

A Combined Experimental and Modeling Approach for the Design of High Coulombic Efficiency Si Electrodes

Xingcheng Xiao General Motors Global R&D Center

> Yue Qi Michigan State University

Brian Sheldon, Huajian Gao

Brown University

Yang-Tse Cheng University of Kentucky

June 17th, 2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID: ES221

Overview

Timeline

- Project start date: 5/17/2013
- Project end date:4/1/2017
- Percent complete: 25%

Budget

- Total project funding: \$1,318,947
- DOE share: \$1,318,947
- Contractor share: \$0
- Funding received in FY13: \$329,000
- Funding for FY14: \$300,000

Barriers addressed

High energy materials with

- Low calendar and cycle life;
- Low coulombic efficiency,
- High cost

Partners

Interactions/ collaborations

- LBNL: Gao Liu: polymer binder
- PNNL: Chongmin Wang: in-situ TEM
- NREL: Chunmei Ban: Advanced surface coating
- Sandia: Kevin Leung: e transport in ALD
 Project lead: General Motors

Objective and Relevance

Objective: to develop a **validated mechanics model** that imports material properties, measured or computed, to understand, design, and make coated Si anode structures with high coulombic efficiency and cycle stability.

Relevance

- Use of Si-based electrodes limited by coupled mechanical/chemical degradation.
 Instability of the Si SEI leads to low coulombic efficiency and short life.
- An artificial SEI coating can be mechanically stable despite the volume change in Si, if the material properties are **optimized**. (derived in next page)
- A validated model with known material properties will guide the synthesis of surface coatings and the optimization of Si size/geometry/architecture to stabilize the SEI, enabling a negative electrode with high capacity and coulombic efficiency, long term cycle stability.

Initial Mechanics Analysis

The size limit to mitigate each failure mechanism resulting in SEI instability is derived from solid mechanics.

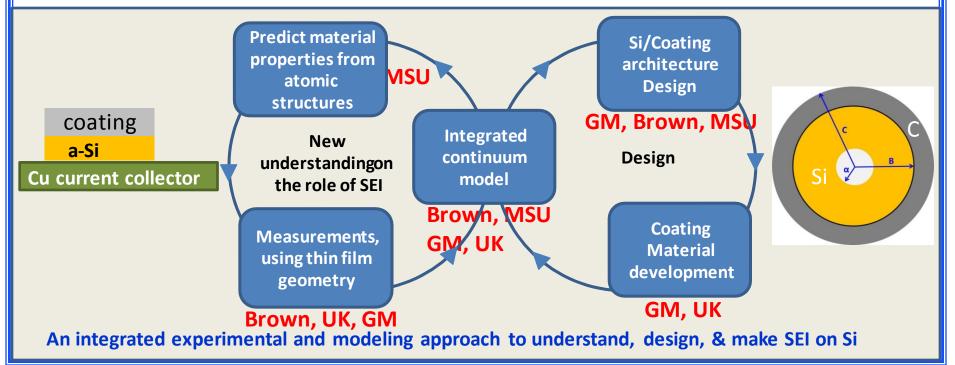
• Fracture of Si particles

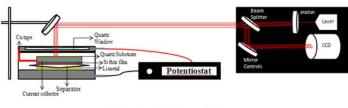
• SEI peel-off from Si particles during lithiation

$$l_{delam}$$
 / $\sqrt{h} \propto \sqrt{E\Gamma_{
m int}}$ / $au_{
m int}^2$

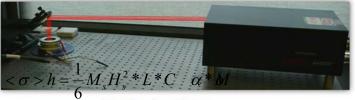
 $l_{frac} \propto \left(\frac{\Gamma(1-\nu)F^2D^2}{E(1+\nu)\Omega^2I^2}\right)^{1/2}$

$${}_{buckle} = \frac{(\alpha_1 \Gamma_{int} + \alpha_2 \Gamma)(1 + \nu)(1 - 2\nu)}{2\pi E \varepsilon_0^2}$$

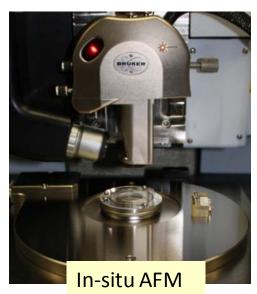

Experimental validation and material properties are required in order to DESIGN SEI and Si nanostructures.


GM

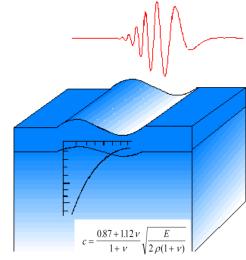
Approach/Strategy


- Develop a multi-scale model to establish a correlation between coulombic efficiency and mechanical degradation.
- Combine simulation with experiments for critical material properties.
- Develop *in-situ* electrochemical approaches to understand the critical mechanical and electrochemical behaviors of SEI and Si.
- Use the validated model to guide surface coating design and Si size/geometry/architecture.

