

Energy Efficiency &
 Renewable Energy

High-Efficiency High-Density GaN-Based 6.6kW Bidirectional On-board Charger for PEVs - 2015 Annual Merit Review Meeting

Dr. Charles Zhu, Principal Investigator

DPM, Livonia, MI

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

June 10, 2015

DE-EE0006834

Contents

- **Project Overview**
- Objective
- **Milestones**
- Prior Arts and Program Goals
- Approaches
- Technical Accomplishments and Progress
 - GaN device delivery and test
 - □High frequency magnetics
 - □Topology selection
 - **AC/DC** stage preliminary experiment
 - DC/DC stage simulation and preliminary experiment
- Partners
- **Proposed Future Works**
- Summary

Overview

Timeline

- Start FY14
- Finish FY17
- 8.3% complete

Budget

- Total project funding DOE share – \$1,487,593
- Funding received in FY14: \$0
- Funding for FY15: \$588,738

Barriers

- Parasitic parameters in GaN device and PCB restricts the switching frequency
- Topology and control Scheme for bidirectional power flow
- Thermal design to remove heat
- High frequency magnetics
- GaN device cost

Partners

- Transphorm
- CPES at Virginia Tech
- Fiat Chrysler Automobiles

Project Objective

The objective of this project is to design, develop, and demonstrate a 6.6kw isolated bidirectional On-Board Charger (OBC) using Gallium Nitride (GaN) power switches in a vehicle capable of achieving the specifications identified in Table 1, below. The developed OBC will reduce size and weight when compared to commercially existing Silicon (Si) based OBC products in automobiles by 30%-50%.

Parameter	Requirement
Switching Frequency	0.3 - 1 Mega-Hertz (MHz)
Power Efficiency	95%
Power Rating	3.3 kilo-Watt (kW) at 120 Volts Alternating Current (VAC), 6.6kW at 240 VAC (Auto sensing depending on AC input voltage)
Plug-In VAC	120/240 VAC
High Voltage (HV) Battery Voltage Range	250 - 450 Voltage Direct Current (VDC)
Nominal Battery Voltage	350 VDC
AC Line Frequency	50 - 60 Hz
Maximum Coolant Temperature	70°Celcius (C)
Ambient Temp Range	-40 to 70°C
Controller Area Network (CAN) Communication	Yes

FY2015 Objective and Milestones

FY 2015 Objective: Technology Design and Development

- Developing prototypes of GaN device.
- Developing advanced circuit for GaN device application.
- Topology selection and evaluation for DC/DC stage, with comparison among topologies in performance, size and cost.
- Designing and building one concept bi-directional OBC.
- Designing the first generation of GaN-based OBC.

#	Milestone	Туре	Due Month
MS 1.1	Si-Based Conceptual Bi-directional Charger Design Complete	Technical	3
MS 1.2	Si-Based Concept Bi-directional Charger Build Complete	Technical	6
MS 1.3	Si-Based Concept Bi-directional Charger Test	Technical	9
MS 1.4 A-Sample Charger Design Completed		Technical	11
DP 1	Analysis of the test result of the concept bidirectional charger	Go/No Go	11

Prior Arts and Program Goals

	Prior Art	Goal
Efficiency	93%	95%
Function	Uni-directional	Bi-directional
Power density	0.45-0.75 kW/L	30% to 50% improvement
Device	Silicon	GaN
Switching frequency	<100kHz	0.3-1MHz

DE-EE0006834

Delta Delta OBCM OBCM (3.3kW) (6.6kW)

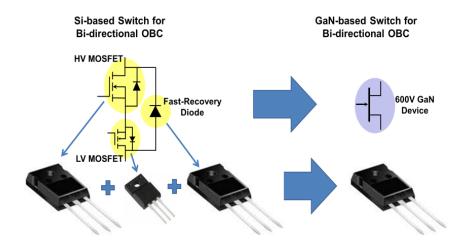
TDK OBCM (6.6kW)

Panasonic OBCM (6.6kW)

U.S. DEPARTMENT OF

ENERGY

Delta Solar Inverter (5kW)


