

Super Truck Program: <u>Vehicle Project Review</u>

Recovery Act –Class 8 Truck Freight Efficiency Improvement Project

Derek Rotz (*PI & Presenter*) Dr. Maik Ziegler Daimler Truck North America LLC June 19th, 2014

Project ID: ARRAVT080

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start: April 2010
- Project end: March 2015
- Percent complete: 80%

Budget

- Total project \$79,119,736
- Vehicle budget \$47,486,735
 - DOE share^(*) \$15,526,639
 - DTNA share ^(*) \$ 15,526,639

 $(\ensuremath{^*})$ through Feb, 2014 for vehicle R&D expenses only, engine R&D expenses reported separately

Barriers

- Resolve thermal & fluid dynamics tradeoffs between aero
 & cooling
- Rejecting more heat in a smaller, aerodynamic hood & engine compartment
- Development of safe and efficient high voltage power distribution, integrating multiple HV energy sources
- · Making tradeoffs between efficiency, cost and weight
- Vehicle controls integration (aux, hybrid, powertrain, waste heat, predictive)

Partners

- Detroit Diesel
- Schneider National, Walmart
- National Renewable Energy Lab
- Oregon State University
- Strick Trailer
- Michelin

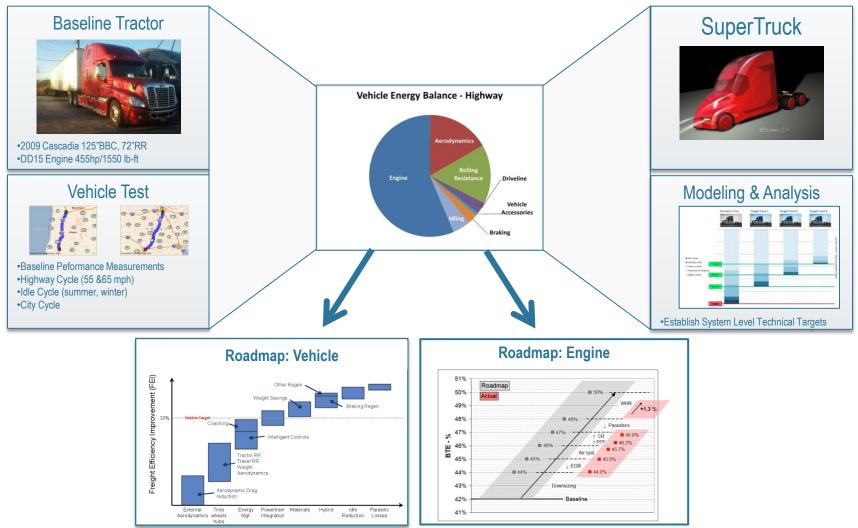
2

Objectives and Milestones

Develop and demonstrate a 50% total increase in vehicle freight efficiency:

• At least 20% improvement through a heavy-duty diesel engine capable of achieving a 50% brake-thermal efficiency

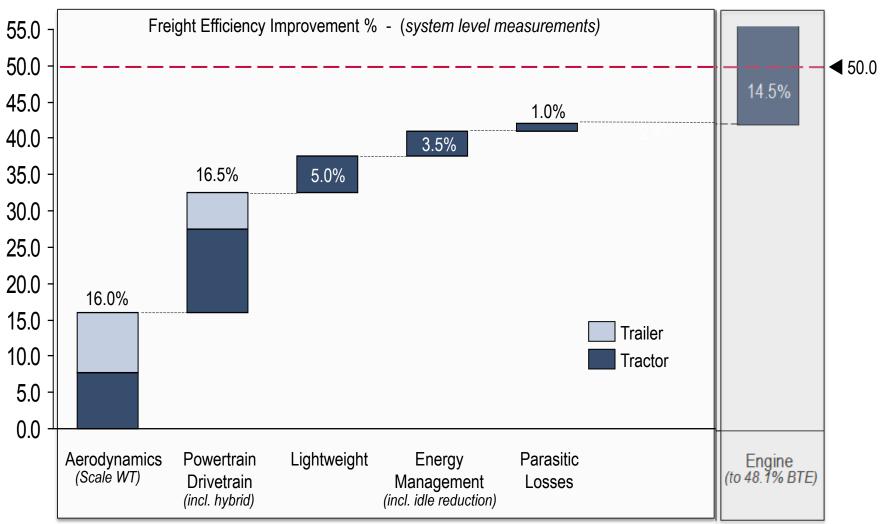
• Identify key pathways towards achieving 55% through modeling and analysis


