

E-drive Vehicle Sales Analyses

Principal investigator: Yan (Joann) Zhou

Energy Systems Division

Argonne National Laboratory

2015 Vehicle Technologies Annual Merit Review

June 11, 2015

Project VAN011

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline	Barriers		
Start Date: October 2014 End Date: Project continuation and direction determined annually by DOE	 Lack of readily available historical sales in the U.S. and other markets Lack of data on advanced vehicle usage and survival pattern Lack of data on cost components for levelized cost analyses Limited understanding of existing E-drive vehicle purchase trend 		
Budget	Partners		
 Total Project Funding (DOE) FY14: \$84k (plus \$56K for Navigant report subscription) FY15: \$90k 	Interaction/Collaborations • Hybridcars.com • European Automotive Industry Newsletter • Kelley Blue Book, NADA • Navigant Research • Tsinghua University, Beijing, China • National Renewable Energy Laboratory		

Objectives and Relevance

Data acquisition and analysis of sales, usage, cost to improve market modeling of electric-drive vehicle ecosystem and support DOE programs

Task 1: Track global E-drive vehicle sales

Objective: Provide reference data for vehicle choice modeling and DOE/EERE policy impacts analysis

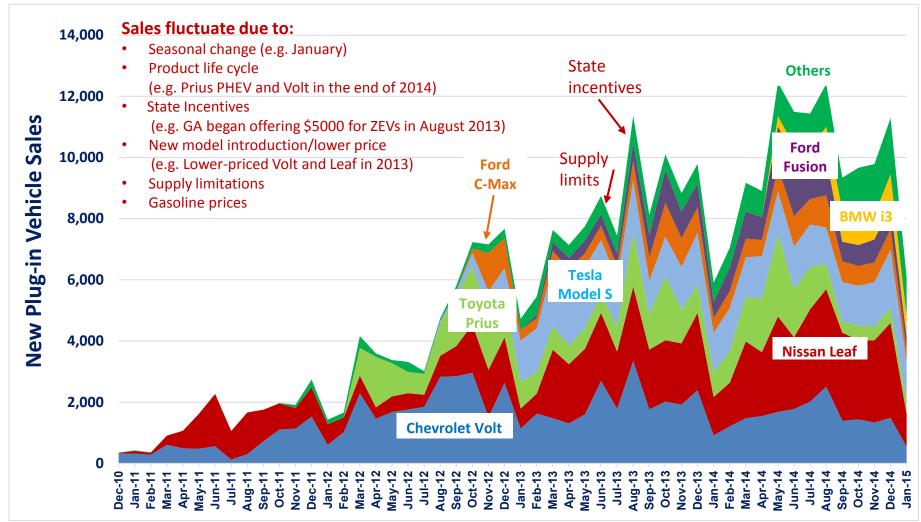
Task 2: Collect vehicle ownership cost data and projections

Objective: More comprehensive levelized cost for advanced vehicle technologies

Task 3: Characterize regional purchase pattern of E-drive vehicles

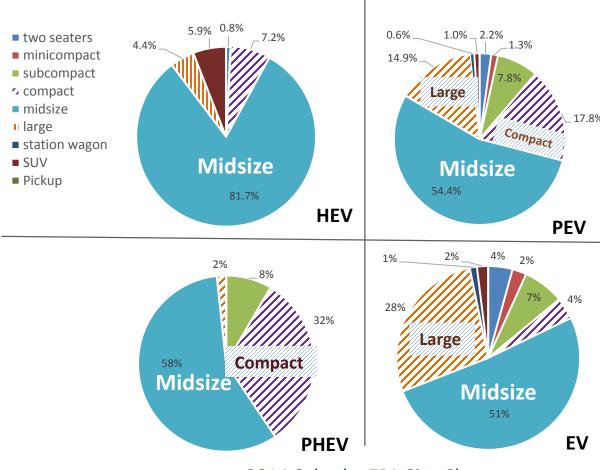
Objective: Examine geographic distribution and demographics to characterize market