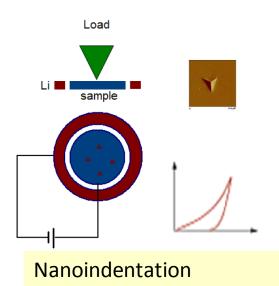
In-situ experimental approaches to investigate SEI and Si mechanical behavior and validate the models



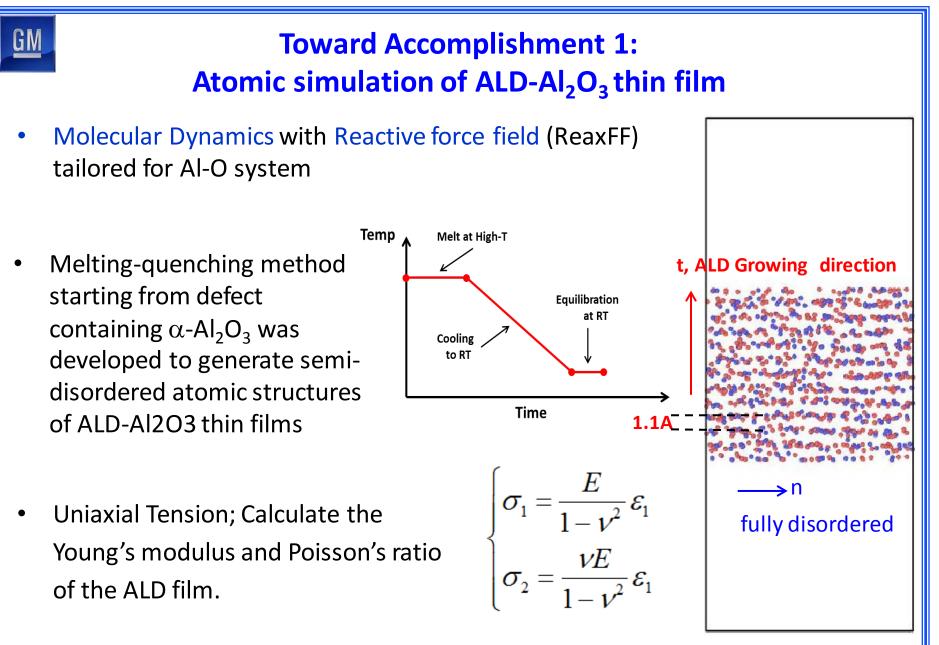
Schematic of experimental set up

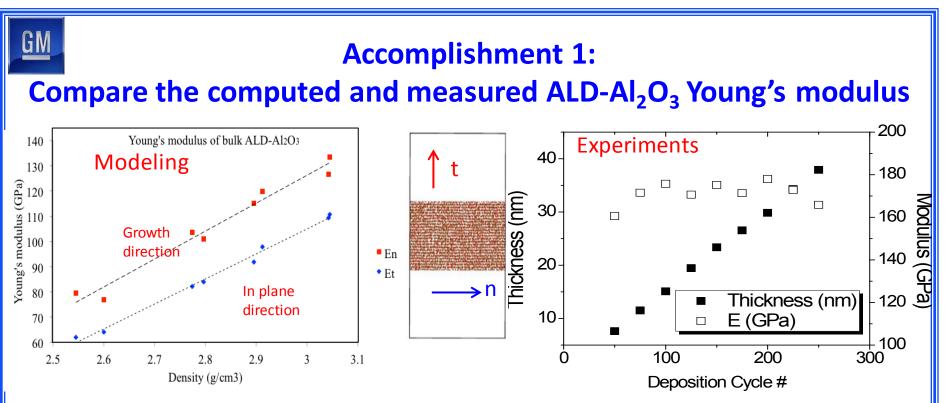

Actual Experimental Set up

Moss to investigate stress evolution



Optical Microscope


Laser Acoustic Wave system


Project Milestone

Month/ Year	Milestone of Go/No-Go Decision	Status
Jun. 2013	Determine the elastic properties of artificial SEI on Si via both atomic modeling and laser acoustic wave measurements.	completed
Sept. 2013	Correlate the interfacial charge-transfer kinetics and coating thickness on Si film electrode .	completed
Dec. 2013	 Compare SEI evolution on coated and uncoated Si surface. Evaluate the chemical composition of the initial SEI on uncoated Si. Design new method to evaluate the evolution of stress of the Si electrode during SEI formation and growth in <i>in situ</i> cells. Formulate a theoretical framework to connect mechanical degradation and columbic efficiency. 	Completed
Jan. 2014	Compare the basic elastic properties of ALD coatings (e.g., Al ₂ O ₃) computed from MD simulations with ReaxFF and measured by AFM and laser acoustic wave for method validation.	completed
April 2014	Predict the interface strength of given coatings on Si substrate from QM calculations and compare with nanoindentation and scratch tests.	Simulation completed and experiment in progress

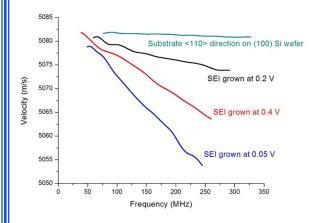
* Ongoing effort: develop Li-O-Al-Si ReaxFF

Method: molecular dynamics with ReaxFF.

