Phase Transformation Kinetics and Alloy Microsegregation in High Pressure Die Cast Magnesium Alloys

PI: John E. Allison University of Michigan 4/10/2015

Project ID #LM091

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

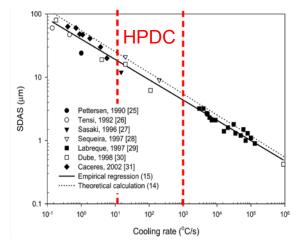
Timeline

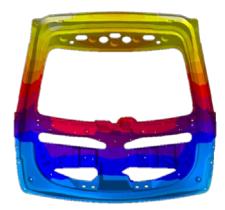
- Start: October 2013
- End: October 2017
- 35% Complete

Budget

- Total project funding
 - DOE share: \$600K
 - Contractor share: na
- Funding received in FY14: \$175K
- Funding for FY15: \$148K

Barriers


- Lack of understanding and predictive models for HPDC/SVDC Mg processes:
 - Limits ability to quickly optimize Mg components and reduce costs.
 - Limits ability to rapidly develop new alloys & processes for challenging applications and increases risk.


Partners

- Ford Motor Company (Dr. Mei Li)
- Tsinghua University (Prof. S. Xiong)

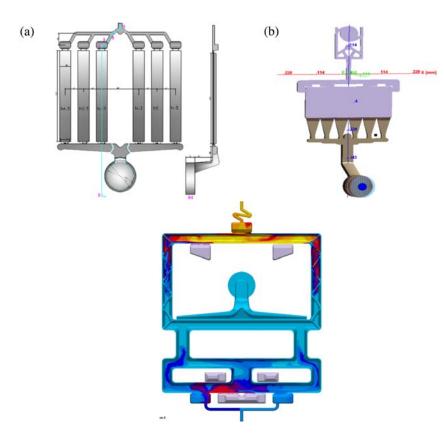
Relevance

- Mg components represent a major opportunity for reducing vehicle weight (35-50%), energy consumption and greenhouse gas emissions.
- High Pressure Die Casting (HPDC) is used for over 90% commercial Mg products because it is fast, economical, and yields complex thinwall Mg components
- High solidification rates, from 10 to 1000°C/s far from equilibrium
- No systematic, quantitative knowledge of microsegregation or phase transformation kinetics —> limits ICME predictive capabilities & thus increase risks, time and cost for use of Mg in new and challenging applications.

Relevance – Project Objectives

- Quantify & understand phase transformation & microsegregation during HPDC/SVDC
- Quantify & understand phase transformation & changes in microsegregation during solution treatment & ageing
- Develop physics-based transformation kinetics micromodels
- Transfer knowledge through NIST D-Space Repository & UM Materials Commons