Approach and Accomplishments


Task	Approach	Accomplishments
Task 1: Track global Edrive vehicle sales	Collect historical sales by make and model Summarize financial and non-financial policies matrix	 Monthly U.S. EV sales market report Monthly data products published on ANL and DOE website International sales trend comparison E-drive vehicle policy matrix for each country/region
Task 2: Characterize regional purchase pattern	Analyze sales by geographic and demographic factors to determine locations of plug-in vehicle sales and identify market niches	 Regional PEV adoption pattern Identified E-drive vehicle market niches in city/suburb/rural areas
Task 3 : Collect vehicle ownership cost data and projections (New task)	Collect vehicle resale values and total ownership cost by model and market segment	 Summarized who has what based on data review and discussion with different data providers

Milestones

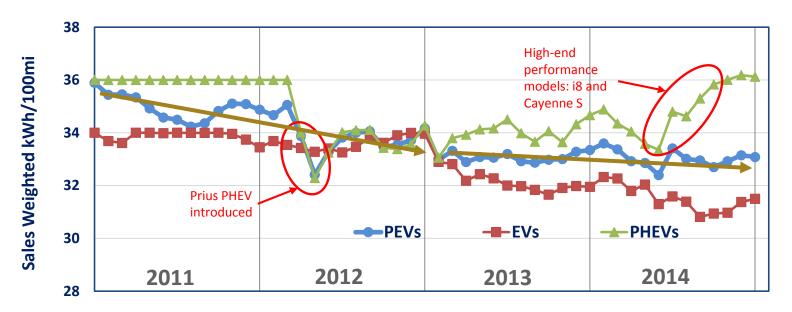
Due Date	Milestones	Status
Q1 FY2015	Publish monthly sales and market reports	Completed
Q4 FY2015	Summarize total ownership cost by model and market	On schedule
Q4 FY2015	Summarize adoption trend and market niches in 4 selected regions	On schedule



Plug-in Electric Vehicles sales are growing, if somewhat erratically

Source: http://www.transportation.anl.gov/technology_analysis/edrive_vehicle_monthly_sales.html

PEVs are available in diverse models covering more vehicle classes and types than HEVs


HEVs are predominantly mid-size cars

PHEVs tend to be smaller than HEVs, with larger shares of compacts and subcompacts

BEVs are larger on average than PHEVs (due to success of the large Tesla Model S and the mid-size Leaf)

2014 Sales by EPA Size Class

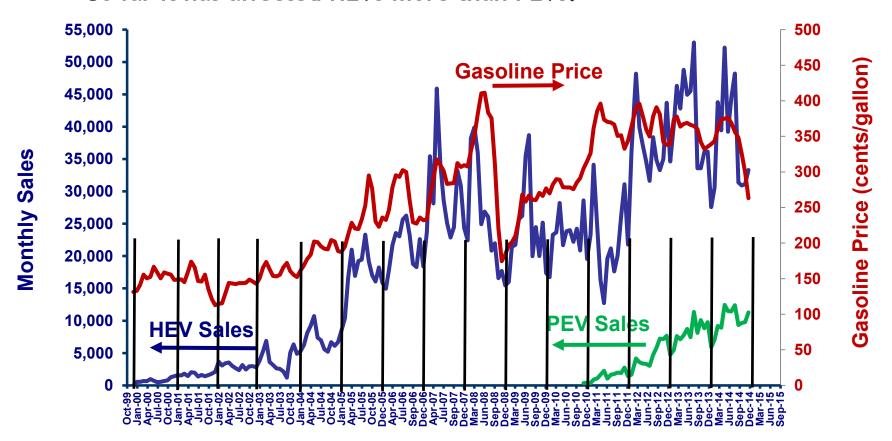
Fleet efficiency (kWh/100 mi.) is improving over time, but recently at a diminishing rate

Fleet Efficiency = Plug-in vehicle sales weighted kWh/100 mile

Improvement is due to higher motor efficiency, better batteries and improved charging efficiency

EV kWh/100 mi improved notably in 2013-14 vs. 2011-12

Recent increase in PHEV kWh/100 mi is due to introduction of high performance models


Sales: http://www.transportation.anl.gov/technology analysis/edrive vehicle monthly sales.html

Efficiency: www.FuelEonomy.gov

Declines in the price of gasoline tend to reduce the incentive for people to buy HEVs. PEVs?

