

Recovery Act: Nanoengineered Ultracapacitor Material Surpasses the \$/kW Threshold for Use in EDVs

Chris Wheaton COO & CFO EnerG2, Inc. May 11, 2011

ARRAVT011

This presentation does not contain any proprietary, confidential, or otherwise restricted information

THE REPORT OF A DESCRIPTION OF A DESCRIP

Overview

Design and build a factory for large-scale production of nano-engineered carbon materials

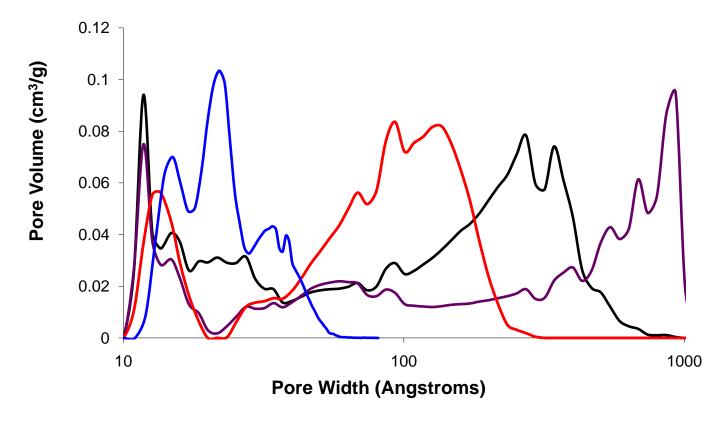
Challenges

	Chanenges
 Timeline Start: April 2010 Target End: March 2012 ~35% Percent complete 	 Phase I: Finalize process design for scale Phase II: Ensure on time delivery of processing equipment Phase III: Resolve uncertainties surrounding a complex construction project Phase IV: Fine-tune process and equipment parameters
 Budget DOE Share: \$21.3 million EnerG2 Share: \$7.4 million Capital: 77% Operating: 23% 	 Key Partners Preliminary Design: CH2M Hill, Portland, OR Construction: Fisher & Sons, Burlington, WA Processing Equipment: Oregon Freeze Dry, Albany, OR Harper Int'l, Lancaster, NY Procedyne, New Brunswick, NJ

Engineered Carbon Will Be the Key to Energy Storage

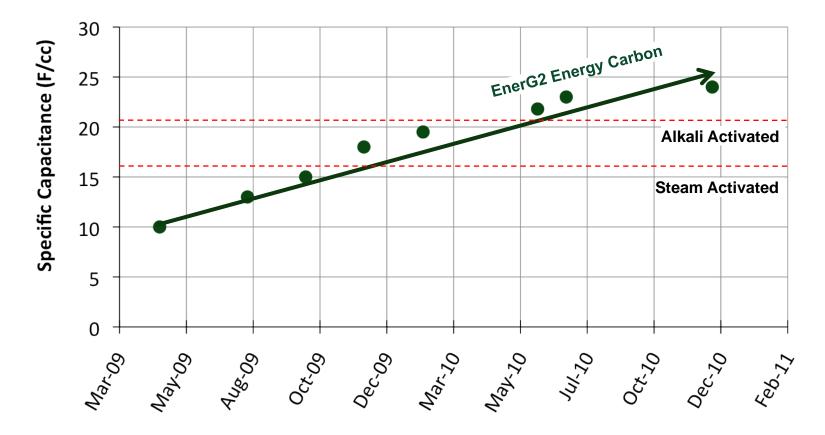
Technical Advancements and Unique Capabilities

- EnerG2 NC-Series Electrode Carbon will result in a new generation ultracapacitor with significantly higher power density and much lower cost per kW
- Enable the combining of ultracapacitors and batteries in EDVs to reduce capital and battery replacement costs while improving mileage efficiency and vehicle performance
- The plant, when complete, will produce enough NC-Series electrode carbon to supply production of 60,000 EDVs annually

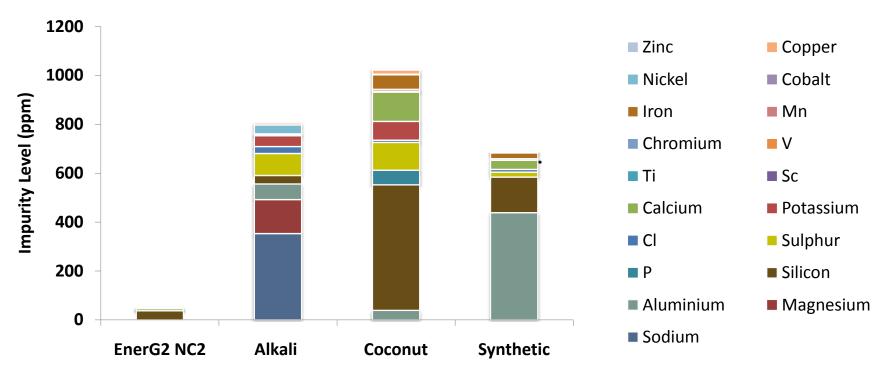

Job Creation and Economic Growth

- At least 50 jobs will be created or sustained in the Albany, Oregon area during the design, procurement and construction phases of this project.
- Once the manufacturing facility is up and ready for production, it will employ at least 25 full-time positions to operate the facility.
- When the plant is at full capacity, the headcount in the factory is expected to be at least 35 full-time employees with potentially more as final detailed designs are completed.
- Expansion will further accelerate high-quality job creation