Timeline	Phase Description	Milestones	
4/10–3/11	Analysis: (1) Technology Modeling/Analysis and Initial Component Development and Demonstration	Develop analytical roadmap: • 50% vehicle freight efficiency improvement • 50% engine brake thermal efficiency	
4/11–3/12	Specification: (2) Experimental Demonstration of Technology Building Blocks for Intermediate Goals	Experimentally demonstrate technology building blocks: • 25% vehicle freight efficiency improvement (system level test) • 46% engine brake thermal efficiency	
4/12–5/13	Design: (3) Technology Identifications and Final Component Development and Demonstration	Identify and initially develop technology building blocks: • 50% vehicle freight efficiency improvement (system level test & analysis) • 50% engine brake thermal efficiency	
6/13–6/14	Build: (4) Experimental Demonstration of Technology Building Blocks for 50% Engine Thermal Efficiency and 50% Vehicle Efficiency	 Experimentally demonstrate technology building blocks: 50% vehicle freight efficiency improvement (system level test) 50% engine brake thermal efficiency 	
7/14–3/15	Test: (5) Final System Integration and Demonstration	 Experimental demonstration: 50% vehicle freight efficiency improvement (entire vehicle test) 50% engine brake thermal efficiency (engine test) 55% engine brake thermal efficiency (engine analysis) 	

Approach

Phase I Milestone Completed

Analytical roadmap development to 50% vehicle FEI & 50% engine BTE


(Engine topics covered in separate session) Daimler Trucks and Buses

Approach

Phase 2 & 3 Milestone Status 🗸

Experimental testing to 25% & 50% vehicle freight efficiency*

* Technical Accomplishments covered in the 2012-2013 Annual Merit Reviews

Approach

Phase 4: Road to 50%

A-Sample

- · Aero hood, bumper, grille
- Downsized Engine, Automated Manual Trans. + eCoast
- · Waste Heat Recovery (electrical expander & vehicle cooling)
- 6x2 Axle Tall RAR + oil management
- Hybrid Electric Powertrain (120kw eMotor, 360v, 2.4 kw-hr usable Li-Ion Bat)
- eHVAC (HV compressor, remote condensor, electrical fan)
- eMotor engine start
- Cab insulation package
- Clutched air compressor
- Electronic air control
- AccuSteer
- Low RR wide based single tires
- Thermal management
- Trailer aero., lightweighting and solar

A-Sample

Final Demonstrator

2009 Baseline Cascadia

A-sample SuperTruck Build

Purpose: to prototype a functional chassis to integrate vehicle systems:

- → Downsized Engine, Waste Heat, Hybrid, Cooling
- → High Voltage Power Distribution
- → Powertrain/Drivetrain Integration
- → Software integration e.g. Shift optimization
- → Packaging, Routing & Plumbing etc.

Testing completed to date:

- → Full Scale Wind Tunnel (underhood airflow)
- ➔ eMotor cold start
- ➔ Thermal tunnel test
- → eHVAC test & calibration
- → Vehicle Performance Testing

Waste Heat Recovery Status

Accomplishments

- Successful Key-on workshop in November including HV electrical components
- 6kw peak exhaust energy recovered under high load, steady state conditions

Current Tasks

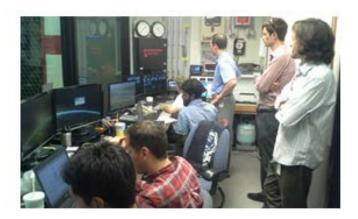
- Develop de-aeration strategy
- Improve control stability during transient operation