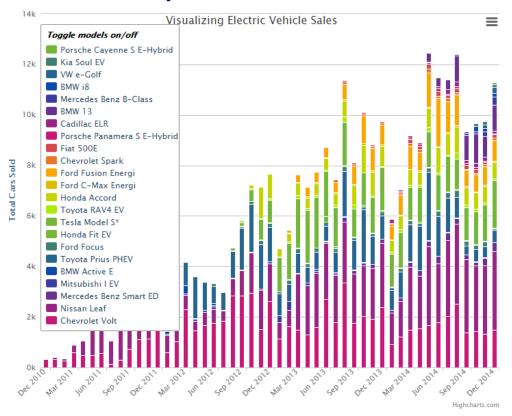
The price of gasoline is beyond the control of the automakers. So far it has affected HEVs more than PEVs.

Extensive use of data products by DOE programs and other agencies

- Publish monthly sales and market trend on both Argonne and DOE websites
- Support DOE/EERE programs and activities such as eGallon

 Develop extra charts and provide interpretation as needed for DOE project managers (market share, comparison of sales by model since market

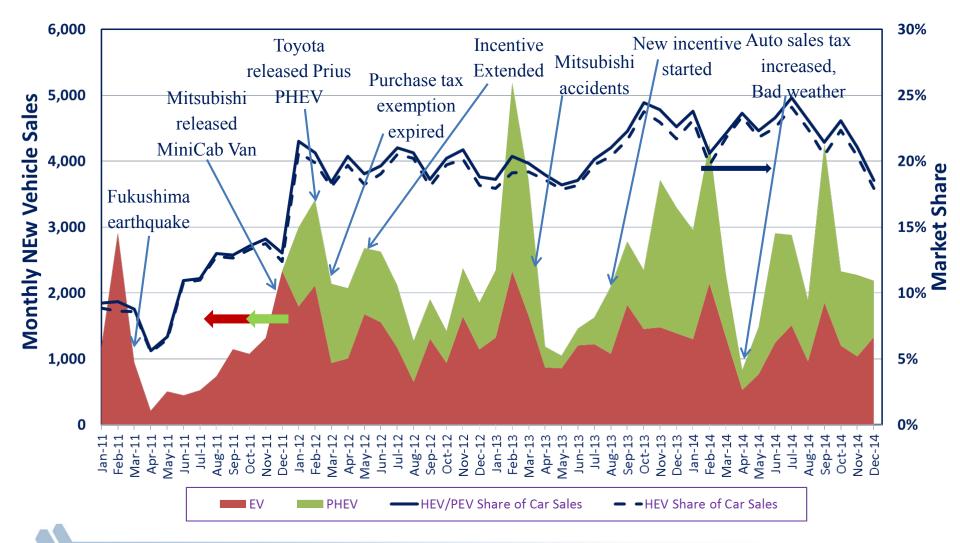
introduction, etc.)


 National Science Foundation links to ANL EV sales webpage

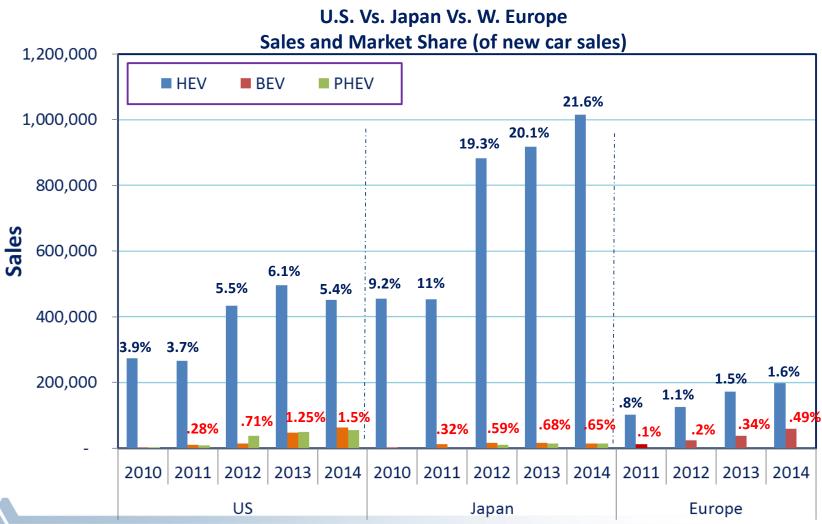
http://energy.gov/articles/visualizingelectric-vehicle-sales

