
Open Architecture Software for CAEBAT

Project ID: ES121

John Turner (PI), <u>Sreekanth Pannala</u>, Partha Mukherjee, Srikanth Allu, Wael Elwasif, Srdjan Simunovic, and David Bernholdt

Oak Ridge National Laboratory

2012 U.S. DOE Hydrogen and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

May 15, 2012

Brian Cunningham and Dave Howell Vehicle Technologies Program U.S. Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

- Timeline
 - Start
 - June FY10
 - Finish
 - Ongoing
- Budget
 - FY11 Funding
 - \$500K
 - FY12 Funding
 - \$500K

Barriers

- Predictive battery design tools for optimizing cost, performance and life
- No standards for battery modeling
- No common framework for integrating battery modeling efforts
- Collaborators
 - NREL
 - CAEBAT Industry Partners
 - CD-Adapco Team
 - ECPower Team
 - GM-Ansys Team
 - Other labs and universities

Objective: CAEBAT will facilitate battery design by integrating battery modeling components within an <u>open architecture</u>

- Access to commercial and non-commercial software through standardized interfaces and file formats
 - ability to pick (and ultimately combine) the best software components available
 - standardize the design process
 - battery designer isn't limited to single vendor or software

Access to latest numerical methods and algorithms

- rapidly advance the state of the art
- provide the best software tools to the battery designer

Verified and Validated

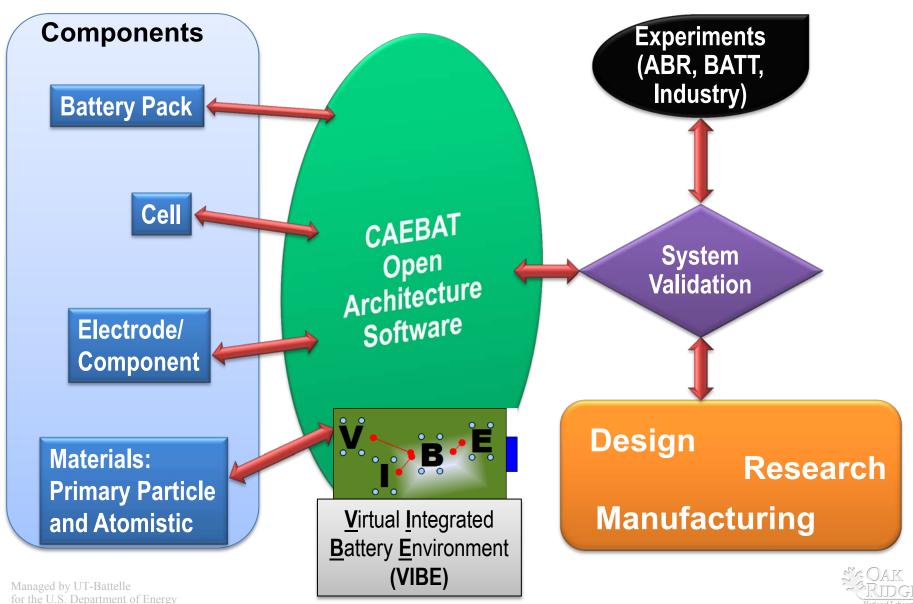
- ideally with quantified uncertainties as well

Relevance (2): CAEBAT Program Goals

- Develop software tools that enable automotive battery community to design and simulate batteries:
 - four different software suites (diversity of approaches, risk mitigation)
 - one from each of the RFP teams
 - may contain or require commercial or proprietary components
 - one based on an Open Architecture Software (OAS) infrastructure
 - we are calling this the Virtual Integrated Battery Environment (VIBE) and it will be more openly available
- Each will (ultimately) be fully capable
 - RFP tools focused on delivering a cell and pack modeling tool for industry
 - OAS tool integrates modules from RFP teams as well as Lab and University efforts beyond the RFP teams – community R&D platform

Coordination and collaboration across teams will be critical to overall success of CAEBAT

- standardization of input and of "battery state" database
- standard test problem(s)
- standardized interfaces for cell, pack, etc. models



Milestones

FY 11 Milestones		Status
Develop test problems and extend modeling		
framework to include transport, thermal, and		
mechanical stresses	03/31/2011	Completed
Develop further capability, conduct assessment		
against test problems, and conduct initial		
validation against data available from battery		
packs and cell experiments.	08/31/2011	Completed
FY 12 Milestones		
Deliver pre-release version of open architecture		
software (integrating models of coupled		
multiphysics phenomena across porous 3D		
structures of electrodes) to partners for		
evaluation and comment	09/30/2012	On track