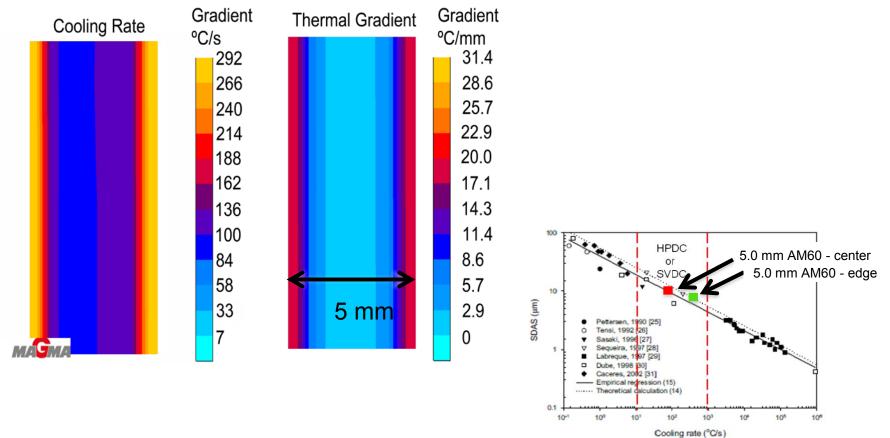
Approach / Tasks


- 1. Simulate & manufacture high quality HPDC/SVDC plates & complex shapes of binary and ternary alloys
 - Mg-AI & Mg-AI-X; X=Mn, Zr, Ca, Sr (AM, AZ, AX, AK alloys)
 - Precision MagmaSoft simulation
- 2. Systematic study of phase transformation & microsegregation during HPDC/SVDC
 - Advanced EPMA & analysis
 - Quantitative Optical and SEM analysis
- 3. Systematic study of phase transformation & changes in microsegregation during solution treatment & ageing
 - Selected alloys
 - Advanced EPMA & analysis
 - Quantitative Optical, SEM & TEM analysis
- 4. Develop physics-based transformation kinetics micro-models
 - Analytical model coupled with precision MagmaSoft results
 - Validate ThermoCalc model for precipitate evolution
- 5. Transfer knowledge through NIST D-Space Repository & UM Materials Commons

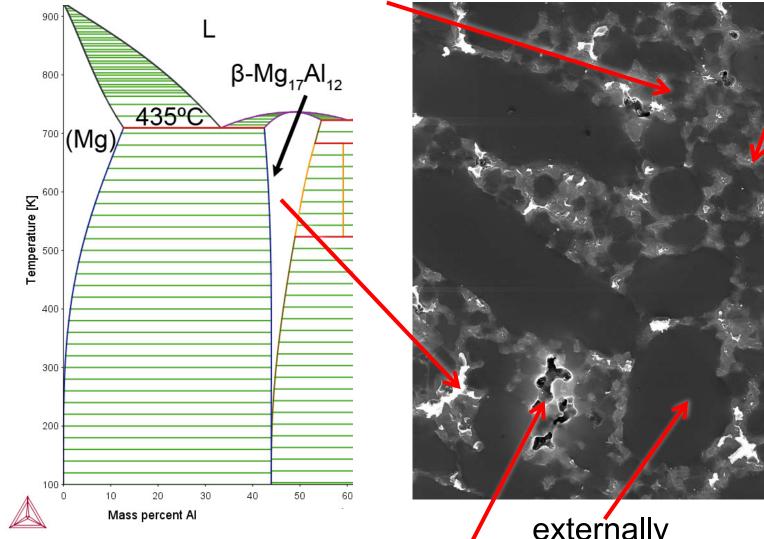
Milestones

Tasks		Year 1 Yea			2		Year 3			Year 4						
		2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Task 1: Project Management Plan																
Task 2: Manufactor HPDC/SVDC plates and complex- shaped HPDC/SVDC castings and simulation				X	A B E	A 3										
Task 3: Quantitative characterization of phase transformation kinetics and microsegregation in HPDC castings								ľ				F				
Task 4: Quantitative characterization of phase transformation kinetics and microsegregation during heat treatment of SVDC castings																
Task 5: Develop a physics-based phase transformation kinetics model to capture microstructural evolution and microsegregation during HPDC/SVDC and heat treatment																К
Task 6: Transfer the project knowledge to industry and research community through micro-models and data housed in the UM DOE PRISMS Materials Commons and NIST data repositories																

High Pressure Die Casting & Alloys


- Plate castings being provided by Tsinghua University & Ford (Mag-tec)
- AM60 & AZ91 complex castings provided by Ford

Alloy Compositions (wt%)							
Mg	Al	Zn	Mn	Ca	Sr		
Bal	3						
Bal	5						
Bal	9						
Bal	12						
Bal	9	0.5					
Bal	9	1					
Bal	9	2					
Bal	5		0.5				
Bal	5		1				
Bal	5		2				
Bal	5			3			
Bal	5				3		


Technical Progress: Precision HPDC Simulation

- Precision simulation achieved using advanced IHTC (from Ford/Tsinghua: 3-countries Mg Front End program) and very fine mesh
- Solidification front velocity, cooling rate (°C/s), and thermal gradient (°C/mm) determined as a function of location through plate
- Cooling rates ranging from 100-300°C/s are predicted