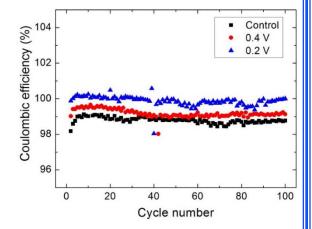
Structure: Semi-disordered structure with O-O distance of 1.1 A along growth direction.

Results: Modulus increase linearly with the film density. At the experimental density $(3.26g/cm^3)$, the predicted $E_n=130GPa$.

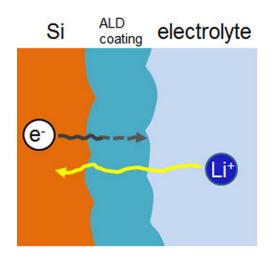
Methods: X-ray reflectometry and ellipsometry for growth rate and density; laser acoustic wave system for the modulus (growth direction).


Structure: growth rate =1.5 nm/cycle and density=3.26g/cm³.

Results: E_n=170GPa

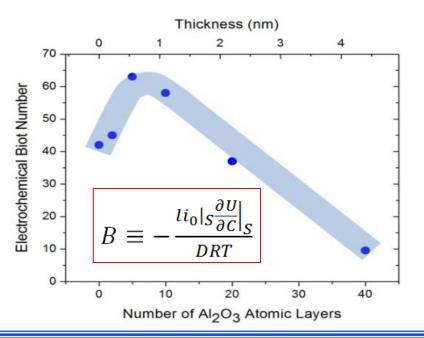


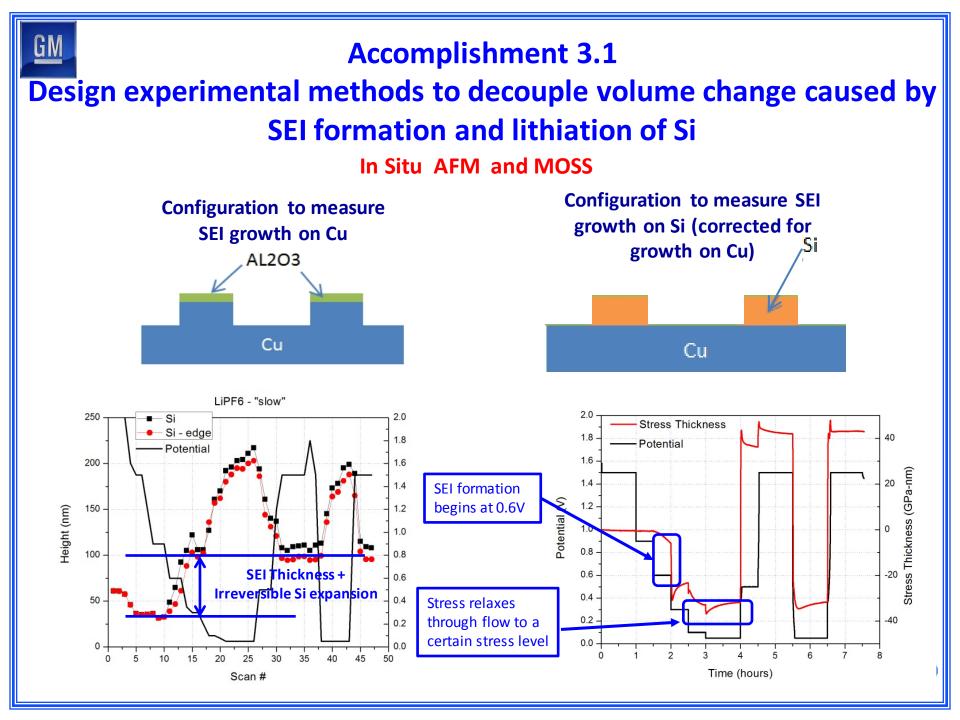
Extension from Accomplishment 1: Critical voltage to control SEI structure and modulus on uncoated Si


Potential held	0.4 V	0.2 V
Thickness (nm)	57.18	24.31
Young's modulus (GPa)	48.08±1.29	69.18±2.40
Substrate C11 modulus (GPa)	165.98±0.02	165.54±0.02
Least-square errors	0.214	0.228

- More organic compounds formed > 0.4 V; More inorganic compounds formed for 0.2 V < holding voltage < 0.4 V
- LAWS measurement shows higher modulus of SEI formed at low potential.