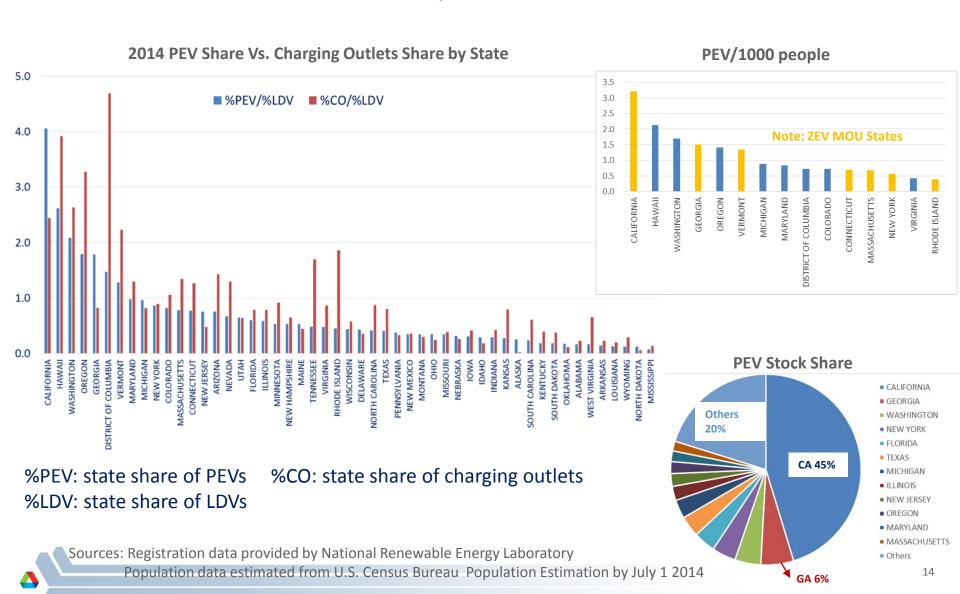
ANL Website:

http://www.transportation.anl.gov/techn ology analysis/edrive vehicle monthly sales.html

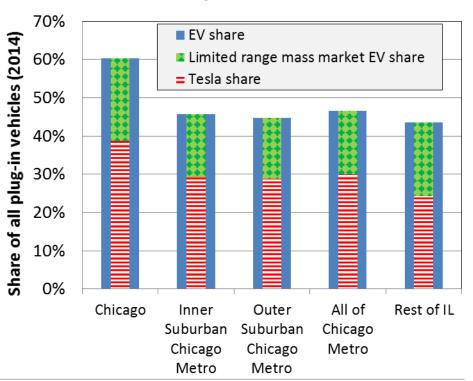


E-drive vehicle policy matrix for each country/region (China example)

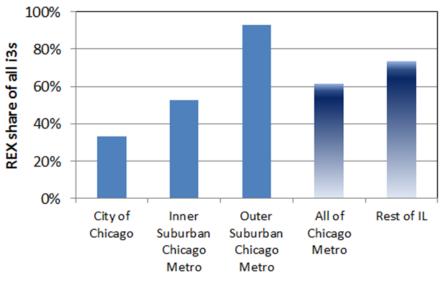

- Numerical Targets: Chinese State Council established goal 5 million PEV sales by
 2020 under "Ten Cities One Thousand Vehicles" program
- Regulation/Emission Standards: Set fleet average fuel consumption target of 5
 L/100 km (47 mpg) by 2020
- Fiscal Incentives to Consumers:
 - Phase 1 Subsidy: (2009-2012) for purchases of vehicles used for public service, such as taxis and transit buses in selected cities.
 - Phase 1 Subsidy was extended in 2012 to nationwide. Subsidies were based on each vehicle's battery capacity: about \$490/kWh toward any private PEV purchase (maximum \$8200 per PHEV and \$9835 per EV.
 - Phase 2 Subsidy: (9/2013- Present) the basis for obtaining subsidy shifted from battery capacity to electric range (about \$5700 \$100,000 for range over 30 miles)
 - Phase 2 Subsidy will scale back by 20% in 2017-2018 and by 40% in 2019-2020


Factors impacting early EV sales (Japan example)

Although the U.S. sells more PEVs, Japan sells many more HEVs and has a much higher market share