Approach (1): CAEBAT Open Architecture Software Vision

Approach (2): CAEBAT OAS simulation platform has two aspects

Software Infrastructure

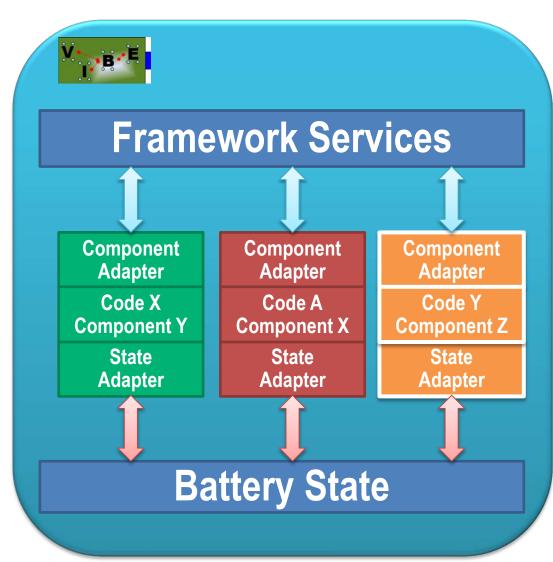
flexible

- language-agnostic
- multiple modeling approaches
- combine appropriate component models for problem at hand
- support integrated sensitivity analysis and uncertainty quantification

extensible

 ability to add and combine proprietary component models

scalable from desktop to HPC platforms


hardware architecture-aware

Numerical coupling and Scale-bridging approaches

- flexible coupling strategy
 - one-way
 - two-way loose
 - two-way tight
 - fully implicit
- ability to transfer information across different models in a mathematically / physically consistent fashion
- similarly for bridging timescales

Approach (3): VIBE Software Platform for CAEBAT

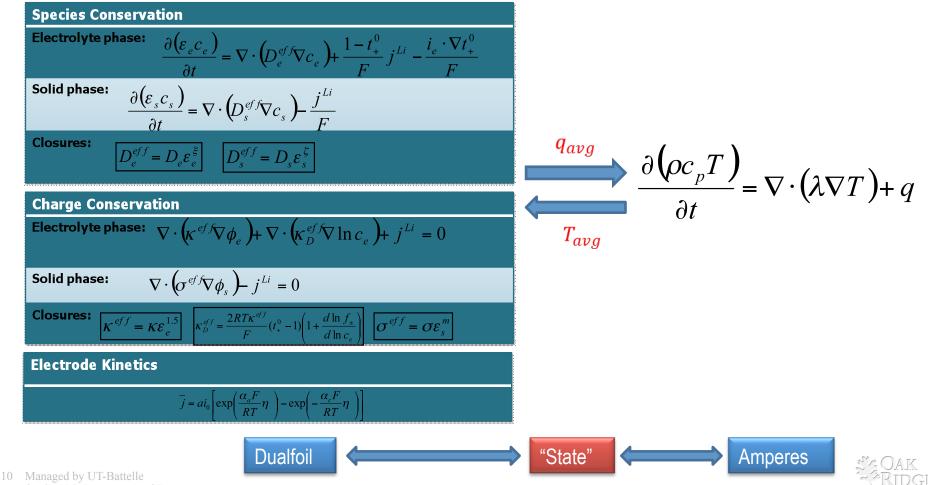
- Component-based approach
 - extensibility, V&V, independent development
- Common solution (battery) state layer
 - data repository
 - conduit for inter-component data exchange

File-Based data exchange

- no change to underlying codes
 simplify "writ to sting"
- simplify "unit testing"
- Scripting Based Framework (Python)
 - Rapid Application Development (RAD)
 - adaptability, changeability, and flexibility
- Simple component connectivity pattern
 - driver/workers topology
- Codes as components:
 - focus on code-coupling vs physicscoupling as first step
- Simple unified component interface
 - init(), step(), finalize()

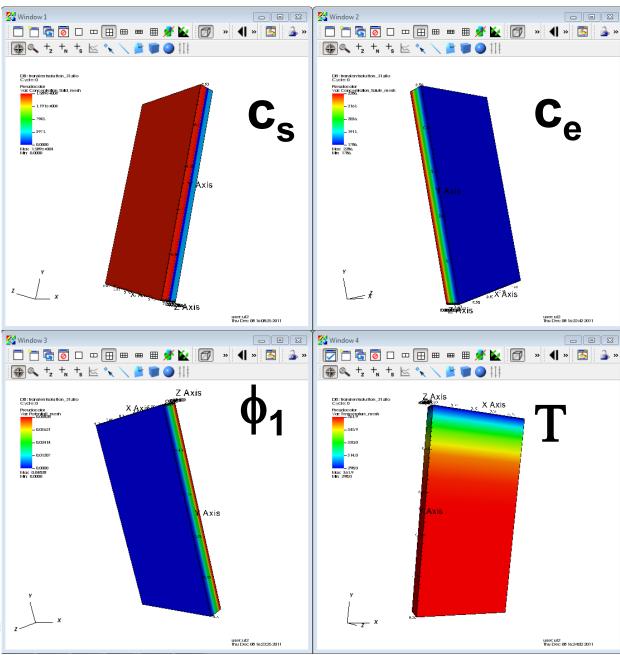
Technical Accomplishments/Progress (1): On track to pre-release version

