## Innovative SCR Materials and Systems for Low Temperature Aftertreatment

### Craig DiMaggio (co-PI), Kiran Premchand, Michael Zammit FCA US LLC

Mirek Derewinski, Feng Gao, Chuck Peden, Ken Rappe, János Szanyi, Yilin Wang, Yong Wang (co-PI) Institute for Integrated Catalysis Pacific Northwest National Laboratory Program Managers: Jerry Gibbs and Gurpreet Singh

The work was funded by the U.S. Department of Energy (DOE), Vehicle Technologies Office.

## June 09, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information.









# **Project Overview**

## **Timeline**

- Project starting date: 7/1/2015
- Project ending date: 6/30/2018

# Budget

- DOE funding: \$500K/Year for a total of \$1.5M
- FCA US LLC (in-kind):
  \$500K as per CRADA agreement



- 2.3.1.B Lack of cost-effective emission control
- 2.3.1.E Durability of emissions control devices
- Low temperature performances
  Partners
  - Pacific Northwest National Laboratory
  - FCA US LLC



• w/U of Houston





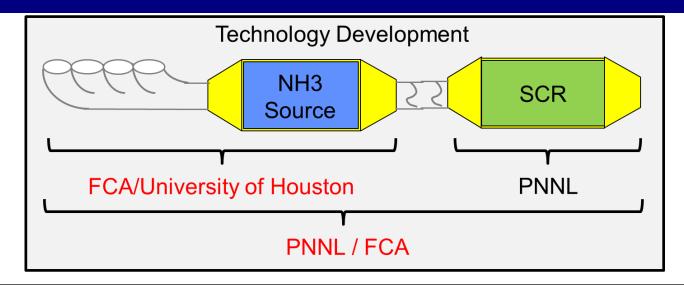


# Relevance

- Address the 150°C Challenge identified from the 2012 USCAR workshop.
- Focus on providing a new enabling SCR catalyst aftertreatment system that will function at very high efficiency to attain the most demanding emissions regulations and thereby facilitate the market introduction of advanced powertrains that will support domestic energy independence and security.
- Strengthen and accelerate this technology transfer of innovative materials and processes from the laboratory environment to vehicle system development at FCA US LLC.






# Milestones

- Milestone 1 (1.1.1): Complete synthesis of small batches of various catalysts and a large batch of the best catalyst (Sept, 2015).
- ✓ Milestone 2 (1.1.2): Complete initial performance tests (Dec., 2015).
- Milestone 3 (1.1.3): Determine optimized composition of the first generation low-temperature SCR catalyst (March, 2016)
- Milestone 4 (1.1.4): Deliver a large batch of first generation SCR catalyst (April, 2016)
- Milestone 5 (1.2.1): Initiate the synthesis of second generation SCR catalyst (Sept., 2016) on track
- Milestone 6 (3.2): Operational status of NH<sub>3</sub> generation incorporated baseline NH<sub>3</sub> generation catalyst into engine dyno exhaust aftertreatment (June, 2016) – on track





# Approach/Strategy



#### **CRADA Partner Project Areas of Responsibility:**

- FCA Primary passive NH<sub>3</sub> generation & system integration, supplemental NOx control
- PNNL Primary low temperature SCR development, supplemental system integration

| Year 1    |                                                      |    |    | Year 2 |    |                        |    | Year 3     |           |            |              |
|-----------|------------------------------------------------------|----|----|--------|----|------------------------|----|------------|-----------|------------|--------------|
| Q1        | Q2                                                   | Q3 | Q4 | Q1     | Q2 | Q3                     | Q4 | Q1         | Q2        | Q3         | Q4           |
| Character | Characterization/optimization of novel SCR materials |    |    |        |    |                        |    |            |           |            |              |
|           | Laboratory aging studies of novel SCR materials      |    |    |        |    |                        |    |            |           |            |              |
|           | NH <sub>3</sub> generation and de                    |    |    |        |    |                        |    |            |           |            |              |
|           |                                                      |    |    |        |    | System component aging |    |            |           |            |              |
|           |                                                      |    |    |        |    |                        |    | Dyno testi | ng SCR NC | x reductio | n strategies |
|           |                                                      |    |    |        |    |                        |    |            |           | SCR c      | ost model    |





# Approach/Strategy, cont'd

Adapt a newly developed SCR material to provide 90% conversion efficiency of NO<sub>x</sub> at near 150°C under conditions consistent with low temperature portions of drive cycles such as the FTP cycle in the US:

- Demonstrate selectivity toward N<sub>2</sub> formation of 90%
- Demonstrate the SCR catalyst, aged under realistic conditions, will continue to provide 90% conversion efficiency at near 150°C
- $\blacktriangleright$  Evaluate the SCR catalyst activity using a matrix of both passive and active NH<sub>3</sub> sources

Demonstrate that a SCR catalyst system will attain Tier III and SULEV30 emissions using an engine or simulated engine FTP cycle:

- Compare the NO<sub>x</sub> reduction efficiency and selectivity toward N<sub>2</sub> formation of the SCR system using both active and passive NH<sub>3</sub> generation strategies
- Determine the fuel penalty associated with each strategy
- Estimate the control/OBD complexity and cost
- Estimate the component and system cost



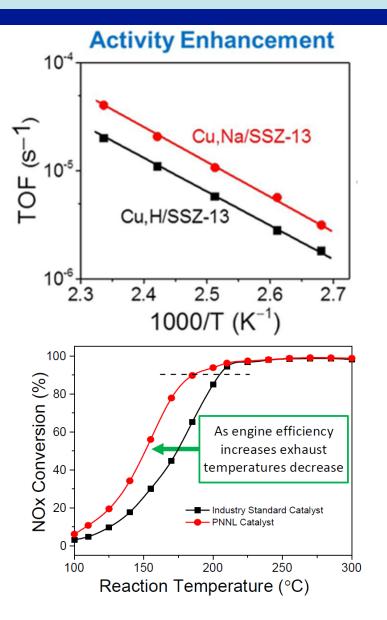


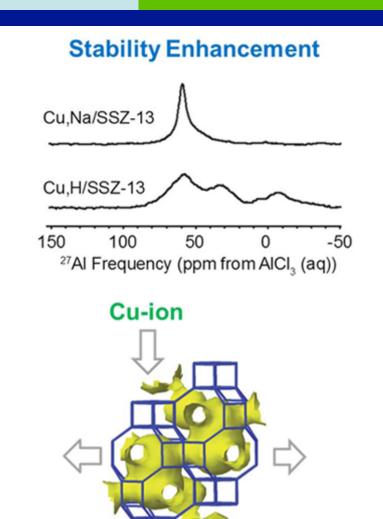
6

# **Technical Accomplishments**

- Demonstrated >90% NO<sub>x</sub> conversion efficiency at 175°C with 1<sup>st</sup> generation catalyst, much improved as compared to the current commercial catalysts.
- Identified research direction for the development of 2<sup>nd</sup> generation catalysts.
- Synthesized a large batch of Cu/SSZ catalyst for the preparation of washcoat and hydrothermal aging testing of core samples.
- Downselected on a possible alternative (to urea) NH<sub>3</sub> generation strategy and identified the operation characteristics of NH<sub>3</sub> generation catalyst.





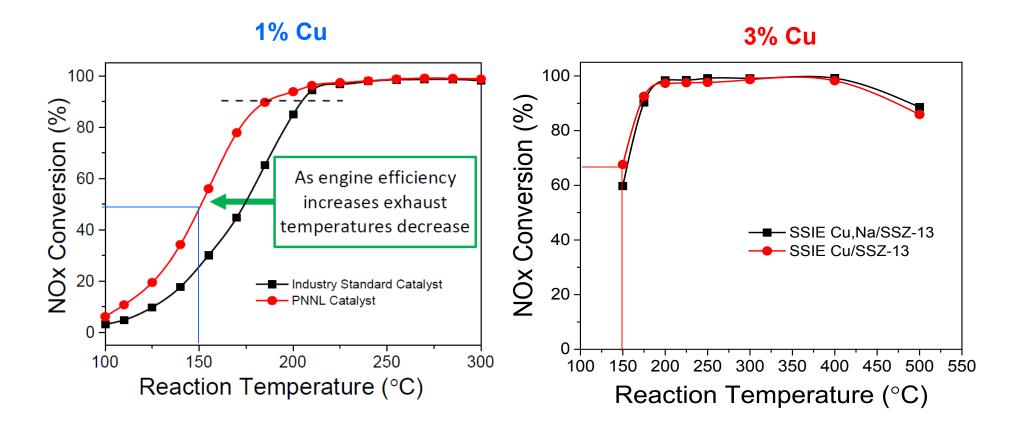


7

**Technical Accomplishments:** 

## **Co-cation Effects at Low Cu Loadings**

#### Vehicle Technologies Office






**Co-cation** 

At Si/AI = 6 and low Cu loading (~1wt%) conditions, the addition of alkali and alkaline earth improves both low-temperature NO<sub>x</sub> conversion and catalyst hydrothermal stability.