Energy Efficiency &

Renewable Energy

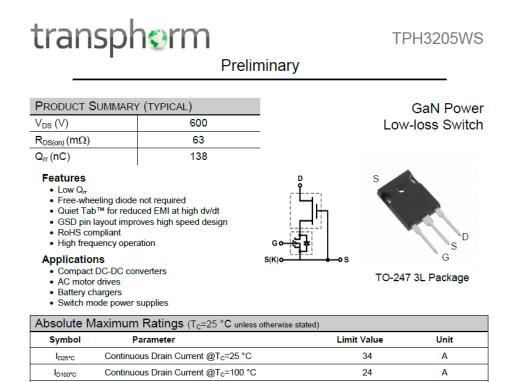
Approach – Reduce number of switching devices

Power Device Count			
Device Type	Si-based	GaN-based	
TO-247 Switch	28	24	
TO-247 Diode	24	0	
TO-220 Switch	24	0	
Total Devices	76	24	

Features

- Low Q_{rr}
- · Free-wheeling diode not required
- Quiet Tab[™] for reduced EMI at high dv/dt
- · GSD pin layout improves high speed design
- RoHS compliant
- High frequency operation

Approach – Increase switching frequency


- Approximately 30% of the volume of OBC is taken by magnetic components and capacitors.
- Increasing switching frequency will reduce the size and cost of these components.
- GaN device has lower switching loss, thus allow higher switching frequency.

	GaN HEMT	Si MOSFET
	Transphorm	Infineon
	TPH3205WS	IPB65R065C7
R _{ds_on}	63mΩ	58 mΩ
C _{oss tr}	283nC	1,110nC
Q _g	10nC	64nC
Q _{rr}	138nC	10,000nC

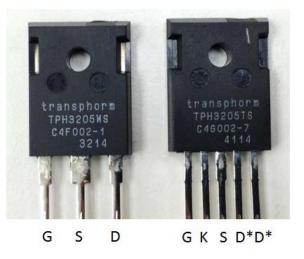
Technical Accomplishments and Progress

Iteration I GaN device delivery

140

600

750


±18

Pulsed Drain Current (pulse width:100 µs)

Transient Drain to Source Voltage a

Drain to Source Voltage

Gate to Source Voltage

- 180 pc of samples delivered in two types of packages
- Initial application test completed
- 3-pin package is chosen for future delivery

I_{DM}

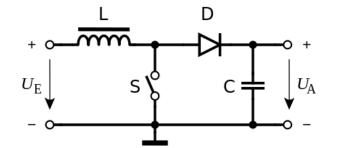
V_{DSS}

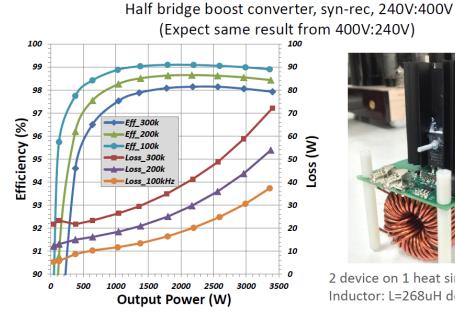
VTDS

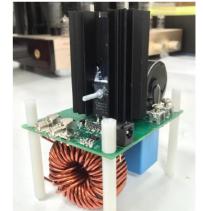
VGSS

Α

V


V


V



Technical Accomplishments and Progress

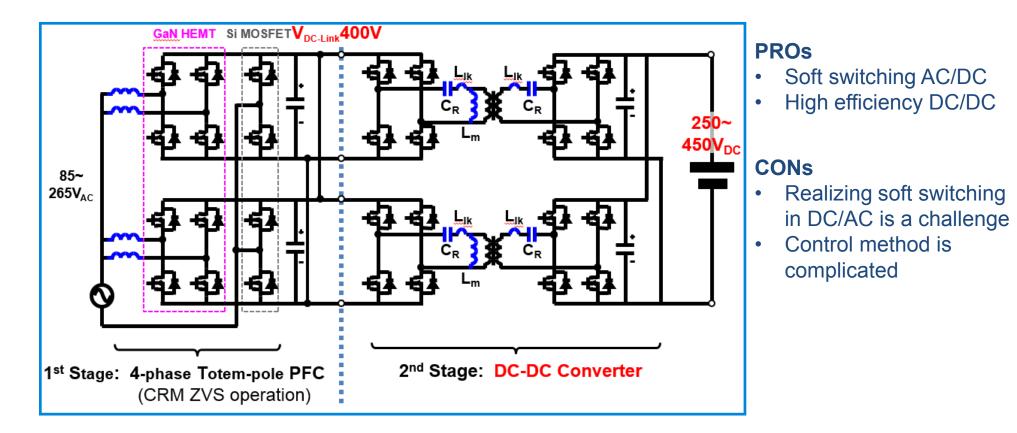
TPH3205ws Sync-rec Boost • **Converter Efficiency Test**

2 device on 1 heat sink: R_{th}=1.27 C/W. Inductor: L=268uH dcr=20mohm

• Data taken after equilibrium. All converter losses included.