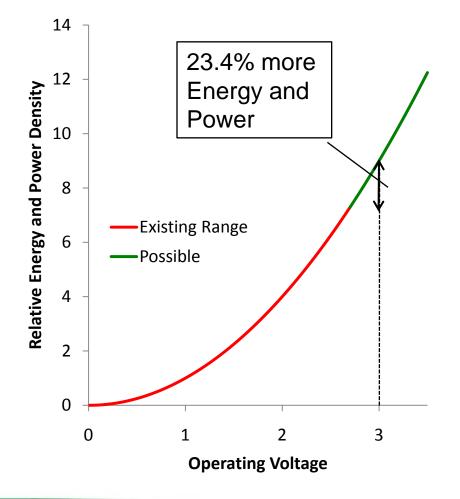
Tuned Pore Structures

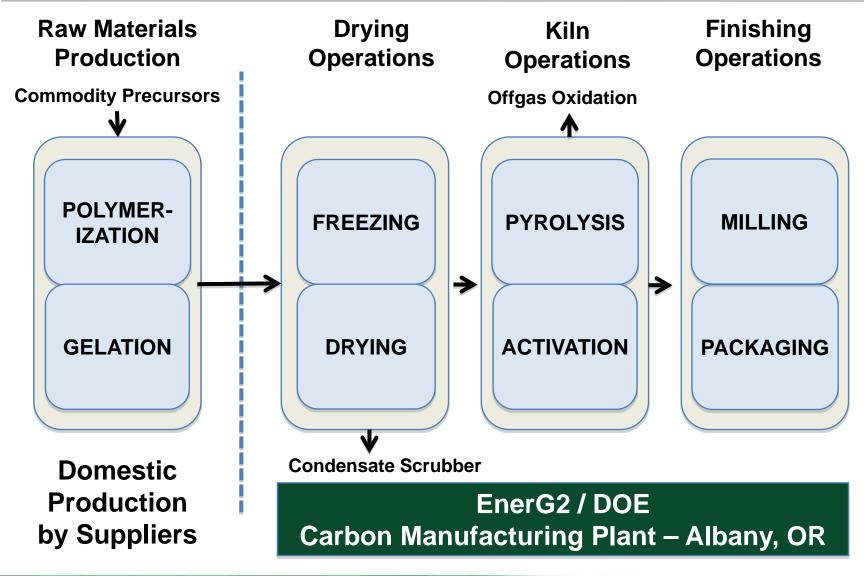

We have the unique ability to tune the pore structure of the precursor and maintain that structure during manufacturing:

Rapid Improvement


Our ability to engineer carbon pore distribution has enabled rapidly improved performance in our ultracapacitor carbon:

Unrivaled Purity


Because we start with pure precursors, EnerG2 carbon has less than 1/10th of the impurities that are found in other activated carbons.


Exponential Storage

- Energy and Power increase with voltage squared
- Operating voltage is maxed at 2.7V for automotive
- Transition from 2.7 to 3.0V yields 23.4% increase in energy and power
- Transition to Li-ion V (3.7V) would nearly double energy and power density