## Co-cation Effects at High Cu Loadings

### Vehicle Technologies Office



- High Cu loading (from ~1wt% to ~3wt%) favors NO<sub>x</sub> conversion (from ~50% to ~66%).
- However, at high Cu loading, the presence of a cocation (e.g., Na) sacrifices the optimized Cu dispersion/location.





### Technical Accomplishments: Improvement of SCR Activity by Crystallinity

#### Vehicle Technologies Office

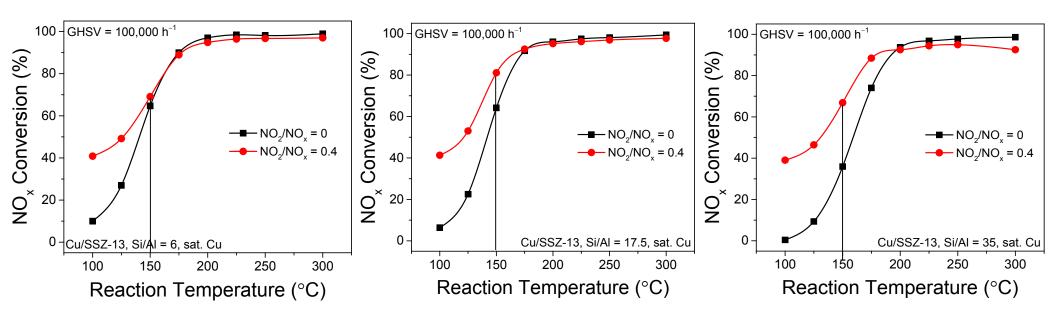


□ Adjusting Si/AI ratio is limited by the hydrothermal stability.

At Si/AI = 12, increase in crystallinity appears to be beneficial for the lowtemperature activity, achieving ~75% NO conversion at 150°C.






## Improvement of SCR Activity by NO<sub>2</sub>

### Vehicle Technologies Office

Si/AI = 6

Si/AI = 17.5

Si/AI = 35



The presence of NO<sub>2</sub> promotes low-temperature NO<sub>x</sub> conversion at high Si/Al ratio due to less poisoning by NH<sub>4</sub>NO<sub>3</sub>.

□ At Si/AI = 17.5 and NO<sub>2</sub>/NO<sub>x</sub> = 0.4, ~80% NO conversion is achieved at 150°C

**D** Requirement of NO<sub>2</sub> certainly will complicate NH<sub>3</sub> generation strategy.





11

Technical Accomplishments: Synthesis of a Large Batch of Cu/SSZ Catalyst (1<sup>st</sup> generation)

Vehicle Technologies Office

#### Large autoclave (0.7L)

(stirring, sampling)



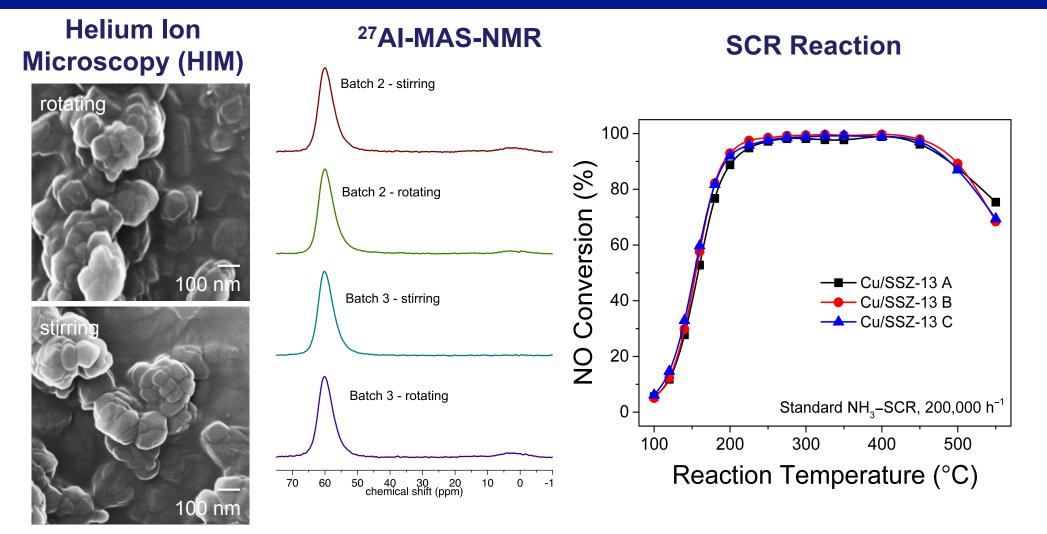
FIAT CHRYSLER AUTOMOBILES

Rotated autoclaves (0.12L)