Technical Progress: Phase Quantification

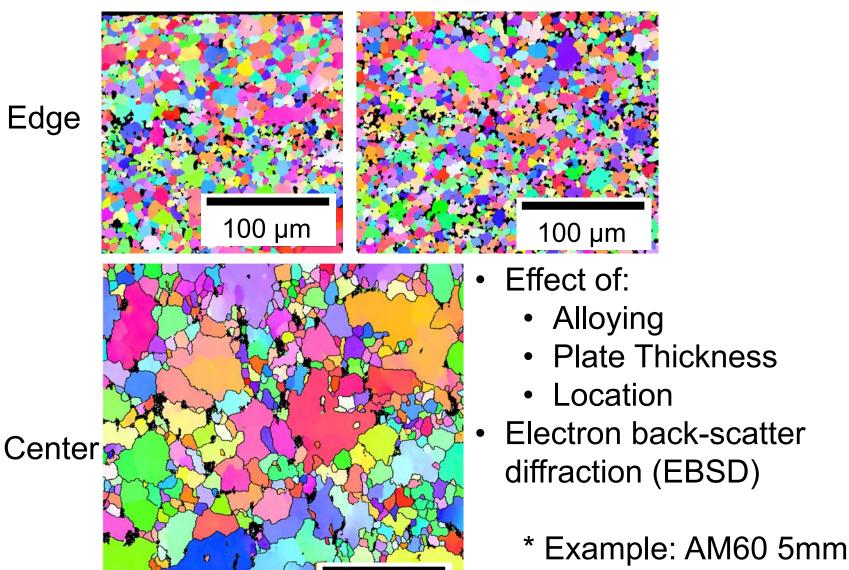
in-mold grains solute-rich regions (SRRs)

porosity

externally solidified crystals (ESCs)⁹

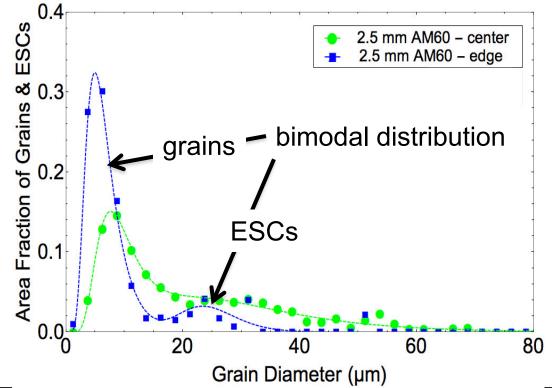
20 µm

Technical Progress: Location Dependent Phase Distribution*

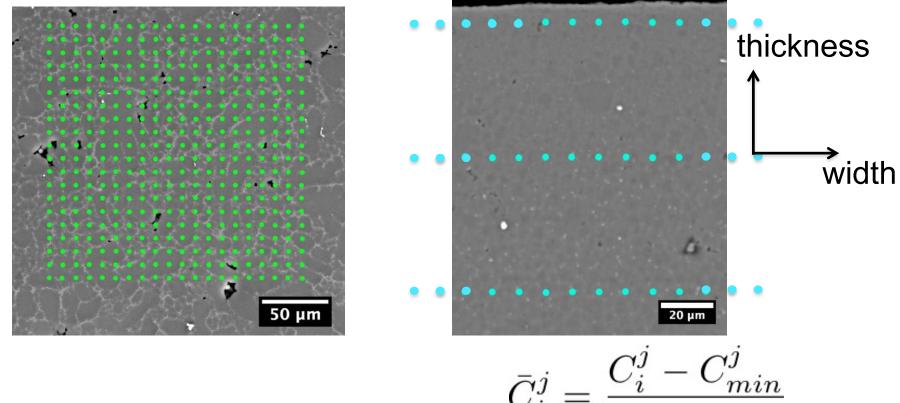

Constituent	Center	Edge
Al- Mn intermetallics	0.1	0.2
pores	1.6	0.3
β-phase	2.0	1.9
solute-rich regions (SRRs)	24.0	38.7

* Example: AM60 2.5mm SVDC Plate

- β-phase volume fraction much lower than predicted by Scheil solidification model (2% vs 9.1%) and not location dependent
- Higher fraction of SSRs observed at edge of castings