- Peak Eff. >99% obtained at 100kHz (98.9% at 3.4kW)
- Peak Eff. >98% obtained at 300kHz (97.9% at 3.4kW)

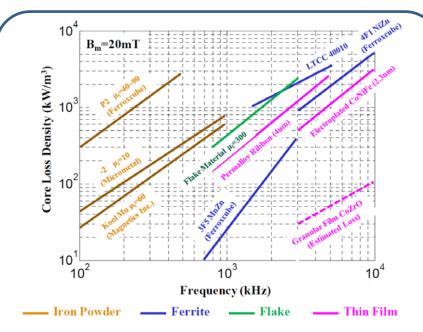
Note: test data provided by Transphorm

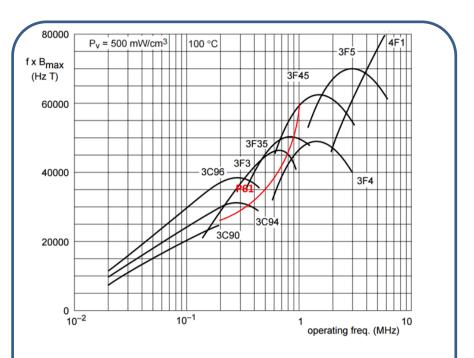

Topology Candidate 1 – Totem Pole PFC + LLC DC-DC

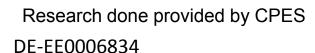
U.S. DEPARTMENT OF

NERGY

Energy Efficiency &

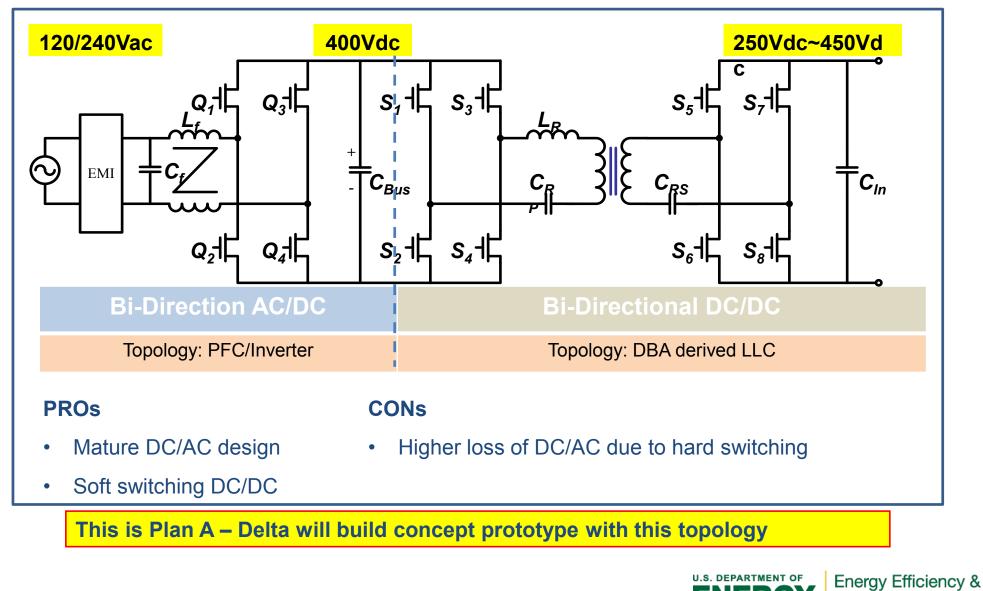

Renewable Energy


This is Plan B – CPES will continue research of the Totem-pole PFC/inverter


High frequency Magnetics

 In the 500 KHz ~ 2MHz range, MnZn ferrite material has the lowest core loss density.

 When compared with 3F45, 3F35 and 3F4, the new material P61 from ACME has the lowest core loss.