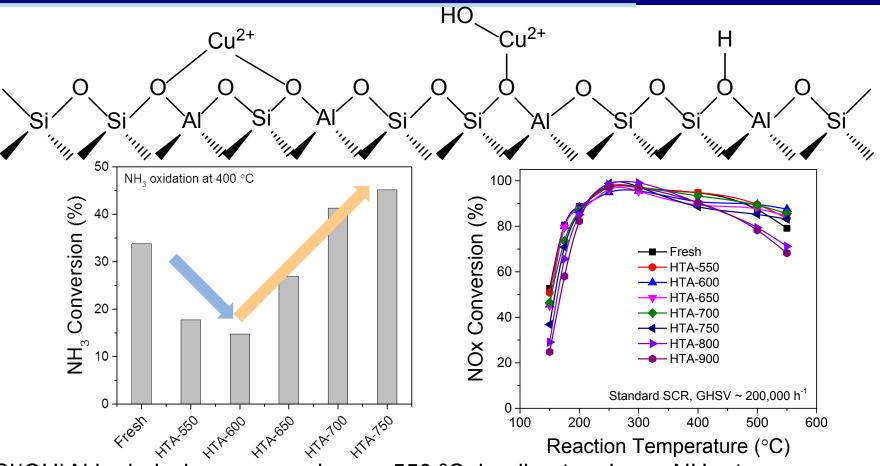
<sup>14</sup> batches needed (~750 g)


Existing capabilities at PNNL were used to synthesize >500g Cu/SSZ catalyst :

- BET Surface Area 540 m<sup>2</sup>/g;
- t-plot micropore volume: 0.267 cm<sup>3</sup>/g;
- Element analysis from ICP: Cu~1.84 wt%.



Technical Accomplishments: Reproducible Cu/SSZ Catalyst (1<sup>st</sup> generation)


Vehicle Technologies Office

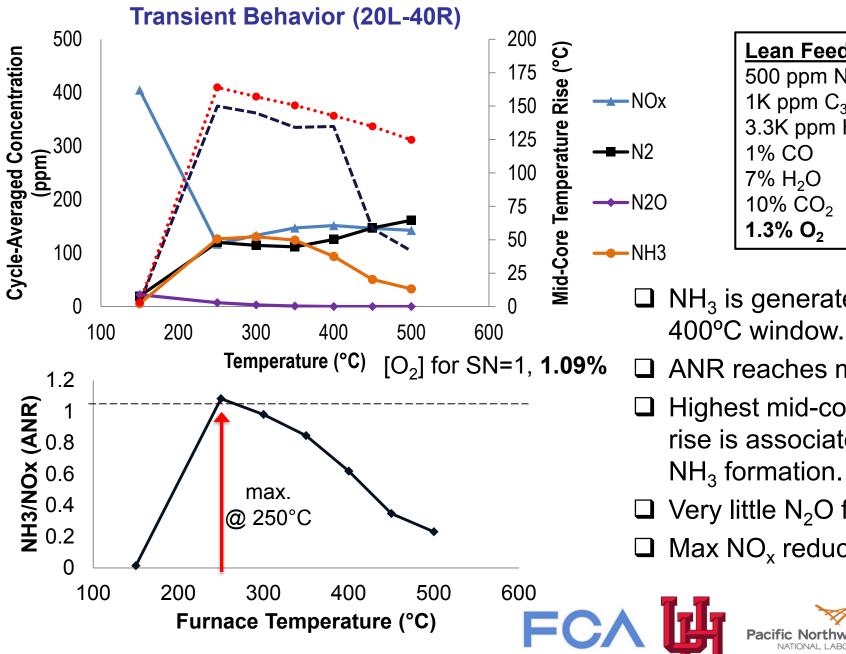


- Characterizations (HIM, N<sub>2</sub> physisorption, XRD, <sup>27</sup>AI-MAS-NMR etc) show similar crystallinity, morphology, phase purity, and structure among different batches with stirring or rotating.
  - There is no difference in measured SCR activity.

### Technical Accomplishments: Hydrothermal Aging of a Large Batch of Cu/SSZ Catalyst (1<sup>st</sup> generation)

#### Vehicle Technologies Office




□ Si(OH)Al hydrolysis occurs as low as 550 °C, leading to a lower  $NH_3$  storage.

- □ At >600°C, migration and agglomeration of Cu(OH) results in the formation of  $CuO_x$ , which is highly active in catalyzing NH<sub>3</sub> oxidation.
- Kinetic studies and characterizations (e.g., EPR) are being conducted to validate the stability of Cu<sup>2+</sup>-2AI.





