Options for R and D for Spent Nuclear Fuel and High-Level Waste

The Used Fuel Disposition campaign (UFD) is selecting a set of geologic media for further study including variations on the design of the repository, the engineered barrier, and the waste. Salt, clay/shale, and granitic rocks are examined; granitic rocks are also the primary basement rock to consider for deep borehole disposal. UFD is developing generic system analysis capability and general experimental data related to mined geologic disposal in the three media (salt, clay/shale, and granitic rocks), and the use of deep boreholes in granitic rocks.

December 30, 2010
Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan

The primary objective of this report is to determine whether the existing Fuel Cycle Technologies (FCT) Quality Assurance Program Document (QAPD) is sufficient for work to be performed in the Used Fuel Disposition Campaign (UFDC), and where the existing QAPD is not sufficient, supply recommendations for changes to the QAPD to accommodate the UFDC. The FCT QAPD provides a sound and useable foundation for the implementation of QA for UFDC R&D activities, including the application of QA in a graded approach.

November 29, 2010
Used Fuel Disposition Campaign International Activities Implementation Plan

The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S.