A-Sample Thermal Tunnel Testing

Vehicle Measurements

Ambient Capability Engine + Waste Heat

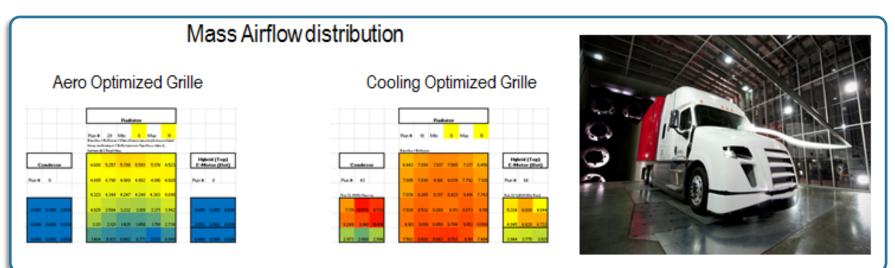
• 113°F (45°C) reached


Engine Air Intake

- Stayed below temperature rise limits
- Pressure measurements noisy

Fan Speed Characterization

- Swept temperatures (25-40°C)
- Swept wind speeds (20-40mph)
- Grille open & closed positions
- Fan speed remained below 1000 RPM



A-Sample Air Flow Study in Wind Tunnel

Vehicle Measurements

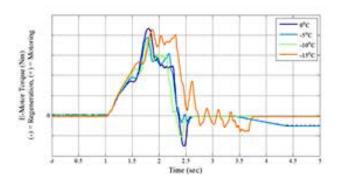
Cruise Speed (58mph)	Air Flow (kg/ s)	Drag
A-sample configuration	Eng, WHR, CAC	ΔC_d (0° Yaw)
Nominal	baseline	baseline
Cooling optimized grille	+3%	0%
Aero optimized grille	-57%	-6%

eMotor Cold Start Test

Vehicle Measurements

Test Procedure

- 24 hour cold soak
- 0 to -15°C by 5° incr.

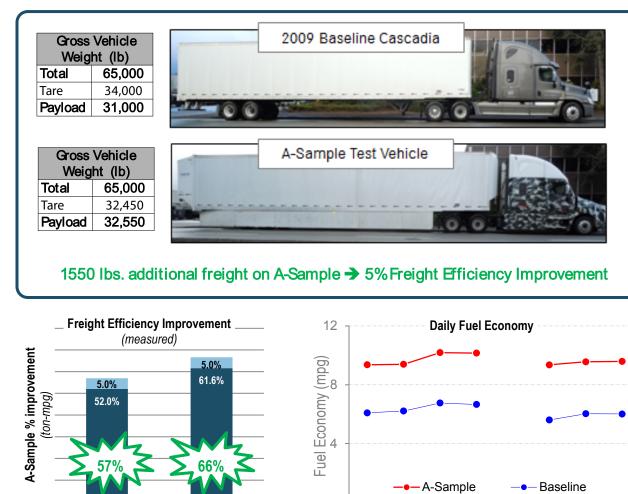

Observations

- No eMotor torque increase at lower temps.
- Peak Li-ion battery current at 112A

Conclusions

- Temperatures of -15°C easily achievable
- Data indicate -20 to -25°C starting possible
- >1% Freight Efficiency gained
 - Omit starter and Pb-Acid starting batteries