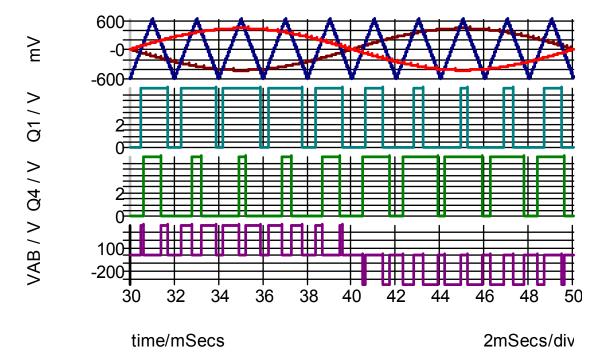


Topology Candidate 2 -Selected Topology for Concept Design

Renewable Energy

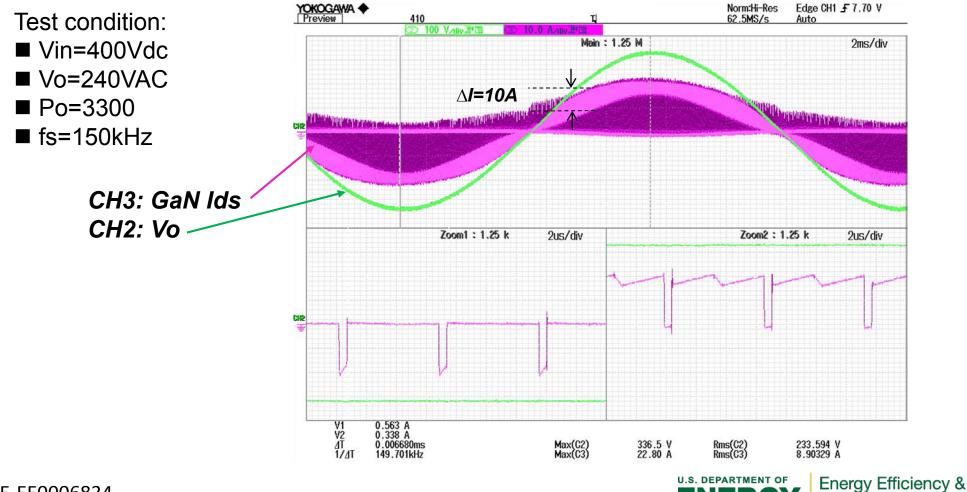
Technical Accomplishments and Progress

• 3.3kW bi-directional charger concept prototype

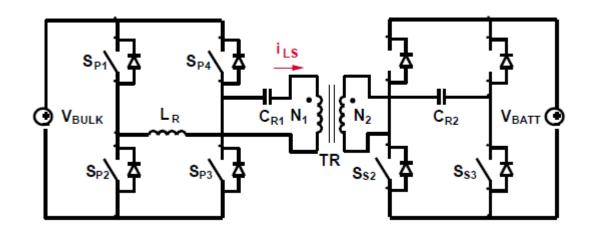


DE-EE0006834

DC/AC inverter control



Unipolar modulation

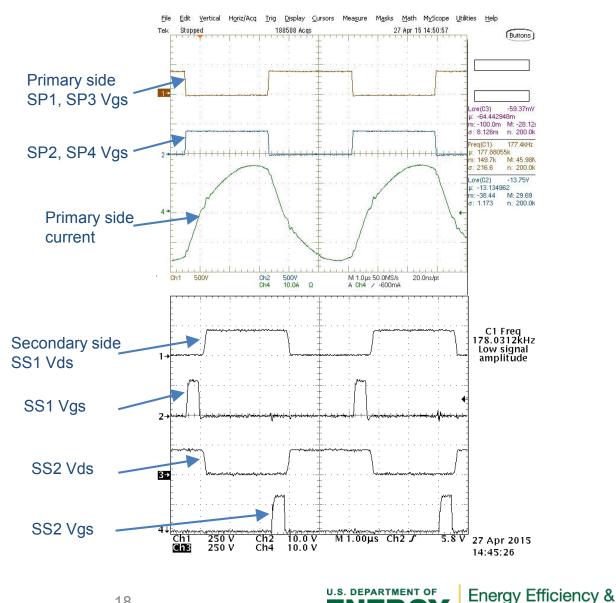

DC/AC inverter test waveforms

Renewable Energy

SELTA Technical Accomplishments and Progress

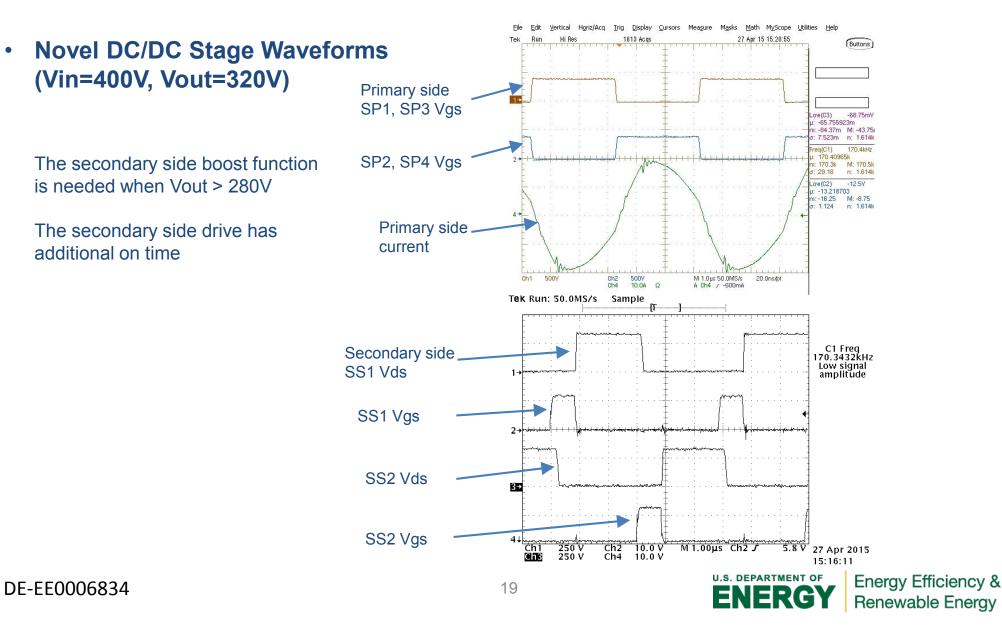
Novel DC/DC Stage Topology

- Both sides are full bridge
- Soft switching on both sides
- Secondary side time-delay control provides multiple benefits:
 - better current sharing in paralleled power stages
 - Step up capability
 - narrow switching frequency range
 - high efficiency across the output voltage range



Technical Accomplishments and Progress

Novel DC/DC Stage Waveforms (Vin=400V, Vout=200V)


The secondary side boost function is not needed when Vout < 280V

The secondary side drive has no additional on time

Renewable Energy

SELTA Technical Accomplishments and Progress

Partners/Collaborators

Delta Products Corporation (Primary Recipients)

Administrative responsible to DOE, single point of contact Technical direction and program management Timing and deliverables, budget control OBCM Prototypes development and testing, system integration Commercialization

Transphorm, Inc.

transphorm

High frequency GaN device development GaN device characterization and qualification

CPES at Virginia Tech