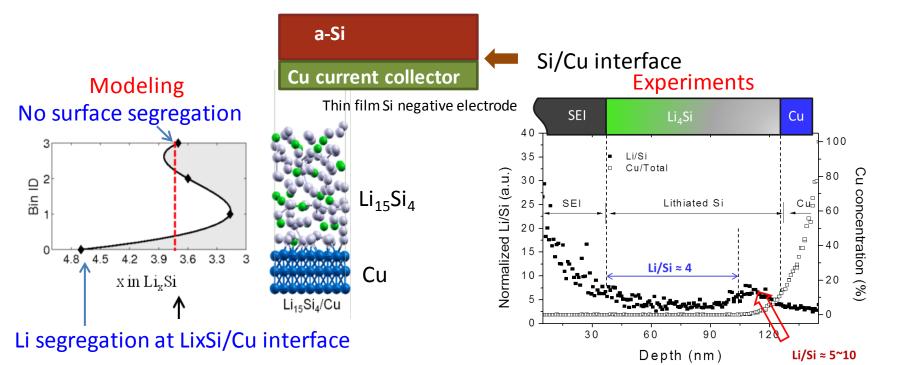
Accomplishment 2:


Optimized ALD-Al₂O₃ thickness exist by correlating the interfacial charge-transfer kinetics vs coating thickness



- Modified PITT quantifies overall interfacial resistance of ALD-Al₂O₃ coated Si electrodes.
- Artificial ALD SEI layers improve the cycle life and facilitate the charge transfer.

Table 1. Exchange Current Densities and Rate Constants of ALD Al₂O₃-Coated Si Measured from the Modified PITT


Al ₂ O ₃ ALD atomic layers	exchange current density (mA cm ⁻²)	reaction rate constant (cm s^{-1})
0	0.161	2.1×10^{-7}
2	0.172	2.2×10^{-7}
5	0.242	3.1×10^{-7}
10	0.223	2.9×10^{-7}
20	0.142	1.8×10^{-7}
40	0.037	4.8×10^{-8}

Accomplishment 3.2

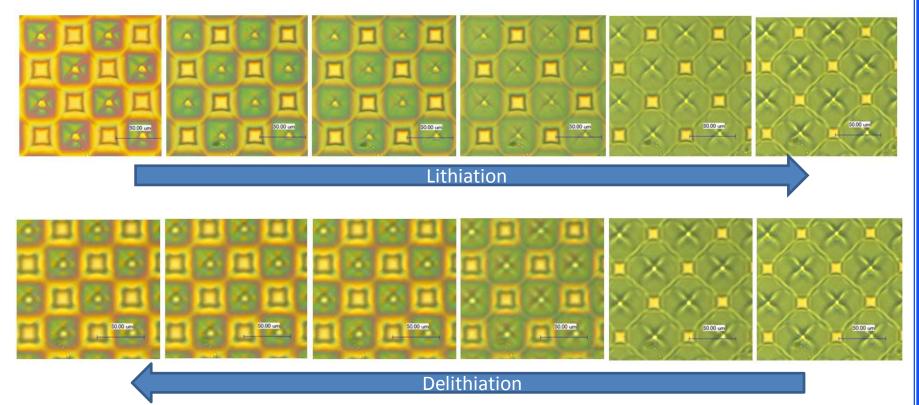
Understanding interfacial sliding in patterned Si model system

Method: *Ab initio* MD simulations Results: Li segregation due to charge transfer from Li to Cu..

Method: TOF-SIMS depth profile Results: High Li/Si ratio at the Si/Cu interface

- Adhesion strength is reduced from 1.85 to 1.53 J/m^2 after full lithiation.
- Interface sliding resistance is reduced from 0.28 to 0.03 GPa upon full lithiation
- Stress buildup is released by interfacial sliding.

M.E. Stournara et. al. "Lithium segregation induced structure and strength change at amorphous-Si/Cu interface", Nano Letters, 13 (10), 4759 (2013)



Accomplishment 3.3

Design experimental methods to impose stress on SEI by taking advantage of Si island sliding on Cu current collector.

Optimized island dimension: 25um X 25um X 250nm:

Ideal model system to quantitatively investigate the SEI mechanical behaviors.

Accomplishment 3.4

Connect coating/SEI failure mechanism with electrochemical performance

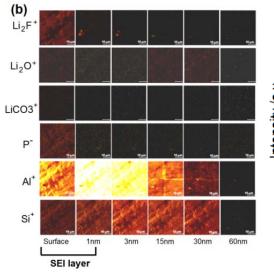
Hypothesize 2x2 failure mechanisms/models of coating during lithiation and delithiation.

The exposed surface or thinned SEI needs will be re-passivated at different rate. . <u>Propose</u>: SEI growth limited by electrolyte transport (short times) and electron conduction (long times):

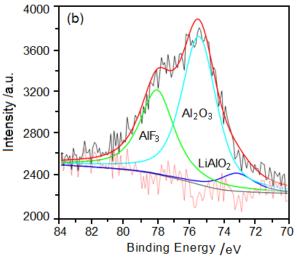
*Understanding coating failure mechanisms will be the focus for the next stage.

