You are here

Offshore Wind Research and Development

The U.S. Department of Energy's Wind Program funds research nationwide to develop and deploy offshore wind technologies that can capture wind resources off the coasts of the United States and convert that wind into electricity. The program is leading a portfolio of market analysis, technology development, and demonstration projects that will overcome key barriers to offshore wind development, including the relatively high cost of energy, the mitigation of environmental impacts, the technical challenges of project installation, and grid interconnection.

Offshore wind resources are abundant, stronger, and blow more consistently than land-based wind resources. Data on the technical resource potential suggest more than 4,000,000 megawatts (MW) of capacity could be accessed in state and federal waters along the coasts of the United States and the Great Lakes. While not all of this resource potential will realistically be developed, the magnitude (approximately four times the combined generating capacity of all U.S. electric power plants) represents a substantial opportunity to generate electricity near coastal populations.

The Wind Program is working with the Department of the Interior's Bureau of Ocean Energy Management to advance a national strategy for offshore wind research and development. As part of that strategy, the Department of Energy has allocated over $227 million since 2011 for offshore wind research, development, and demonstration projects. This funding is focused in three areas: technology development, market acceleration, and advanced technology demonstration.

Technology Development

Offshore wind turbines are frequently located far from shore, more than 60 percent, are in areas where the water is so deep that conventional foundations -- large steel piles or lattice structures fixed to the seabed -- are not practical. With greater potential for corrosion from exposure to seawater, offshore wind turbines must be designed more robustly (i.e., requiring less maintenance) than land-based turbines due to the high costs of transporting maintenance crews and replacement components to and from offshore wind plant sites.

However, several U.S. companies are developing several innovative floating offshore wind platforms for use in deep waters: spar-buoy, tension leg platform, and semi-submersible. The program's technology development projects are intended to produce innovative components, controls, and integrated system designs, as well as improved modeling and analysis tools, which will improve the performance and reliability and reduce the costs of offshore wind systems.

Market Acceleration

The program invests in projects to mitigate market barriers that limit the deployment of offshore wind in the nation's coastal regions. These barriers include those related to integrating offshore wind energy into existing grid infrastructure, limiting the extent to which offshore wind turbines interact with avian and aquatic life in the offshore environment, and ensuring that the construction of wind power is feasible through the study of our nation's available ports, vessels, and supply chain infrastructure.

Advanced Technology Demonstration

The Wind Program has funded advanced technology demonstration projects with the aim of deploying demonstration-scale offshore wind projects in U.S. waters by 2017. After an initial selection in 2012 of seven award recipients from diverse geographic regions, the DOE Wind Program selected three projects in 2014 to receive additional funding for deployment activities. These projects will establish key pathways and critical steps for future offshore wind developers, thereby reducing the costs of planning, constructing, and operating offshore wind plants in the United States.