### **Technical Accomplishments:** NH<sub>3</sub> Generation and NO<sub>x</sub> Reduction

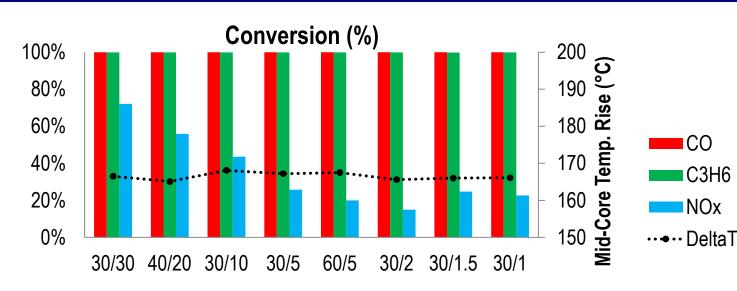


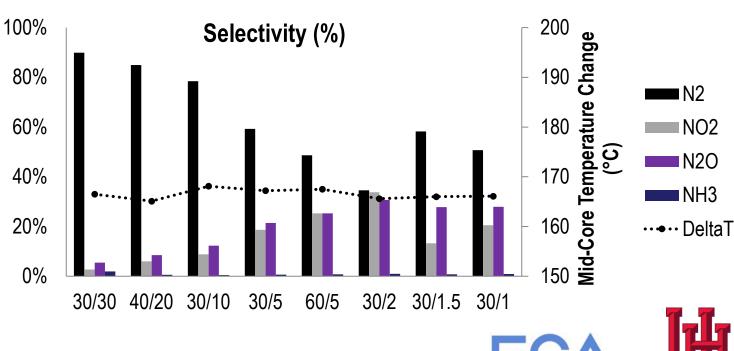
| Lean Feed               | Rich Feed                            |
|-------------------------|--------------------------------------|
| 500 ppm NO              | 500 ppm NO                           |
| 1K ppm C₃H <sub>6</sub> | 1K ppm C <sub>3</sub> H <sub>6</sub> |
| $3.3K \text{ ppm H}_2$  | 3.3K ppm H2                          |
| 1% CO                   | 1% CO                                |
| 7% H <sub>2</sub> O     | 7% H <sub>2</sub> O                  |
| 10% CO <sub>2</sub>     | 10% CO <sub>2</sub>                  |
| 1.3% O <sub>2</sub>     | 1% O <sub>2</sub>                    |

- $NH_3$  is generated in the 250 –
- □ ANR reaches max at 250°C.
- Highest mid-core temperature rise is associated with max
- Very little  $N_2O$  formation.
- Max NO<sub>x</sub> reduction is  $\sim$ 80%.

Proudly Operated by Battelle Since 1965

NTEGRATED CATALYSIS


#### **Technical Accomplishments:** NH<sub>3</sub> Generation and NO<sub>x</sub> Reduction at Various L-R Vehicle Technologies Office Cycles (250°C)


FIAT CHRYSLER AUTOMOBILES

CO

C3H6

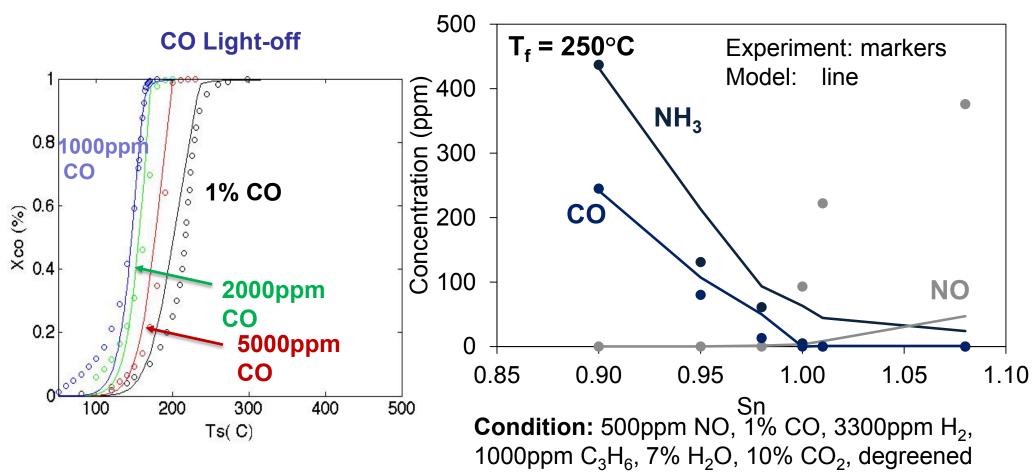
NOx





Low L/R cycles favor  $NH_3$  and  $N_2$  yields.