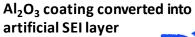
$$\frac{dh}{dt} \simeq \frac{V_m c^s}{\left[\frac{1}{k} + \frac{h}{D}\right]} + \frac{V_m c^s_{el}}{\left[\frac{1}{k_{el}} + \frac{h}{D_{el}}\right]}$$

A. Tokranov, et.al, ACS Applied Materials & Interfaces, 2014



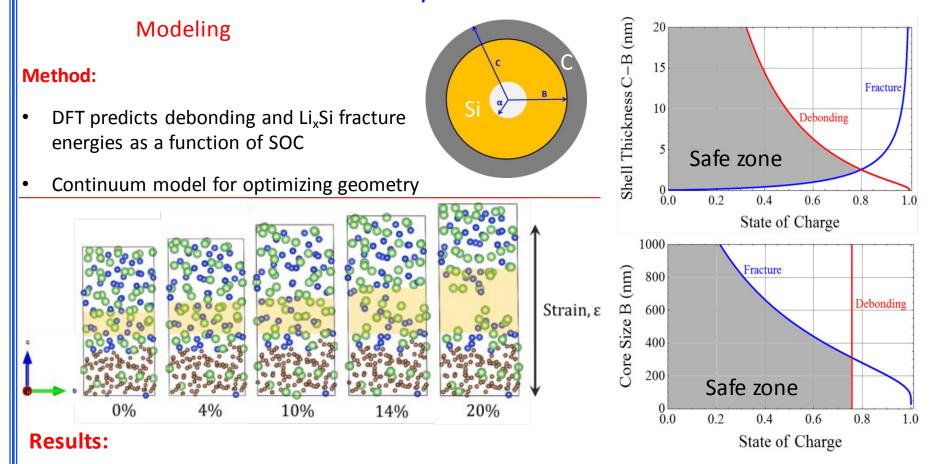
Accomplishment 4


Demonstrate SEI composition and property changes after cycling


Observations	Bare Si electrode SiO ₂ Si Cu	ALD coated electrode Al ₂ O ₃ Si Cu		
Lithiation Reaction (DFT)	$2Li + SiO_2 \rightarrow 0.5Li_4SiO_4 + 0.5Si$ $\langle V \rangle = 1.2V$	1.5Li+Al ₂ O ₃ → 1.5LiAlO ₂ +0.5Al <v>=0.93V</v>		
Young's Modules variation due to lithation*	E(SiO ₂) = 140 GPa E(Li ₄ SiO ₄) = 143 GPa	E(a-Al ₂ O ₃) =360GPa E(g-LiAlO ₂)=150GPa		

- DFT: SiO₂ and Al₂O₃ lithiated above 0.8 V (EC decomposition).
- TOF-SIMS shows composition changes of the top surfaces
- Artificial SEI reduces natural SEI layer formation (30 nm to 2 nm), much less electrolyte decomposition.

Surface coating suppresses electrolyte decomposition



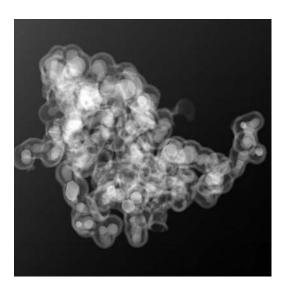
Accomplishment 5:

Mechanical properties at Li_xSi/Li_vC interfaces. Design of core-shell structures

No Li segregation at Si/C interface, fracture occurs inside LixSi instead of Si/C interface.

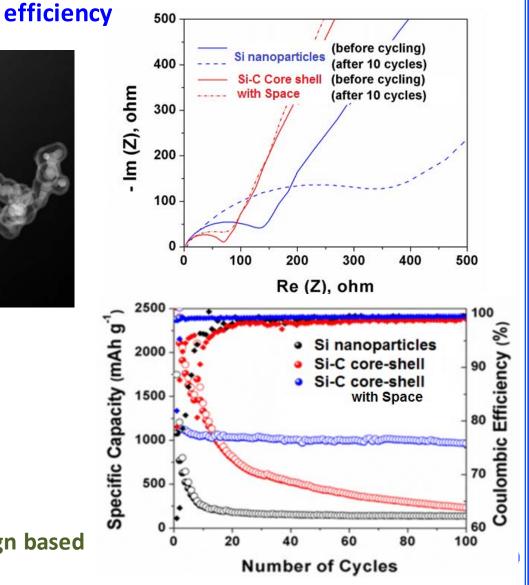
The safe zone: Core thickness < 200 nm, Shell thickness ~ 10 nm.

