

Overview of the DOE High Efficiency Engine Technologies R&D

Roland Gravel Advanced Combustion Engine R&D Subprogram Vehicle Technologies Program

2012 Annual Merit Review DOE Vehicle Technologies Program and Hydrogen and Fuel Cells Program Washington, DC May 14-18, 2012 Vehicle Technologies Program Mission

To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum.

- Facilitate development of precompetitive technical knowhow through investments in fundamental and applied R&D
- □ Undertake High-Risk Mid- to Long-Term Research
- □ Utilize Unique National Lab Expertise and Facilities
- □ Help Create a National Consensus
- Enable public-private partnerships to integrate R&D into industrially useful technologies

Advanced Combustion Engine R&D

Strategic Goal: Reduce petroleum dependence by removing critical technical barriers to mass commercialization of high-efficiency, emissions-compliant internal combustion engine (ICE) powertrains in passenger and commercial vehicles

Primary Directions

- Improve ICE efficiency for cars, light- and heavy-duty trucks through advanced combustion and minimization of thermal and parasitic losses
- Develop aftertreatment technologies integrated with combustion strategies for emissions compliance and minimization of efficiency penalty
- Explore waste energy recovery: with mechanical and advanced thermoelectrics devices
- Coordinate with fuels R&D to enable clean, high-efficiency engines using hydrocarbon-based (petroleum and non-petroleum) fuels and hydrogen

Energy Efficiency & Renewable Energy

Overall R&D Approach

U.S. DEPARTMENT OF

Technical Barriers

Energy Efficiency & Renewable Energy

	Advanced Combustion Engine R&D		Industry
Fundame	ntal Research	Applied Research	Technology Maturation & Deployment
 Fundamental R&D SNL – Combustion Research Facility (lean-burn, LTC, advanced DI) PNNL – Catalyst Characterization (NOx and PM Control) ANL – X-ray fuel spray characterization LLNL – Chemical kinetics models (LTC and emissions) LANL – CFD modeling of combustion Universities – Complementary research 		 Fundamental to Applied Bridging R&D ORNL – Experiments and simulation of engines and emission control systems (bench-scale to fully integrated systems) ANL – H₂-fueled ICE; fuel injector design 	 Competitively Awarded Cost- shared Industry R&D Automotive and engine companies,– engine systems Suppliers – enabling technologies (sensors, VVA, WHR)
Helps	proved Understanding	Advanced Conce	epts Commercial Product
inform	\geq		

R&D Needs

Vehicle Technologies Program

our R&D

Key Activities Organization

Combustion and Emission Control R&D

- Fundamental Combustion Research
- > Emission Control R&D
- High Efficiency Engine Technologies
 - Heavy Truck Engine and Enabling Technologies
 - Advanced Technology Powertrains for Light-Duty Vehicles
- Solid State Energy Conversion

Light-Duty Vehicle Goals

Energy Efficiency & Renewable Energy

By 2015, improve the fuel economy of light-duty gasoline vehicles by 25% and light-duty diesel vehicles by 40% compared to baseline 2009 gasoline vehicle

U.S. DEPARTMENT OF

Technical Targets for Passenger Vehicle Engines

Characteristics	Fiscal Year						
	2007	2010	2015				
Reference peak brake thermal efficiency, %	32	34	NOTE: After 2010, engine				
Powertrain cost, \$/kW	35	30					
FreedomCAR and Fuel Partnership Goals	efficiency						
ICE Powertrain			targets				
Peak brake thermal efficiency, %	42	45	transitioned to vehicle fuel				
Part-load brake thermal efficiency, % (2 bar BMEP @1500 rpm)	29 31 ^e		economy improvement				
Cost, \$/kW	35	30	targets				
VTP/C&EC Vehicle Level Goals							
Fuel economy improvement, % (gasoline/diesel)	25/40						
Emissions, g/mile	Tier 2, Bin 5	Tier 2, Bin 5	Tier 2, Bin 2				
Durability, hrs.	5,000	5,000	5,000				
Thermal efficiency penalty due to emission control devices %	<3	<1	<1				

DOE Heavy Truck Engine Goals Support the SuperTruck Effort

U.S. DEPARTMENT OF

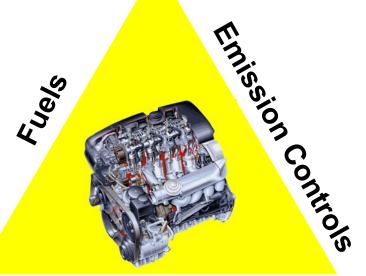
Energy Efficiency & Renewable Energy

- By 2015, improve heavy truck fuel economy (engine thermal efficiency) by 20 percent with demonstration in commercial vehicle platforms
- By 2020, improve heavy truck fuel economy by 30 percent compared to 2009 baseline

Technical Targets for Heavy Truck Diesel Engines

Characteristics	Fiscal Year				
Gliaracteristics	2010	2015	2020		
Fuel Economy Improvement, %	-	20	30		
Engine thermal efficiency, %	42	50	55		
NO _X emissions, g/bhp-h	<0.20	<0.20	<0.20		
PM emissions, g/bhp-h	<0.01	<0.01	<0.01		
Stage of development	Commercial	Prototype	Protoŧype		