Technical Progress: Characterization of Grain Size Distributions*

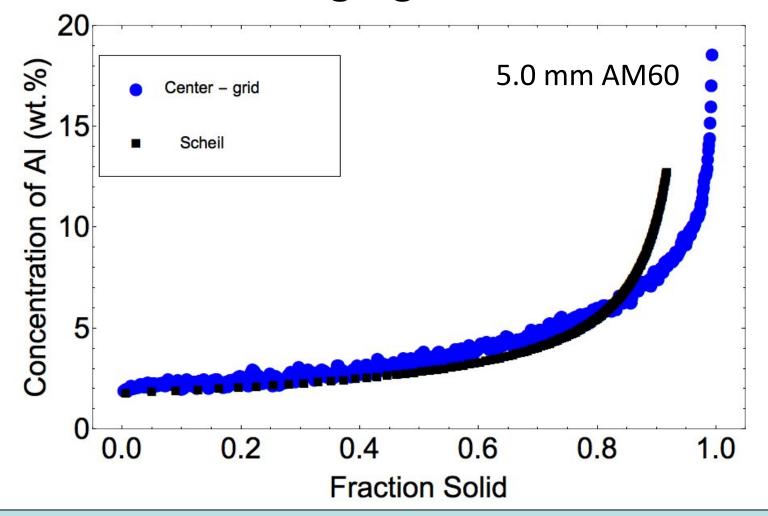
thick plate


100 um

Technical Progress: Grain Size Distributions

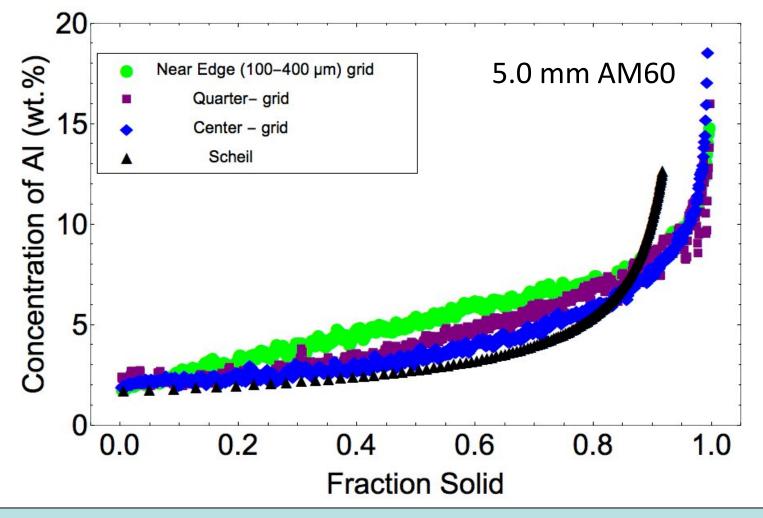
- Bimodal distribution represents in-mold grains and Externally Solidified Crystals (ESCs)
- Lower number of ESCs at edge of castings
- Peak grain size slightly larger at center (8 μm vs. 5 μm)
- Grain size and number of ESCs increase with increasing plate thickness
- · Grain size was not influenced by alloy content

Technical Progress: Advanced EPMA Analysis of Microsegregation

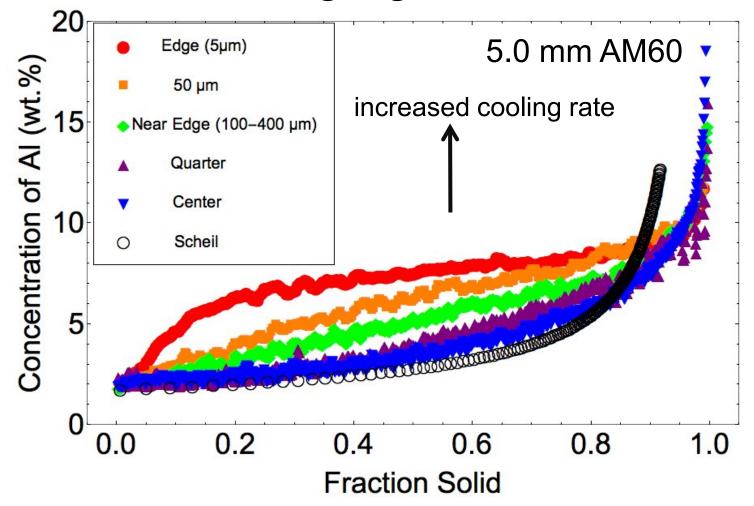


To construct segregation profile (WIRS):