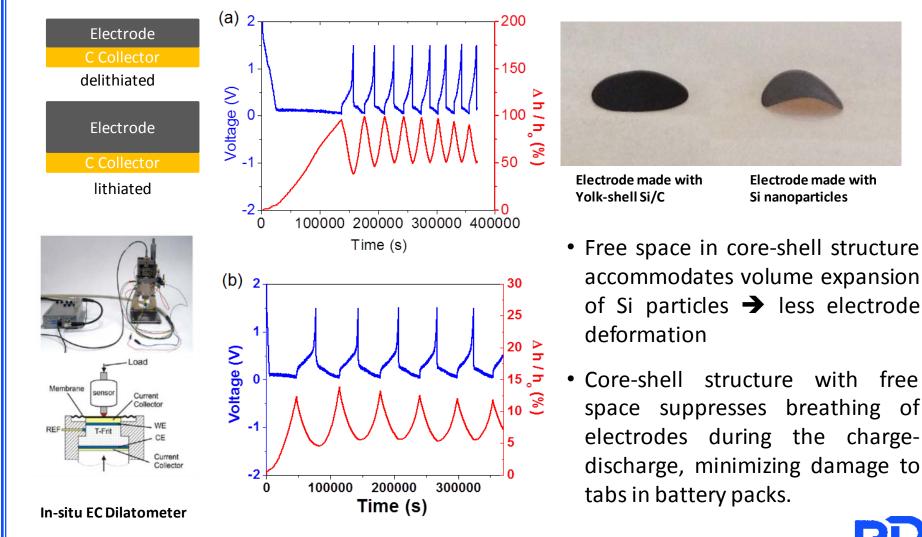
M. E. Stournara, et. al. From Ab Initio Calculations to Multiscale Design of Si/C Core–Shell Particles for Li-Ion Anodes, Nano Letters, 14 (4), 2140–2149 (2014)


Experiments for Accomplishment 5:

Si-C Core/shell structure with free space to stabilize SEI and increase coulombic

Lithiated Core/shell




Benefits of yolk-shell structure:

- Accommodate Si volume expansion
- Stabilize SEI layer
- Improve electrical conductivity
- Enhance Electrode integrity

*Next: Optimize the geometry design based modeling insights

Extension from Accomplishment 5 Minimized Breathing Effect at Electrode Level

free

Collaborations and Coordination with Other Institutions



National Renewable Energy Laboratory

Apply advanced binders to improve electrode integrity, also characterize their mechanical properties utilizing the in-situ electrochemical approaches developed in this project.

Investigate the stability of artificial SEI on Si nanoparticles using *in-situ* TEM

Investigate the mechanical properties of advanced surface coating as artificial SEI utilizing in-situ electrochemical approaches and modeling

Large scale *ab inito* MD simulation of electron transport through ALD coatings to predict electrolyte reduction reactions rates

Interface modeling for Si-CNT bead-string nano-structures

Develop novel Si nanostructure, leveraged by Canada NSERC CRD funding and GM support

Publications

- 1. Anton Tokranov, Brian W. Sheldon, Chunzeng Li, Stephen Minne, and Xingcheng Xiao, In Situ AFM Study of Initial SEI Formation on Silicon Electrodes for Li Ion Batteries, ACS Applied Materials & Interfaces, DOI: 10.1021/am500363t, 2014
- 2. Maria E. Stournara, Yue Qi, and Vivek B. Shenoy, From Ab Initio Calculations to Multiscale Design of Si/C Core–Shell Particles for Li-Ion Anodes, *Nano Letters*, 2014, 14 (4), 2140–2149
- Xin Su, Qingliu Wu, Juchuan Li, Xingcheng Xiao, Amber Lott, Wenquan Lu, Brian W. Sheldon, Ji Wu, Silicon-based Nanomaterials for Lithium Ion Batteries - A Review, Advanced Energy Materials, 2014, 4, 1-23
- 4. Fathy M Hassan, Victor Chabot, Abdel Rahman Elsayed, Xingcheng Xiao, Zhongwei Chen, Engineered Si electrode nano-architecture: A scalable treatment for the production of nextgeneration Li-ion batteries, *Nano Letters*, 2014, 14 (1), 277–283
- 5. Anton Tokranov, Xingcheng Xiao, Peng Lu, Brian W. Sheldon, The origin of stress in the solid electrolyte interphase on carbon electrodes for Li ion batteries, *Journal of Electrochemistry Society*, 2014,161 (1), A58-A65
- Hamed Haftbaradaran, Xingcheng Xiao and Huajian Gao, Critical film thickness for fracture in thin film electrodes on substrate, *Modeling and Simulation in Materials Science and Engineering*, 2013, 21, 074008
- Maria E. Stournara, Xingcheng Xiao, Yue Qi, Priya Johari, Peng Lu, Vivek B. Shenoy, Brian Sheldon, Huajian Gao, Lithium segregation induced structure and strength change at amorphous-Si/Cu interface, Nano Letters, 2013, 13 (10), 4759-4768

Key Accomplishments

- A combination of experimental approaches and MD simulations has been developed to investigate the mechanical properties of ultrathin natural formed SEI and artificial. The preliminary test on ALD-Al₂O₃ coating shows agreement has been achieved.
- A patterned Si model system has been developed to investigate the mechanical failure of SEI. The *ab initio* MD simulations, supported by experimental measurement, explained that Si segregation at the interface decreased the interfacial resistance by one order of magnitude, responsible for interfacial sliding.
- A combined DFT and continuum model has been developed to predict the mechanically safe Si-C core-shell structures, which stabilize the SEI layer and accommodate the volume expansion of Si. As a result, the breathing effect of electrode has been significantly suppressed.