Vehicle Technologies Program


□ Increasing Fuel Economy

- □ Reducing Emissions
- □ Ensuring Durability
- □ Maintaining or Reducing Cost

Systems Approach to Dramatically Improve Engine Efficiency and Reduce Emissions

- Partnerships with auto/truck manufacturing industry, suppliers, energy companies, and national labs
- Improve fundamental understanding
- □ Use Integrated systems approach
- **Progress being made in all 3 areas**

Engine Combustion

R&D Coordinated with the **U.S.DRIVE** Partnership

Energy Efficiency & **Renewable Energy**

CHRYSLER

Focus R&D in Key Technology Areas

VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY

- **Advanced Combustion Engines**
- **Electric Propulsion Systems**
- **Energy Storage**
- Hydrogen-fueled ICEs
- **Materials Technologies**

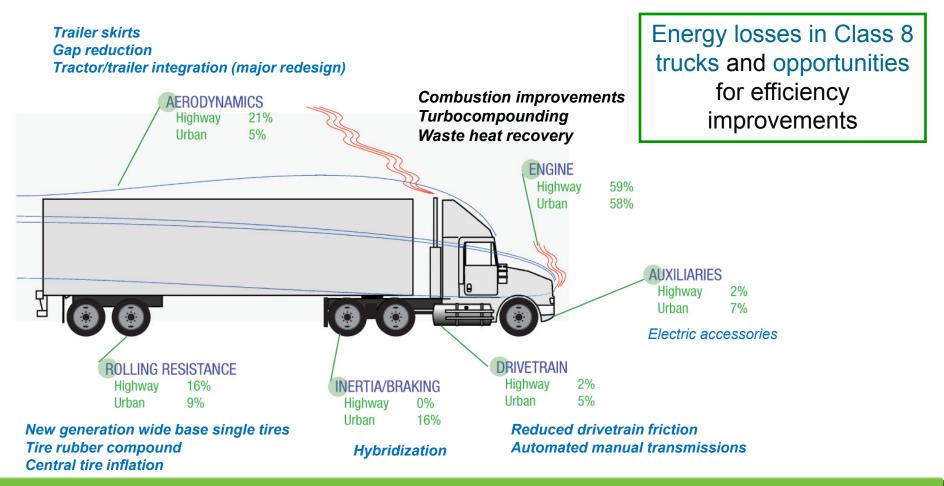
ChevronTexaco

R&D Coordinated with 21st Century Truck Partnership

Energy Efficiency & Renewable Energy

- Research, Development, and Demonstration in Key Technology Areas
 - Engine Systems
 - Heavy-Duty Hybrid
 - Parasitic Losses
 - □ Idle Reduction
 - □ Safety

INDUSTRY PARTNERS INDUSTRY PARTNERS DAIMLER DAIMLER ArvinMeritor DETROIT DIESEL BAE SYSTEMS F.T.N. Devenop Business Worksuce CATERPILLAR* Honeywell INALYISTAR*

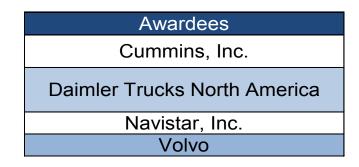

GOVERNMENT PARTNERS

SuperTruck Project

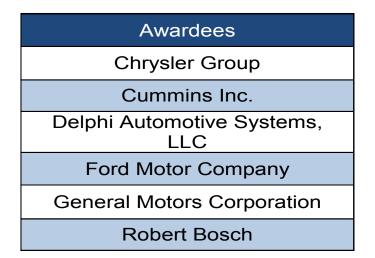
Energy Efficiency & Renewable Energy

Demonstrate a 50% improvement in freight efficiency by 2015

Heavy-duty trucks use 20% of the fuel consumed in the United States.


Fuel economy improvements in these trucks directly and quickly reduces petroleum consumption

Vehicle Technologies Program



Energy Efficiency & Renewable Energy

Systems Level Technology Development, Integration, and Demonstration for Efficient Class 8 Trucks (SuperTruck)

Advanced Technology Powertrains For Light-Duty Vehicles (ATP-LD)

Energy Efficiency & Renewable Energy

Enabling Technologies for Engine and Powertrain System

Awardees	
General Motors LLC	
MAHLE Powertrain LLC	
Filter Sensing Technologies, Inc.	
Eaton Corporation	

Energy Efficiency & Renewable Energy

Small Business Innovation Research (SBIR) FY 2012 Phase I (Release 3)

- Topics Released: Monday, March 5, 2012
- Funding Opportunity Announcement Issued: Monday, April 3, 2012
- Pre-Application Due Date: Tuesday, May 1, 2012
- Feedback Provided on Pre-Applications: Tuesday, June 5, 2012
- Application Due Date: Tuesday, July 3, 2012

Vehicle Technologies Program topics:

- (a) Electric drive vehicle batteries
- (b) Exhaust Aftertreatment Materials
- (c) Innovative engine boosting technologies
- (d) Differential compression and expansion technologies
- (e) Subsystem component technologies (sensors)
- (f) Thermoelectric technologies
- (g) Materials for traction drive motor laminations, cores, or structures.
- (h) Engine friction reduction

Major Activities	FY 2010 FY 2011 FY 2012 Appropriation			FY 2013 Request
Advanced Combustion Engine R&D	\$57,600K	\$57,600K	\$58,027K	\$55,261K
Combustion and Emission Control	47,239	47,239	49,320	47,505
Solid State Energy Conversion	8,748	8,748	8,707	7,756
SBIR/STTR	1,613	1,613		