- 1. determine partitioning direction
- 2. order and rank data (Al solute)
- 3. assignment of fraction solid


 $\bar{C}_{i}^{j} = \frac{C_{i}^{j} - C_{min}^{j}}{\sigma^{j}}$ $\bar{\bar{C}}_{i} = \frac{\sum_{j=1}^{n} \bar{C}_{i}^{j}}{n}$ $f_{s} = (R_{i} - 0.5)/N$ ¹³

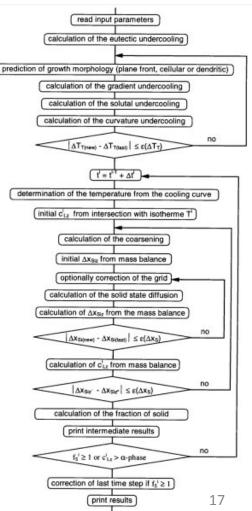
Technical Progress: Characterizing the Microsegregation Profile


 EPMA microsegregation profile at the center of the castings is close to Scheil up to a high solid fraction

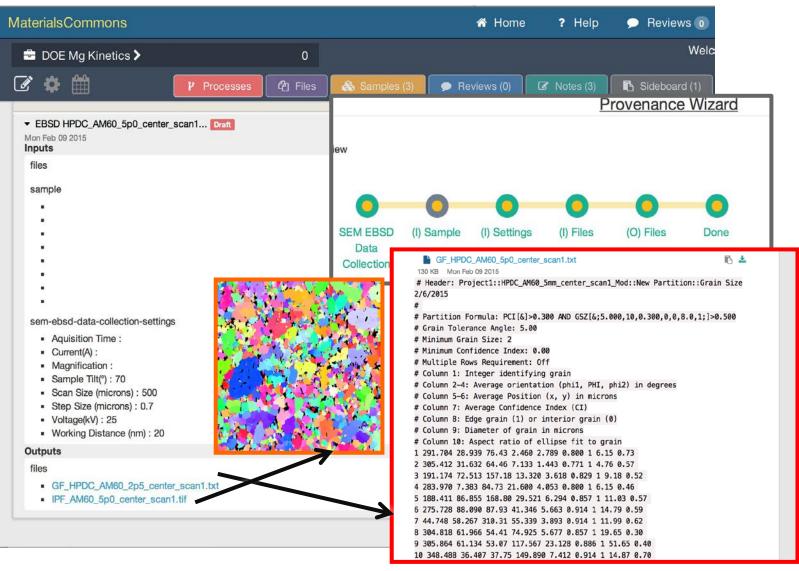
Reconstructing the Microsegregation Profile

Microsegregation deviates from Scheil as you move towards the edge of the casting

Technical Progress: Reconstructing the Microsegregation Profile


 Solute trapping increases near the edge of the plate where cooling rate is the highest

Technical Progress: Micro-Model As-cast Microstructure Prediction


• Solidification rate and composition dependent partition coefficients can be expressed as [Aziz & Kaplan 88']:

$$K_{v} = \frac{\frac{a_{0}v}{D_{i}} + K_{e}}{\frac{a_{0}v}{D_{i}} + 1 - (1 - K_{e})C_{lv}}$$

- v: solidification front velocity (MagmaSoft)
- *D_i*: interface diffusion coefficient
- k_e: equilibrium partition coefficients (ThermoCalc/PANDAT)
- C_{lv} : the solidification rate dependent liquidus concentration
- *a*₀: solute trapping parameter <- experimentally calibrated