Future Plans

1. Select and optimize artificially-formed SEI, including:

- Apply the continuum model to search for material property design space for the most stable SEI;
- Vary SEI chemistry and perform property predictions at QM and MD level to investigate structure/chemistry to property relationship of SEI on Si;
- Correlate and determine the dominating material properties for stable SEI.

2. Design optimal architecture of artificially-formed SEI and Si, including:

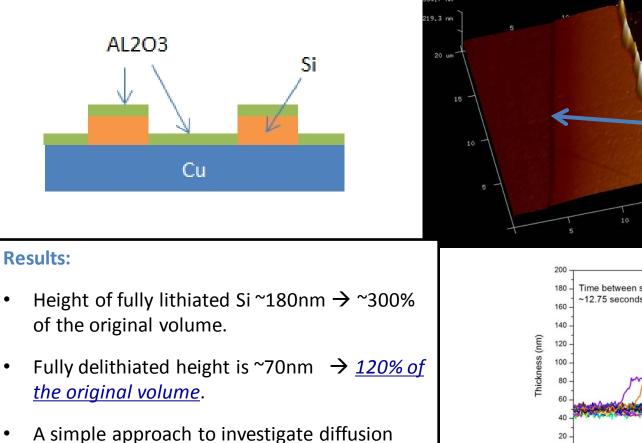
- Predict the critical size and desirable material properties of SEI in a core-shell or yolk-shell structure;
- Investigate the surface reaction rate and charge transfer with modified PITT and EIS;
- Tailor the architecture to stabilize the SEI mechanically.

3. Engineer structures that can be made a high-volume, including:

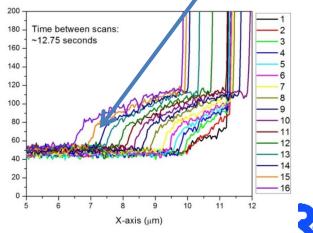
- Engineer alternative Si structures that can be made at high-volume, for example: etched Si, porous Si, covered with the selected coating material;
- Couple single particle model with porous electrode model to improve the electrode integrity.

Acknowledgement

- We acknowledge the support from DoE, Office of Vehicle Technologies , under the Batteries for Advanced Transportation Technologies (BATT) Program;
- We also acknowledge the graduate students and postdocs involved in this work:
 - Weidong Zhou, Anton Tokranov, Ravi Kumar, Ill Ryu, Kai Guo, Maria E.
 Stournara, Qinglin Zhang, Jie Pan, Sung-Yung Kim
- Peng Lu for TOF-SIMS