GaN device in circuit evaluation High frequency circuit topology selection and evaluation High-frequency magnetic components development

FCA US LLC Vehicle integration and testing Commercialization

DE-EE0006834

Proposed Future Work

- Remainder of FY 2015
 - Develop two iterations of improved GaN device.
 - Design and build one concept bi-directional OBC.
 - Design the first generation of GaN-based OBC.
- FY 2016
 - Continue development of GaN devices and advanced circuit for GaN device application.
 - Build and test two generations of GaN-based OBCs.
 - Develop and finalize market introduction plan at device level and charger level.
 - Confirm host vehicle and integration plan.
- FY2017
 - Develop vehicle test plan.
 - Vehicle integration.
 - Test the OBC in vehicle.

DE-EE0006834

Summary

- DOE Mission Support
 - Design and build one concept bi-directional OBC.
 - Design the first generation of GaN-based OBC.
- Approaches
 - Reduce switching devices from 76 Si devices to 24 GaN devices
 - Increase switching frequency to reduce passive components size
 - Develop software switching technology to reduce switching loss
- Technical Accomplishment
 - Developed and evaluated GaN device.
 - Developed new soft switching technology for DC/DC
 - Compared and selected topologies of AC/DC stage and DC/DC stage
 - Simulated and experimented AC/DC stage and DC/DC stage
 - Completed 3.3kw concept bi-directional OBC schematic design
- Future Work
 - Build 6.6kw bi-directional OBC samples
 - Test OBC in vehicle
 - Create commercial plan