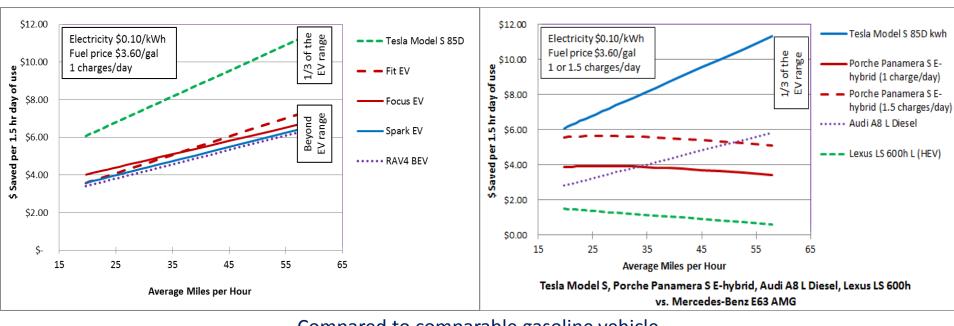
California leads the US in the adoption of PEVs. Charging infrastructure matches fairly well with PEV share.



BEVx most successful in outer suburbs; EREVs beat BEVs & PHEVs throughout suburbs (Chicago example)

While BEVs in total look competitive in IL, affordable, 100 mi. range mass market BEVs do not

REX' added gasoline range increases i3 marketability, expands low density suburban and rural shares.

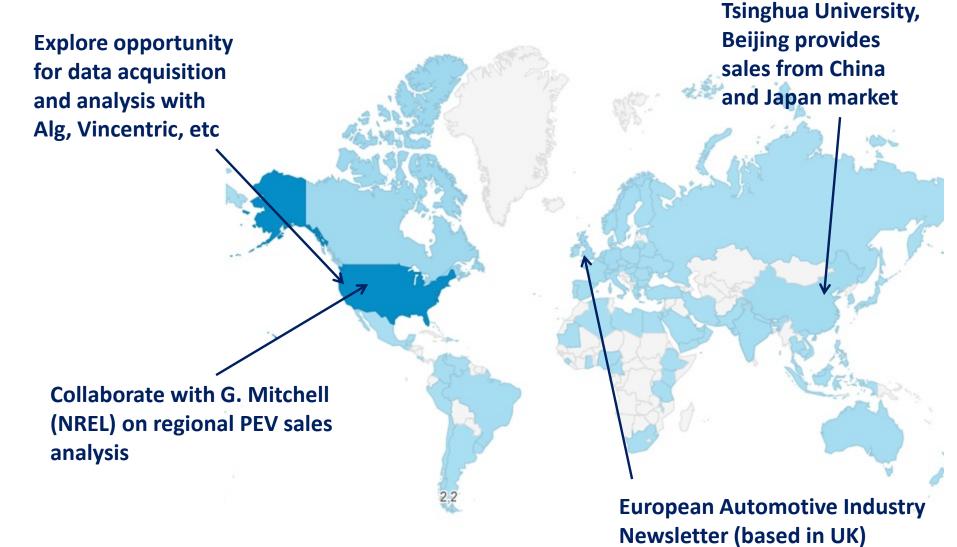


Source: Registration data provided by National Renewable Energy Laboratory

5/18/2015

High performance BEV benefits far exceed those of standard performance BEVs at all mph

High performance BEVs save much more than PHEVs


Compared to comparable gasoline vehicle

Infrastructure Impact Question: Will workplace charging be enough to help high performance PHEVs?

16

Collaboration and Coordination

17

provides European sales and

gives permission to use the data

Proposed Future Work

Task	Future Work
Collect global E-drive vehicle sales	 Continue tracking U.S. sales and publish data products monthly Gather and maintain international E-drive vehicle sales and incentives databases for comparison Analyze sales to show trend and market niches
Characterize regional purchase pattern of E-drive vehicles	 Additional cities/regions (Atlanta, Boston, Los Angeles) Derive heterogenic national purchase/adoption trend
Collect vehicle ownership cost data and projections	 Collect resale data of E-drive vehicles from chosen database Analyze levelized cost (TCO) and depreciation by market segment

Summary

Relevance

 Support vehicle choice and market modeling and related energy and GHG emission estimation in support of DOE advanced vehicle programs