Technical Progress: Materials Commons & NIST D-Space

Responses Reviewers' Comments

• NA - This project has not yet been reviewed

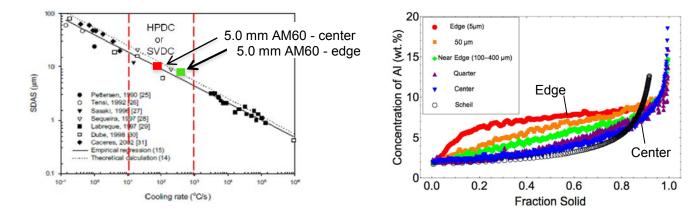
Partnerships/Collaborations

- Ford Motor Company: Mei Li, Jake Zindel and Larry Godlewski
 - Provided super vacuum die cast samples and components
 - Provided HPDC MagmaSoft casting simulations
 - Collaborating on development of kinetics micro-model
- Tsinghua University: S. Xiong (under contract to Ford Motor Co.)
 - Provided super vacuum die cast samples
- OSU: J. C. Zhao and Alan Luo
 - Informal collaboration on precipitation evolution and diffusion

Remaining Challenges and Barriers

- Microstructural scale (cell size) and EPMA beam size are similar which makes <u>direct</u> characterization of microsegregation a challenge.
- Our approach is a "forward" model which will be used to extract the actual (true) microsegregation behavior from the experimentally measured EPMA microsegregation profile.

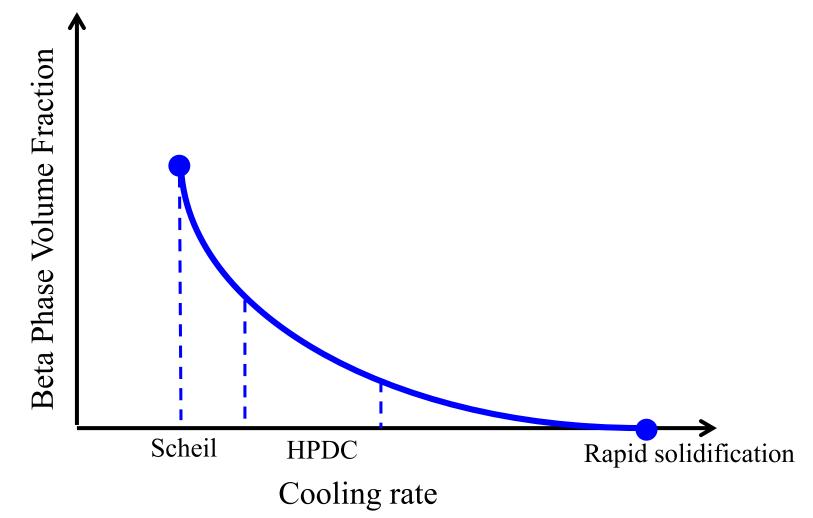
Proposed Future Work

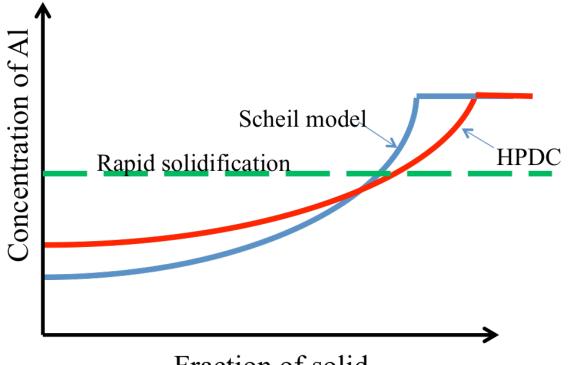

- Continuing systematic characterization of microsegregation & phase transformation kinetics in as-cast AM alloys, Mg-Al binaries and ternaries
- Begin systematic characterization of microsegregation & phase transformation kinetics following solution treatment and aging of selected SVDC alloys
- Continue developing electron probe micro-analyzer "forward model" and use to extract the true microsegregation behavior
- Develop micro-models to predict microstructure & microsegregation evolution during HPDC and after heat treatment
- Transfer knowledge to industry and the research community through micro-models and data housed in UM DOE PRISMS Materials Commons and the NIST DSpace Repository