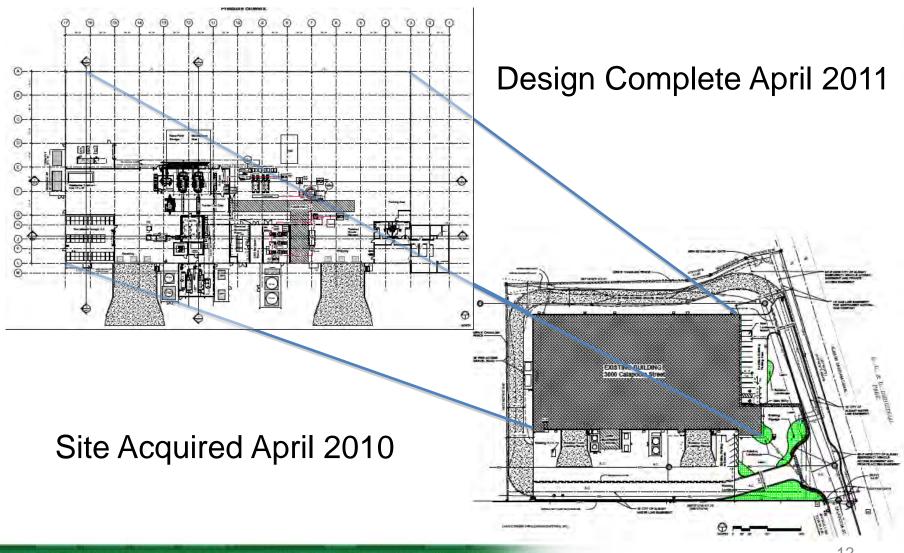
Approach

Approach: Timeline

Task		Start Date	End Date	
Phase I – Design				
1.1 – Project Planning and High-Level Design		4/1/2010	11/28/2011	
1.2 – Site Acquisition		4/1/2010	4/21/2010	
1.3 – Select Design / Build Firm		10/22/10	3/4/2011	
1.4 – Finalize Detailed Process Design		2/21/10	2/18/2011	
1.5 – Sign Construction Contract		1/1/2011	3/31/11	
1.6 – Begin Environmental Permitting Process		5/3/2010	6/7/2011	
Phase II – Procurement & Me	obilization			
2.1 – Equipment Procurement		Q4 2010	7/1/2011	
2.2 – Mobilize Building Construction		4/6/2011	6/19/2011	
2.3 – Submit Building Permit Applications		3/21/2010	6/19/2011	
Phase III – Constructi	ion			
3.1 – Initiate Building Construction		6/6/2011	6/19/2011	
3.2 – Receive and Install Equipment		8/12/2011	12/31/11	
3.3 – Connect Utilities Connections		4/20/2011	6/20/2011	
3.4 – Install Safety Systems		7/15/2011	12/31/2011	
3.5 – Environmental & Occupancy Permits Issued	\checkmark	8/12/2011	8/12/2011	
Phase IV – Startup				
4.1 – Operations Personnel Recruited		8/12/2011	1/31/2012	
4.2 – Develop Plant Operating Procedures		9/1/2011	12/31/2011	
4.3 – Develop Full QA / QC Program		9/1/2011	2/28/2011	
4.4 – Test and Commence Operations		12/31/2011	3/1/2012	
START OF PRODUCTION		Q1 2	012	

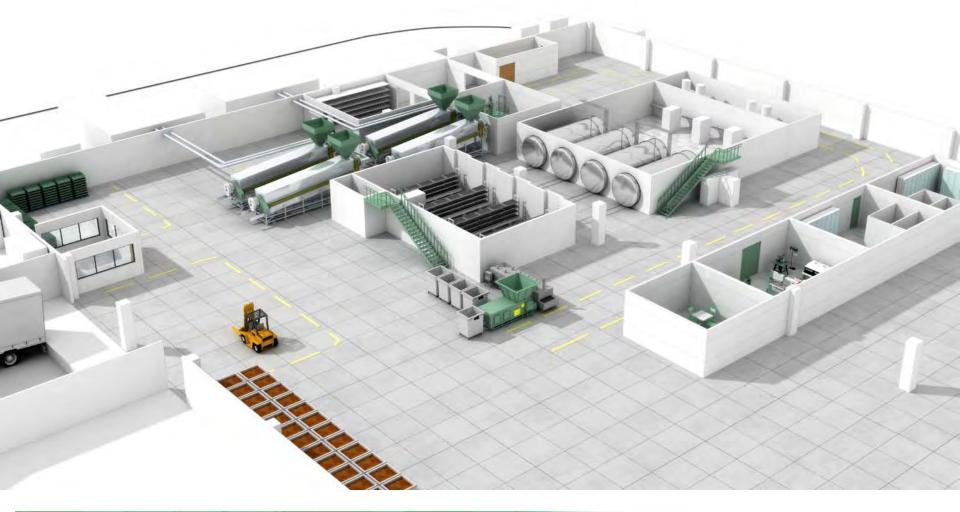
CONTRACT DESIGNATION OF A DESIGNATIONO OF A DESIGNATION OF A

Accomplishments


• Projected Job Creation Timeline (all in OR)

Current	Q2 2011	Q3 2011	Q4 2011	Q1 2012
3	6	14	20	35

- NEPA Complete; FONSI issued April 7, 2010
- Groundbreaking held August 10, 2010


Accomplishments

Accomplishments

Collaborators

Partner	Role on Project
CH2M Hill (Portland, OR)	Preliminary design and scale-up engineering; material handling systems
Fisher & Sons, Inc. (Burlington, WA)	Detailed design and construction, equipment installation
Oregon Freeze Dry (Albany, OR)	Engineering, production and installation of freeze drying equipment
Harper International (Lancaster, NY)	Engineering and production of pyrolysis kiln systems
Procedyne (New Brunswick, NJ)	Engineering and production of activation kiln systems
Jet Pulverizer Co. (Moorestown, NJ)	Engineering and production of milling systems

Future Work

	Phase II – Equipment Procurement and Design Finalized	Phase III – Construction	Phase IV – Start-up
Likely Timing	January 2011 through May 200	April 2011 through December 2011	January & February 2012
Key Activities	 Design, specify and procure all processing equipment Complete process and material handling design to guide construction decisions 	 Hire subcontractors Mobilize for construction Demolition Construction Equipment installation Secure occupancy permits Hire initial contingency of operators 	 Tune equipment for specified process parameters Hire all remaining operations personnel Finish quality documentation and SOPs; train employees Commence operations

Summary

- Game-changing material will rapidly enhance energy storage technologies
- ARRA funds are helping to create a new industry in the United States
- New factory will create significant number of jobs and industrial growth in a region suffering from acute unemployment
- Cadre of domestic suppliers are helping to keep the project on time and on budget
- First products scheduled to be produced in Q1 2011, if not before