Approach

- Collect sales from collaborators and provide analysis & interpretation
- Summarize vehicle resale values and total ownership cost by market segment
- Characterize market characterization by geographic and demographic factors to determine locations and identify market niches

Technical Accomplishments

- Monthly U.S. EV sales market report
- Monthly data products published on ANL and DOE website
- International sales trends comparison
- E-drive vehicle policy matrix for each country/region
- Regional PEV adoption pattern
- E-drive vehicle market niches in city/suburb/rural areas

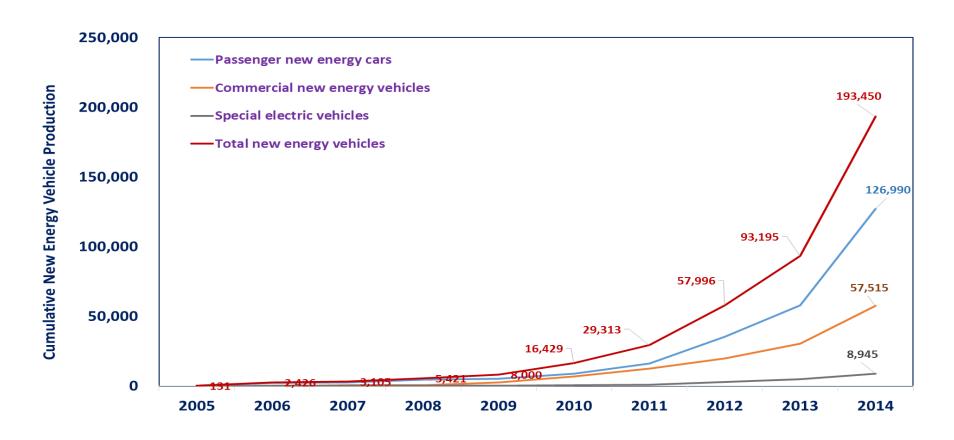
Collaborations

- Collect data and information from Tsinghua University and other agencies
- Collaborate with NREL on regional E-drive vehicle adoption analysis

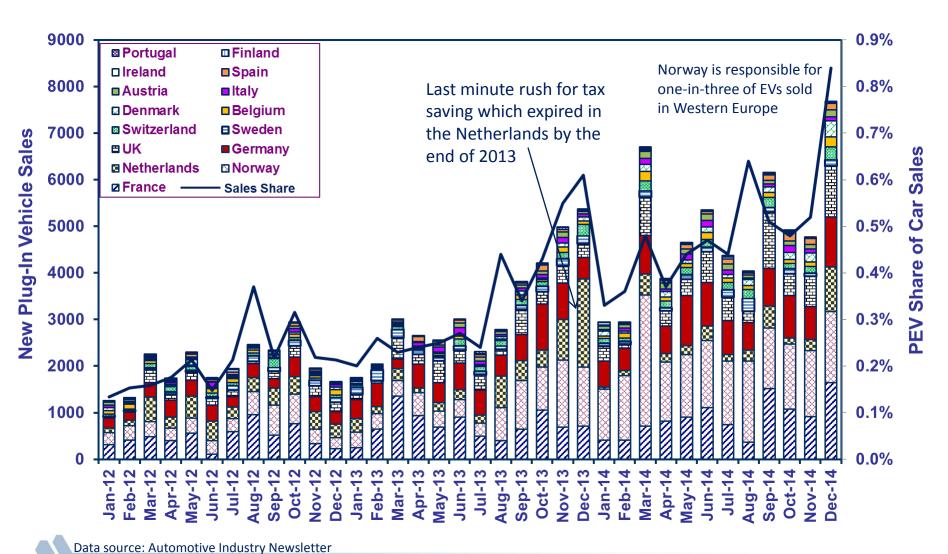
Future Work

- Continue tracking U.S. sales and publish data products monthly
- Gather and maintain international E-drive vehicle sales and incentives databases for comparison
- Analyze sales to show trend and market niches
- Additional cities/regions (Atlanta, Boston, Los Angeles)
- Derive heterogenic national purchase/adoption trend
- Collect resale data of E-drive vehicles from third party
- Analyze levelized cost (TCO) and depreciation of E-drive vehicle by market segment