OAS	VIBE	Standardized	Battery State
 Capability is online (NREL is testing it currently) Integrated with Dakota optimization Improve workflow as well as portability to Windows Interfaces to the inputs and battery state 	 Electrochemical- thermal coupling Electrochemical- thermal-electrical coupling Integrate additional components (NREL models and ANL cost model) Demonstrate for complex geometries with new interfaces 	 Input Comprehensive relational database of materials, properties, models, components, etc. XML database and corresponding schemas Issued version 1 Translators 	 Define for cell f
standards		Cyan O	ngoing


Cyan – Ongoing

to

to


Battery state file

- contains the minimal set of variables enable components to communicate
- CGNS format has been selected (for all mesh-based data)
 - see also <u>http://en.wikipedia.org/wiki/CGNS</u>

for the U.S. Department of Energ

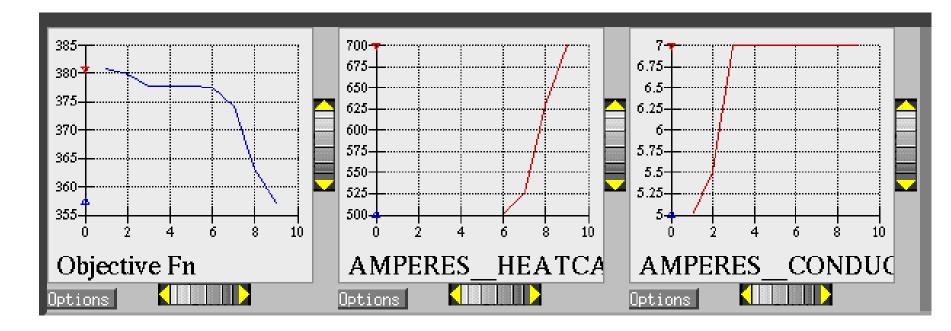
Sample results for demo problem 1

Technical Accomplishment

One-way coupling: Tmax = 100 °C

Two-way loose coupling: Tmax = 88 °C

Two-way loose coupling (multi-domain): <u>Tmax = 89 °C (T1 = 89, T2=</u> 89, T3 = 88, T4 = 329)


Two-way tight coupling (Srinivasan and Wang) <u>Tmax = 80 °C</u>

Dakota Optimization (Simple Application)

Technical Accomplishment

Objective = Minimize T_{avg} Cp = 300, 700 (starting 500) λ = 3,7 (starting 5)

Critical as even small temperature changes have huge impact on safety and life

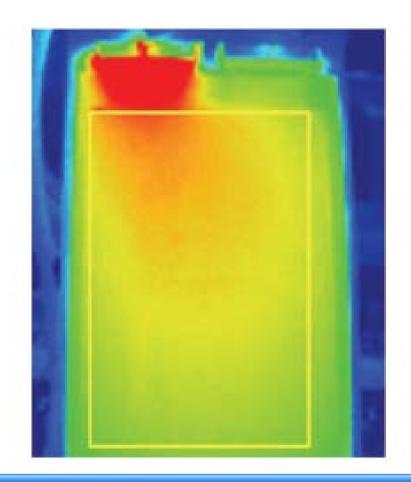
12 Managed by UT-Battelle for the U.S. Department of Energy

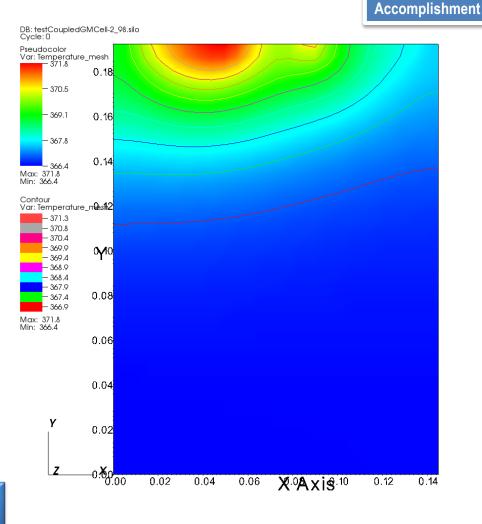
Thermo-Electrochemical-Electrical Modeling in LIBs

Input from Sandwich calculations: Heat generation rate and resistance as a function of space and time; Stress/strain; Gas distribution

 Typically complex geometry (prismatic or cylindrical) 3D Unstructured Grid

- The resolution is typically much lower than what is needed for the electrode/cell-sandwich simulations so there is upscaling of different quantities
- Solve for temperature, ohmic resitance in the electrical connections,
- Variables such as Temperature, Electric potential (current collectors), Heat Sources, Stress / Strain, Gas release / composition