High L/R cycles produce more  $N_2O$ .


- No NH<sub>3</sub> is produced at high L/R ratios, and fuel economy needs to be considered.
- Tailor catalyst to minimize rich phase to produce  $NH_3$ without significant N<sub>2</sub>O formation.





### Technical Accomplishments: Kinetic and Reactor Model Development -NH<sub>3</sub> Generation Catalyst

Vehicle Technologies Office



- □ High CO concentrations shift light-off to higher temperature.
- Current model cannot capture dynamics at lower Ts for CO light-off, need to incorporate oxygen storage sites.
- Current model cannot capture NOx behavior, must incorporate NOx storage site at Sn > 1







# Collaborations/Interactions

#### PNNI

- Low temperature SCR catalyst development
- Advanced characterizations
- □ FCA US LLC
  - $\blacktriangleright$  Primary passive NH<sub>3</sub> generation
  - Dyno engine control inputs
  - System integration
  - Coordinating U of Houston effort
- □ U of Houston (Epling/Harold)
  - $\succ$  Characterization of NH<sub>3</sub> generation catalysts and mechanistic study of catalyst degradation.
  - $\blacktriangleright$  Kinetic and model development for NH<sub>3</sub> generation catalysts.
  - Conference calls are held typically once every month to discuss the results.
  - Bi-annual face-to-face meetings. The most recent annual face-to-face CRADA Review was held at PNNL (March 23, 2016).







# Planned Future Work

- Development of 2<sup>nd</sup> generation SCR catalysts to meet the conversion efficiency target
- □ Verify sufficient hydrothermal stability of 2<sup>nd</sup> generation SCR catalysts
- **Design**  $NH_3$  generation
- System component aging

| Year 1                                               |                                                 |    |    | Year 2 |    |                        |    | Year 3                                    |    |        |           |
|------------------------------------------------------|-------------------------------------------------|----|----|--------|----|------------------------|----|-------------------------------------------|----|--------|-----------|
| Q1                                                   | Q2                                              | Q3 | Q4 | Q1     | Q2 | Q3                     | Q4 | Q1                                        | Q2 | Q3     | Q4        |
| Characterization/optimization of novel SCR materials |                                                 |    |    |        |    |                        |    |                                           |    |        |           |
|                                                      | Laboratory aging studies of novel SCR materials |    |    |        |    |                        |    |                                           |    |        |           |
|                                                      | $NH_3$ generation and design                    |    |    |        |    |                        |    |                                           |    |        |           |
|                                                      |                                                 |    |    |        |    | System component aging |    |                                           |    |        |           |
|                                                      |                                                 |    |    |        |    |                        |    | Dyno testing SCR NOx reduction strategies |    |        |           |
|                                                      |                                                 |    |    |        |    |                        |    |                                           |    | SCR co | ost model |



#### Vehicle Technologies Office

# Summary

- Key milestones have been met.
- Identified research direction for the development of 2<sup>nd</sup> generation SCR catalysts that will meet target conversion efficiency.
- Synthesized a large batch of 1<sup>st</sup> generation Cu/SSZ catalyst (>500g) which will be used to identify key issues that may exist in the preparation of washcoat and to conduct HTA studies of core samples.
- Downselected on a possible NH<sub>3</sub> generation strategy and screened the conditions of NH<sub>3</sub> generation catalyst and identified areas for improving modeling accuracy.