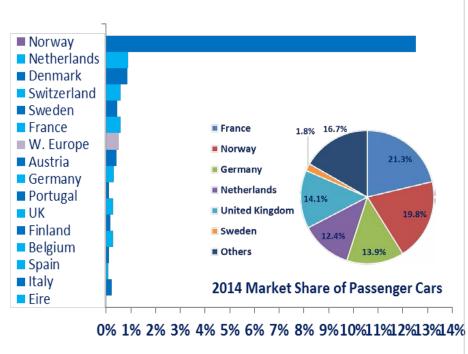
Technical Back-up Slides

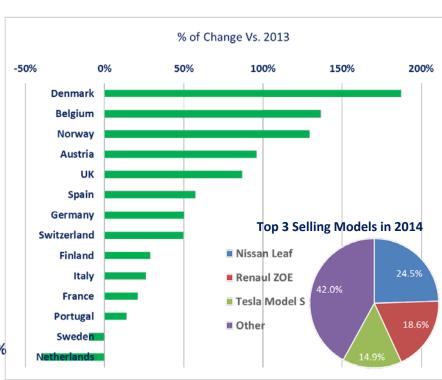


China's Phase I and Phase II EV incentives for both passenger vehicles and buses


	Phase1		Phase 2		
Target market			Public	Private	Public and Private
Incentive duration			2009-2012	2010-2012	2013-2015
Incentive scope		HEV, PHEV, BEV,	PHEV, BEV	PHEV, BEV, FCEV	
			FCEV		
Subsidy Standard	HEV	PV	Up to 50,000¥		
		Bus	Up to 420,000¥		
			(L>= 10 m)		
	PHEV	PV	Up to 50,000¥	3,000¥/kWh	35,000¥ (R>=50 km)
		Bus	Up to 420,000¥		250,000¥ (L>=10 m)
			(L>= 10 m)		
	BEV	PV	60,000¥	3,000¥/kWh	35,000¥ (80km <r<150 km)<="" td=""></r<150>
					50,000¥ (150km <r< 250="" km)<="" td=""></r<>
					60,000¥ (R>=250)
		Bus	500,000¥		300,000¥ (6m <l<8m)< td=""></l<8m)<>
			(L>=10 m)		400,000¥ (8m <l<10m)< td=""></l<10m)<>
					500,000¥ (L>=10m)
		SPV			2,000¥/kWh
	FCEV	PV	250,000¥		200,000¥
		Bus	600,000¥		500,000¥
			(L>=10 m)		
Phase-out			NA	NA	10% reduction in 2014
mechanism					20% reduction in 2015
Pilot cities			25 cities	6 cities	28 cities and regions

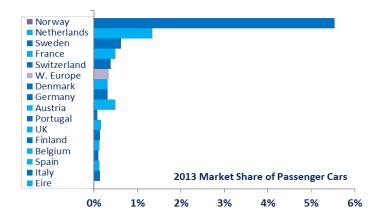
¹ US dollar = 6.1 Chinese Yuan (¥); L = length, R = range, PV = passenger vehicle, SPV= special purpose vehicle

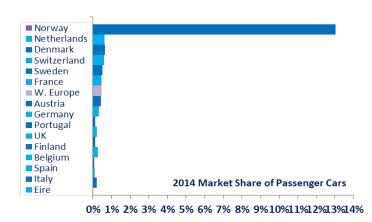

China: NEV share of total car production only reached 0.35% in 2014 but NEV bus market share of total large-size bus production reached 5.2%



Western Europe: Electric car sales pace, far from growing, is slowing

W. Europe: 2014 PEV sales is up 51.7% from 2013 with 58,582 units sold. Norway still leads the market but gradually maturing




Data source: Automotive Industry Newsletter

Highlights from Western Europe E-drive Market

- Norway is responsible for one-in-three of EVs sold in Western Europe (WE). Monthly EV sales share of passenger cars reached record high in August, 15.2%
- Top selling PEV models includes Nissan Leaf (25.1%), Tesla Model S (18.1%), BMW i3 (16.7%) and Renault Zoe (13.5%)
- Over half of BMW i3 sold in Germany now come equipped with the range-extender engine
- In France, in spite of a tempting €6,300 government sweetener to anyone buying a qualifying electric car, the segment has barely taken off, accounting <10% of WE EV market