eMotor Torque Profile Vehicle Measurement Data



Vehicle Level Performance Test ✓

March-April, 2014: On Highway Fuel Economy Test

0

3/26

3/27

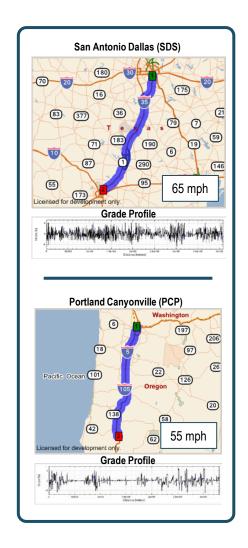
3/31

PCP

4/1

4/8

4/9


SDS

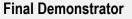
4/10

SDS

PCP

Fuel Weight

Approach

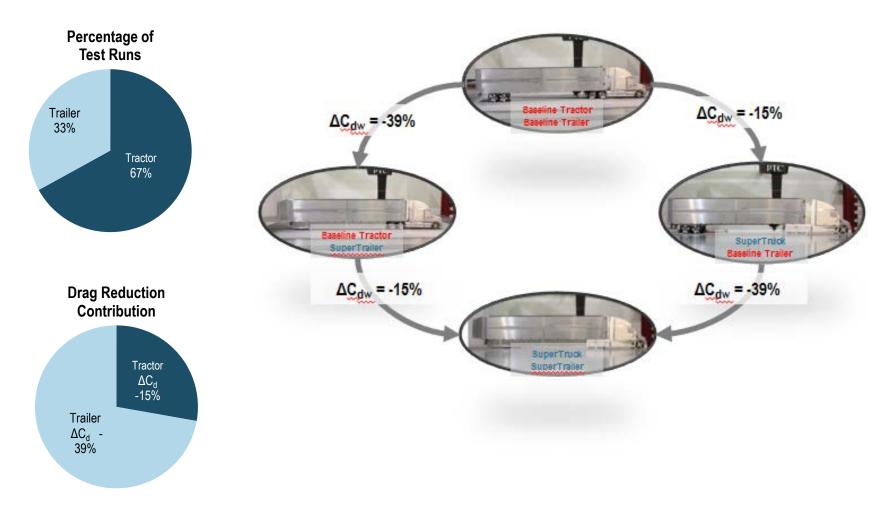

Phase 4: Road to 50%

A-Sample

Final Demonstrator

A-Sample Technologies, plus...

- Full Tractor Aero
- 50% BTE Engine + WHR
- Predictive hybrid & engine controllers
- Axle Active oil management with FE gear oil
- Lightweight Aluminum Frame and cross members
- Ultra Lightweight Air Suspension
- Smart 6x2
- · Solar reflective paint
- Enhanced Trailer aerodynamics



2009 Baseline Cascadia

Aerodynamics Validation in Scale Model Wind Tunnel

SuperTruck vs. Baseline

14

Final Demonstrator Build

Chassis

- Frame, Suspension, Axles complete
- Powertrain & cooling Installed
- Wiring & plumbing on-going

Cab Exterior

- Design release complete incl. A&B side parts
- Molds & exterior parts 80% complete
- Pre-fit completed by June

Cab Interior

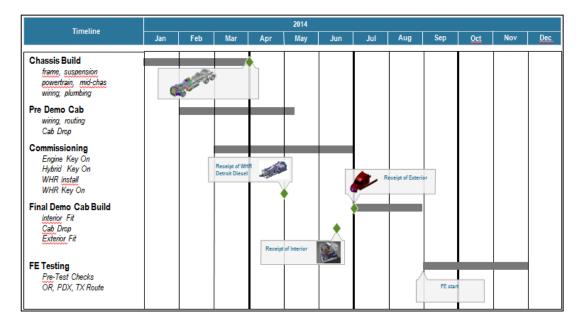
- Sleeper design complete
- Components & assy. ongoing
- Ship to Portland in June

Build progressing for Sept 1st FE test start

SuperTruck Partnerships and Collaborations

Department of Energy:

- → Roland Gravel
 → Gurpreet Singh
 - → Ken Howden
 - → Carl Maronde


Summary and Future Work

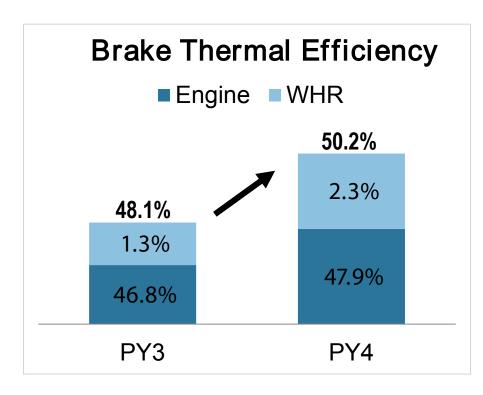
Successful completion of phases 1-3; Phase 4 targets met

- ✓ 50% Vehicle Freight Efficiency target exceeded on A-Sample vehicle through testing on Portland-Canyonville and San Antonio-Dallas routes
- ✓ 50% Engine Brake Thermal Efficiency target exceeded in engine test cell

Next Steps

- Complete buildup of 2 final demonstrator vehicles
- Conduct fuel economy testing

Backup



Backup

Project Year 4 (PY4) Engine BTE Improvement \rightarrow 2.1% points

- PY4 Enablers
 - Further increase in compression ratio (CR), piston bowl and matching injector profile optimization.
 - 3rd Iteration of turbo-charger.
 - Optimized liner cooling.
 - EGR waste heat recovery.
 - WHR component and calibration optimization.