

Wide Bandgap Power Electronics

Madhu Chinthavali Oak Ridge National Laboratory May 21, 2009

Project ID: apep_04_chinthavali

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Barriers

- Project start Oct. 2001
- Project end Ongoing

Budget

- Total project funding
 - DOE 100%
- FY08 \$432K
- FY09 \$367K
- FY10 \$486K

- Barriers
 - Acquiring new prototype devices.
 - Building new gate drivers and test setups for power switches with fast switching times
- Vehicle Technology Program Targets
 - DOE 2020 targets: 105°C
 - DOE 2020 target: 13.4 kW/l

Partners

- University of Tennessee, Knoxville
- Industrial suppliers of SiC and GaN devices

Objectives

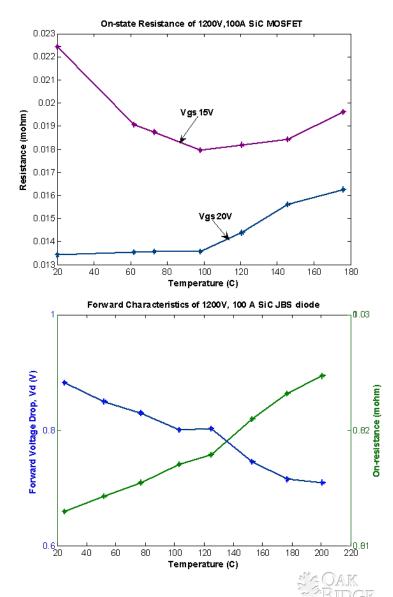
- To assess the system level impact of wide bandgap (WBG) semiconductor devices on hybrid electric vehicles and to keep up to date with state-of-the-art WBG power devices.
- To study conceptual changes to inverters/ converters and packaging issues to take advantage of WBG device attributes.
 - The objective of the study is to enable cooling with air thereby eliminating the existing liquid cooling system.
 - Increase the power density and decrease the volume and weight for electric-base vehicle traction-drive inverters.

Technical Approach

• Evaluate new WBG power devices:

Acquire, test, and characterize new WBG power devices.

- Static characteristic tests
- Dynamic characteristic tests
- Behavioral modeling
- Perform a feasibility study on an air-cooled integrated traction drive inverter design:
 - Conduct thermal simulations on inverter designs to predict performance.
 - Perform design iterations and optimization of the packaging to increase heat transfer and minimize parasitic inductance.
 - Develop an optimal design geometry to serve as the basis for future work.


Technical Accomplishments

- Tested and characterized SiC MOSFET and SiC diode in a SiC module.
- At 15 V of gate voltage the on-resistance initially decreased from 0.0194 Ω at 20 C to 0.0161 Ω at 100 C and then started to increase up to 0.0183 Ω at175 C. This behavior was noticed in the MOSFETs tested earlier at ORNL in 2005.
- However at 20 V of gate voltage the on-resistance increased from 0.0134 Ω at 20 C to 0.0162 Ω at 175C. There is a significant change in the forward characteristics of the device at different gate voltages. This will affect the paralleling of the devices for high power modules.
- The static characteristics of a 1200 V 100 A SiC Schottky diode in the SiC MOSFET module were obtained across a wide temperature range (25C-200C). The forward voltage drop at 100 A current increased from 2.1 V at 25C to 2.95 V at 200C.

Temp	Eon	Eoff	Etot
25C	1.0544 mJ	1.0304 mJ	2.0848 mJ
100C	1.1138 mJ	1.0344 mJ	2.1482 mJ
150C	1.1318 mJ	1.0694 mJ	2.2012 mJ

SiC MOSFET switching losses at 300 V, 50 A

Technical Accomplishments

- Three new air-cooled traction drive inverter designs were completed.
 - Models were generated using COMSOL FEA software.
 - A preliminary steady state conduction analysis was performed and a single design showing the potential to meet the VTP 2015 targets was selected for optimization.
 - Air flow modeling is underway to ascertain thermal performance.
 - Modifications on the design are in progress to optimize the parasitic inductances.
- New automated test facility for device characterization is being built.
 - Will enable device characterization at temperatures up to 600°C.
 - Labview software will be used for automated data acquisition system and control.
 - The facility will have the capability to test diodes and switches up to 1,200 V, 100 A.
 - Test hardware and interface circuitry for static characteristic testing has been completed.
 - The dynamic characterization test hardware and interface circuitry is being fabricated.

Future Work

- Continue to acquire, test, and characterize new devices.
- Complete the Automated Device Test Facility and test for functionality.
- Complete FEA analysis on the air-cooled inverter design to finalize design requirements for a complete inverter.

Summary

- Tested and characterized MOSFET and diode in a 1200 V, 100 A half bridge SiC module.
- Two new SiC JFET modules, one normally-on high temperature package and one normally-off have been acquired for future testing.
- Three different designs of air-cooled inverter have been generated using COMSOL for analysis.
- Steady-state conduction analysis on air-cooled inverter designs has been completed. The designs show that it is feasible to achieve air cooling with WBG devices and meet the VTP 2015 targets.
- The downselected design has been optimized for reductions in parasitic inductance.
- Automated Device Test Facility:
 - Test and interface hardware for static characteristic of devices have been completed.
 - The dynamic characterization test and interface hardware is under development.