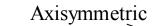


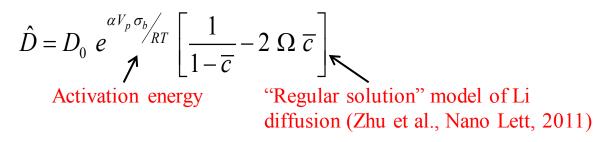
Back up Slides


Irreversible Expansion of Silicon

In Situ Height Measurements Track Lithiation Front During the 1st Cycle

and interface motion kinetics

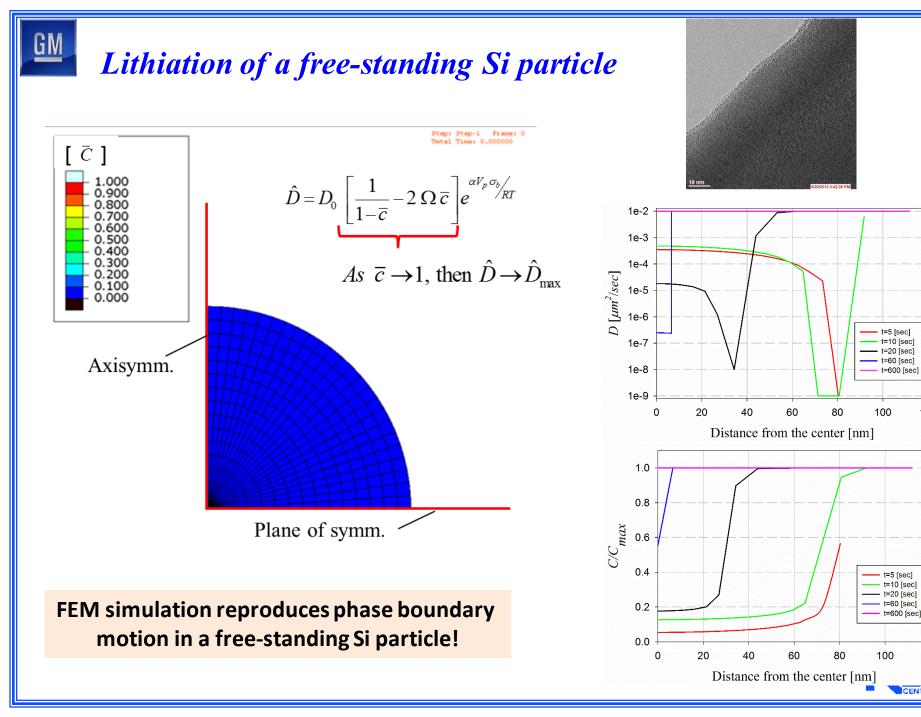

Lithiation , Front


- 10

Deformation in the yolk-shell structure

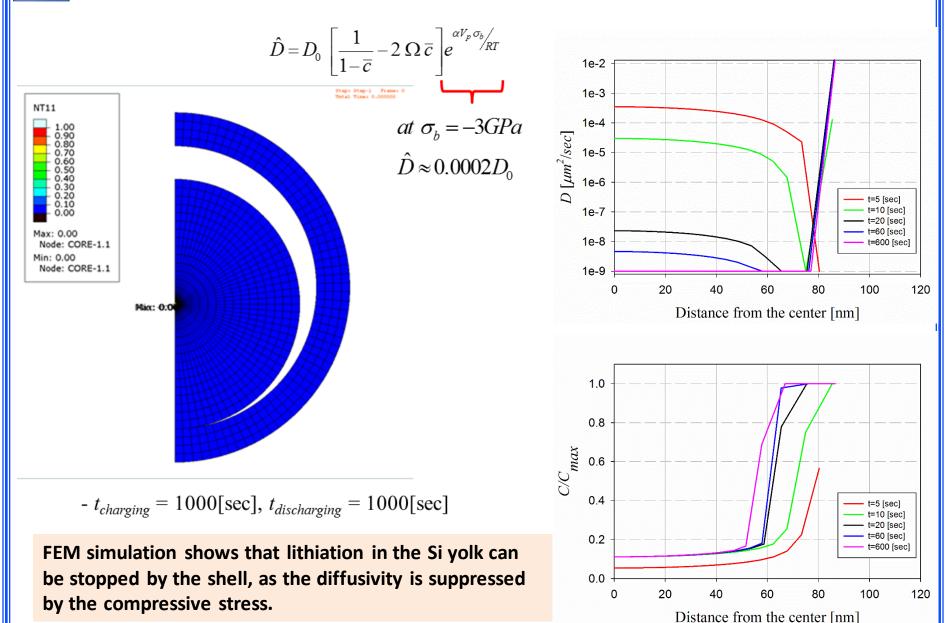
Model Description

- Lithiation with "phase boundary" motion is accounted for with a "regular solution" model (Ting Zhu, Nano Lett, 2011)
- Stress-dependent activation energy for Li diffusion


- Potentiostatic charging ($\overline{c} = 1$ at the surface of core)

Material properties

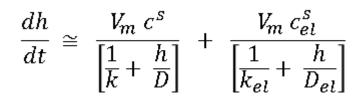
Matarial	Elasti	С	Plastic	D_{θ}	V _p	÷	÷
Material	E [GPa]	v	$\sigma_Y[GPa]$	$[m^2/sec]$	[<i>m²/mol</i>]	α_{c}	α_{T}
a- Si	35	0.22	1	10 ⁻¹⁶	9×10 ⁻⁶	0.5	0.5
C (Diamond)	1000	0.1	•	•	•		


(*: parameters assumed based on MD calculations for Ni-H system in Haftbaradaran et al, 2010)

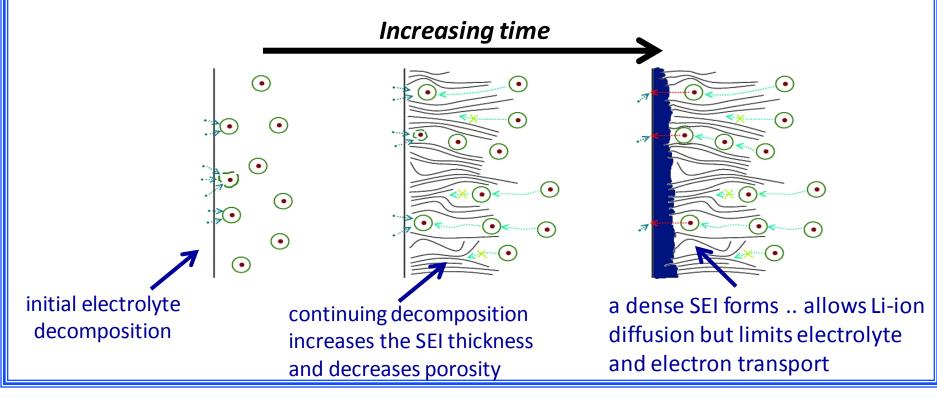
 $D_{out} = 210[nm]$ $t_{shell} = 20[nm]$ $D_{core} = 150[nm]$

CENTER

Lithiation in Si core / C shell



Model of Initial SEI Formation on Silicon


AFM Results:

- On Cu, SEI thickness stabilizes quickly at higher potentials: ~20 nm
- On Si, SEI thickness stabilizes at lower potentials – thickness varies with conditions during first cycle: ~20-50 nm

SEI growth limited by electrolyte transport (short times) and electron conduction (long times):


```
A. Tokranov, et. al, ACS Applied Materials & Interfaces, 2014
```