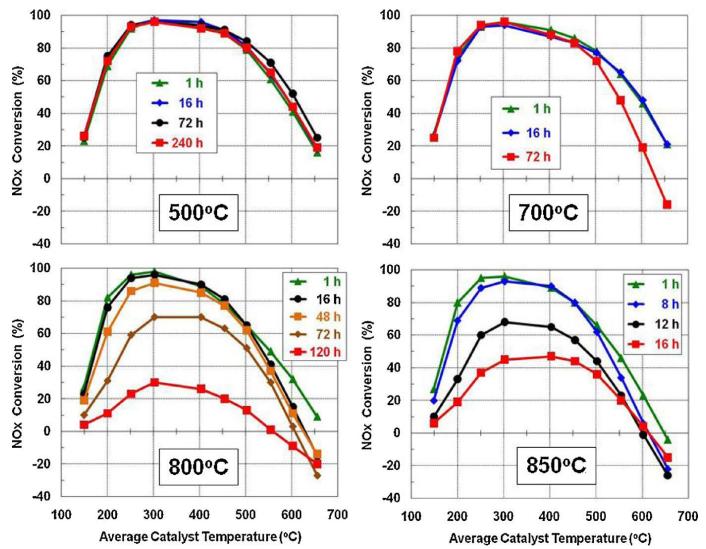




20

# **Technical Back-Up Slides**








Proudly Operated by Battelle Since 1965

## **Current Commercial SCR Catalysts**

#### Vehicle Technologies Office

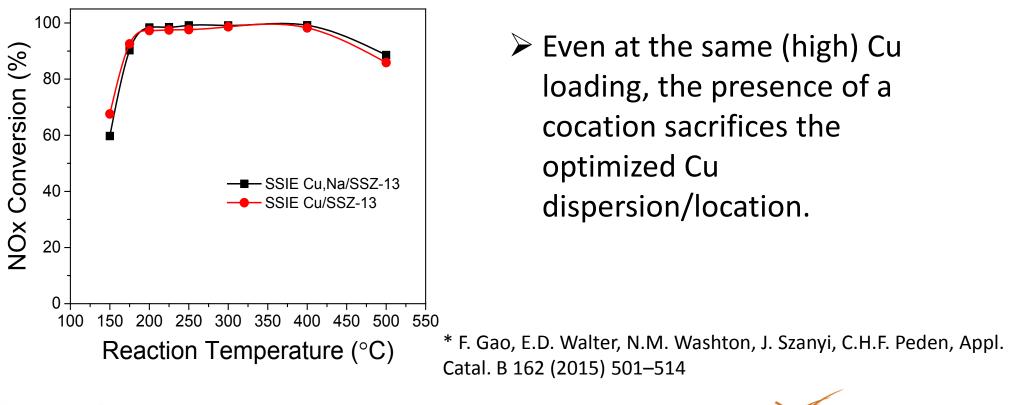


- ➢ BASF Catalysts: Si/Al = 17, Cu content 2.8%.
- GHSV ~ 30,000 h<sup>-1</sup> for washcoated catalysts, corresponding to ~120,000 h<sup>-1</sup> for powder catalysts.

