

Step change in Fuel Efficiency: Eaton's perspective

October 2012

Many parts of the value chain... ...fuel efficiency is the *central* challenge!

Technology: no silver bullet... future is in smart systems and deep integration

Smart and fast shifting **Engine Advanced Boosting** Look-Ahead **Downspeeding** V2V and V2I **Engine Downsizing Automation** Reduced loads **Advanced Combustion** Route planning Drag, Rolling Systems Integration & Road load resistance, Friction, **Optimization** management smart accessories **Fuels** Waste **Energy Natural Gas** Waste Heat Recovery **Electrification** Micro-turbines **Hybridization** EV: PHEV, Fuel Cells,

Diesels, Trucks and Trends...

Downspeeding 101

- Lower Friction
- Lower Pumping
- Combustion Optimization

1.5-3% Fuel Economy / 100 rpm

CO2 regulations 101

- Phase 1 (2014/17)
 - 6-23% reduction in Fuel Consumption
 - Special incentives for Advanced Technologies
- Phase 2 (2018+)
 - TBD Reduction
 - Technology-Forcing

Trends

Vehicle Speed	•	+Fuel -Productivity	More Trucks!
Engine Speed		+Fuel -Driveability	High-Performance Automation
Engine Displacement	-	+Fuel -Driveability	Supercharging VVA

Implications

Powerina Business Worldwide

4

Downspeeding saves fuel but increases shift density

Powerina Business Worldwide

Advanced boosting

Turbo lag elimination

HD Diesel Supercharger

- Instant boost
- Eliminates turbo lag
- Turbo optimized for steady conditions

Fuel economy with matched performance

- 22% 0-35 mph accel
- 2.3% line haul
- 5.4% HHDDT
- 16.7% FTP 72

What about Class 2b – 3?

- Significant fuel consumption improvement
- Electrical boosting
- Start-Stop
- Up to 50% engine downsizing

Efficient Variable Valve Actuation

Downspeeding

Loss of engine brake capacity

Downsizing

Cylinder deactivation

Multi-stroke cycles

- Added/Lost motion
- Cam-less
- Active timing control

Energy Recovery

Affordable Hybrids

Challenge: Get to 3 year payback from saved fuel

- State of art transmissions
- Small e-machines run in efficiency sweetspot
- Novel architecture

Waste Heat Recovery

Challenge: compact, simple, cost effective systems?

- Large heat exchangers vs. aerodynamics
- Expander efficiency vs. high speed machine complexity

MD and Bus: Ripe for Innovation!

Electrification

- Efficient EV drivetrains
- Rapid charging
- Fuel cells and micro turbines
- High Voltage Distribution

Hybrids

- Affordable solutions
- Scalability is key
- Advanced controls to reduce battery needs

Drivelines

- Efficient
- Automated

Advanced automation makes every driver a best driver

Test 1

Test 2

Baseline LPM On Delta (%) Compensated **MPG** 6.06 Southfield - Ann Arbor 6.28 +3.5 +5.3% 45,000 lbs 51.40 Avg Speed 52.42 -2.0 **MPG** 6.59 6.66 +1.0 +2.5% Detroit - Toledo (10 miles) Avg Speed 59.55 61.24 +2.8 75,000 lbs

Expected average >4% mpg improvement across the fleet

Winning team: Government and Industry partnerships