Summary

- Objective: Combining advanced experimental techniques, analytical models & simulation tools to develop a systematic understanding of phase transformation kinetics in HPDC Mg-Al-X alloys
- Robust characterization & simulation methods are being developed for
 - phase quantification via SEM
 - grain size via EBSD
 - microsegregation via EPMA
 - simulating solidification velocities & phase transformation kinetics
- Templates have been developed for uploading our data & metadata to Material Commons

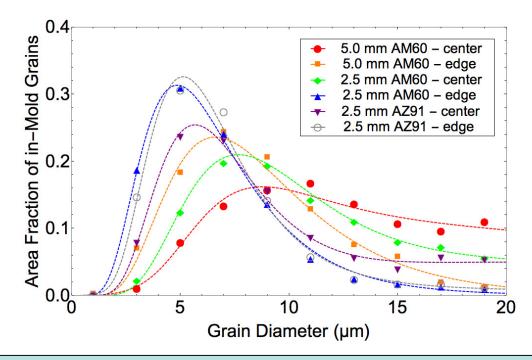
Summary - Findings


- HPDC alloys have a bimodal distribution with contributions from in-mold grains and externally solidified crystals
- HPDC plates undergo cooling rates from 100 to 300 °C/s
- β-phase volume fraction is much lower than predicted by Scheil solidification models (2% vs ~9% for AM60) and more AI is partitioned to the α-Mg
- Microsegregation profiles are casting location dependent and current models must be modified to account for this


Technical Back-Up Slides

Effect of Cooling Rate on β-phase Fraction

- As cooling rate increases we expect:
 - β-phase fraction to decrease
 - More AI will be trapped in α -Mg (increased fraction of SRRs) ²⁶


Developing a HPDC Solidification Model

Fraction of solid

- Scheil solidification model over predicts the amount of as-cast eutectic • phases, and especially will for fast solidification condition (HPDC)
- Is not solidification rate dependent •
- Can be improved with solidification rate and composition dependent partition • coefficients

Technical Progress: Grain Size Distributions - Summary

- Lower number of ESCs at edge
- Peak grain size slightly larger at center
- As plate thickness increases the grain size increases slightly and a higher fraction of ESCs are observed
- Grain size was not affected by alloy

Milestones (Details)

Milestones	Duration (months)	Tasks
А	0-15	Complete casting SVDC Mg-Al binaries
В	0-15	Complete casting SVDC Mg-Al binaries with a range of processing conditions
С	12-24	Complete casting SVDC Mg-Al-Mn, Mg-Al-Zn, Mg-Al-Ca, and Mg-Al-Sr ternary alloys
D	2 -24	Complete phase transformation kinetic study of binaries and Mn and Zn ternaries
E	2-24	Complete microsegregation characterization of binaries and Mn and Zn ternaries
F	18-36	Complete phase transformation and microsegregation characterization of Ca and Sr ternaries and in complex casting of AM50 and AZ91
G	12-36	Complete eutectic dissolution phase transformation and precipitate kinetic study of selected Mg-Al binaries and Mg-Al-Zn ternary
н	6-24	Complete microsegregation characterization of dissolution phase transformation in binaries and Mn and Zn ternaries
I	18-42	Complete eutectic phase dissolution, phase transformation, precipitation kinetics, and microsegregation characterization of Ca and Sr ternaries
J	12-30	Complete micro-model of Mg-Al binaries and Mg-Al-Mn and Mg-Al- Zn ternaries for HPDC conditions
К	24-48	Complete micro-model for Mg-Al-Ca and Mg-Al-Sr ternaries for HPDC and heat treatment conditions
L	12-30	Incorporate experimental data on Mg-Al binaries and Mg-Al-Mn and Mg-Al-Zn ternaries into Materials Commons and release to public
М	24-48	Incorporate experimental data on Mg-Al-Ca and Mg-Al-Sr ternaries into Materials Commons and release to public
N	36-48	Incorporate micro-model into Materials Commons and release to public