Schmieg, et al., Catalysis Today 184 (2012) 252–261



Pacific Northwest

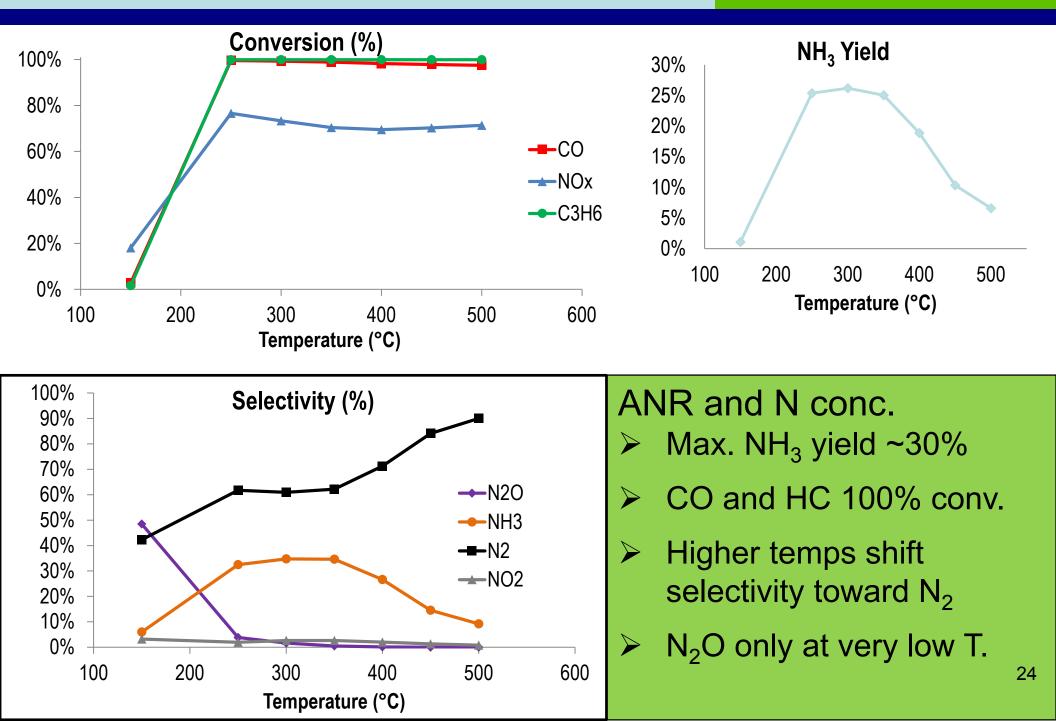

INTEGRATED 22 CATALYSIS

Proudly Operated by Battelle Since 1965

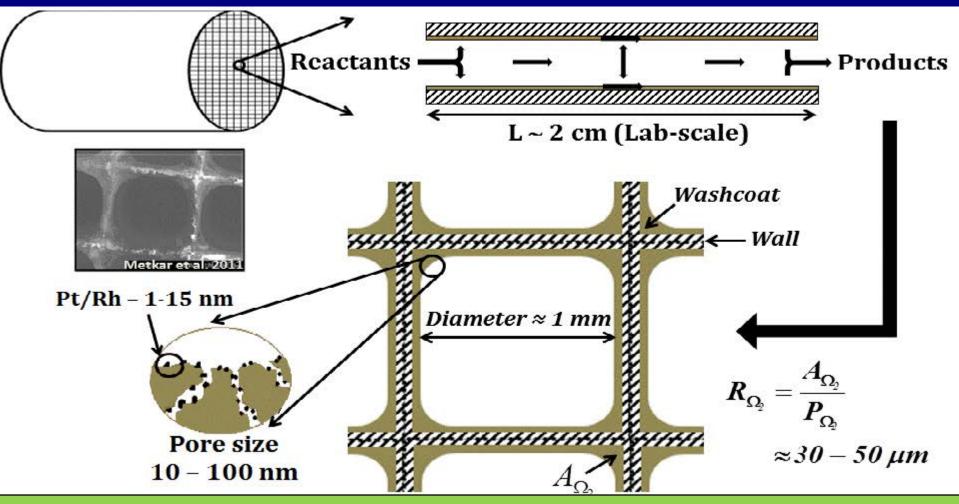
# SSIE with and without Na<sup>+</sup>

Method 3: thoroughly mix Na/SSZ-13 or NH<sub>4</sub>/SSZ-13 powder and CuO powder, calcine in static air at 800 °C for 16 h. (method developed by us for Cu/SAPO-34 synthesis)\*

- 2 g Na/SSZ-13 powder + 0.075 g CuO, 800 °C, 16 h. ~3% Cu and ~1.5% Na in product.
- ➤ 2 g NH<sub>4</sub>/SSZ-13 powder + 0.075 g CuO, 800 °C, 16 h. ~3% Cu in product.







fic Northwest

# Transient Behavior (20L-40R, 150-500°C): Conversion Eff., Selectivity, NH<sub>3</sub> Yield

Vehicle Technologies Office



## Reaction Model: Washcoated Monolith Considerations



Model assumptions:

- Laminar flow in the monolith channel
- Axial diffusion and conduction in the fluid phase is neglected as compared to convection
- Average values for physical properties may be used

## Main Reactions in TWC Model

### **Oxidation Reaction**

 $2CO + O_2 \leftrightarrow 2CO_2$ 

 $2C_3H_6+9O_2\leftrightarrow 6\mathrm{C}O_2+6H_2O$ 

 $2H_2 + O_2 \leftrightarrow 2H_2O$ 

### **NO Reduction Reaction**

 $2CO + 2NO \leftrightarrow 2CO_2 + N_2$ 

 $2C_3H_6 + 18NO \leftrightarrow 6CO_2 + 6H_2O + 9N_2$ 

 $2H_2 + 2NO \leftrightarrow 2H_2O + N_2$ 

### Water-gas and steam reforming

 $CO + H_2O \leftrightarrow CO_2 + H_2$ 

 $C_3H_6+3H_2O\rightarrow 3CO+6H_2$ 

### **Reactions over Ceria**

 $\begin{array}{c} O_2 + 2Ce_2O_3 \rightarrow 4CeO_3\\ 2NO + 2Ce_2O_3 \rightarrow 4CeO_3 + N_2\\ CO + 2CeO_2 \rightarrow Ce_2O_3 + CO_2\\ C_3H_6 + 12CeO_2 \rightarrow 6Ce_2O_3 + 3CO +\\ 3H_2O\\ H_2 + 2CeO_2 \rightarrow Ce_2O_3 + H_2O \end{array}$ 

### NH<sub>3</sub> generation and reduction

 $5H_2 + 2NO \rightarrow 2H_2O + 2NH_3$ 

 $2NH_3+2.5O_2\rightarrow 2NO+3H_2O$ 

 $2NH_3 + 3NO \rightarrow 2.5N_2 + 3H_2O$ 

[1] Ramanathan, K., Sharma, C., *Ind. Eng Ind. Eng. Chem. Res.*, **2011**, *50* (17), pp 9960–9979
 [2] Ramanathan, K., Sharma, C., Kim, C., *Ind. Eng. Chem. Res.*, **2012**, *51* (3), pp 1198–1208

### TW+NSC can be modeled using:

- TWC reactions
- NSC storage and reactions (NOx)