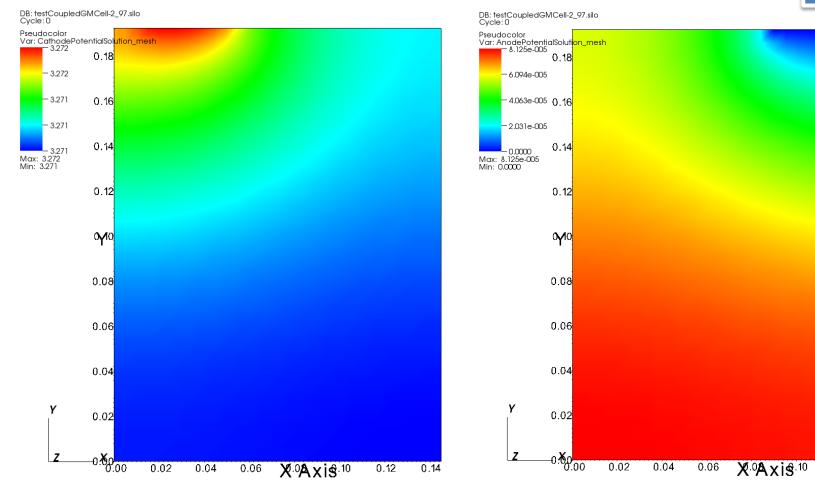



Technical

Accomplishment

13 Manage for the I Output to cell-sandwich calculations (CC voltage/current and temperature)

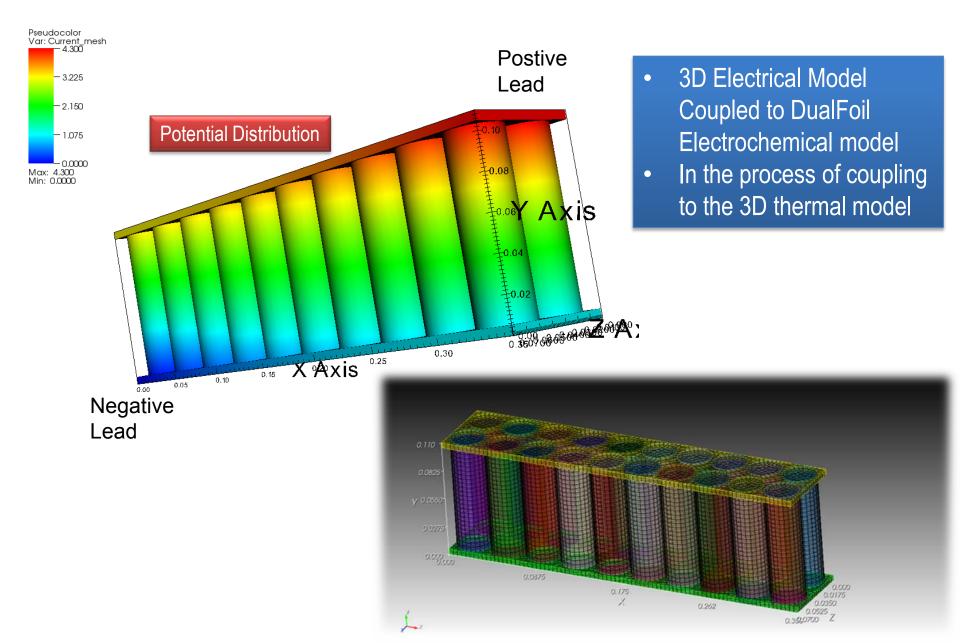
Comparison of Temperature distributions for LIB at 11 min with a discharge rate of 5 C – Demo Problem 2



Good qualitative agreement – requesting missing information from the authors to complete validation

"Modeling the Dependence of the Discharge Behavior of a Lithium-Ion Battery on the Environmental Temperature", Kim, U.S. and Yi, J. and Shin, C.B. and Han, T. and Park, S., Journal of the Electrochemical Society, 158, 2011

Cathode and Anode Potential distributions for LIB at 11 min with a discharge rate of 5 C


Technical Accomplishment

0.14

0.12

Thermo-Electrochemical-Electrical Simulation Results (Complex Module – Demo 3)

Standardized Input

- Exploit the hierarchical nature of batteries
- Consensus on XML as the standard for the input specification
 - Leverage many third-party tools
 - Facilitates interactive web-based input capability (GUI)
- Translators enable generation of CFD mesh from standard CAD packages
- Common set of tools to process, visualize, and analyze the input data

Inputs (XML Schema and XML data)

<Battery_Component ComponentID="cs3">

<ns0:NTG Model NTGID="ntg11">...

<Cell Sandwich>

</Cell_Sandwich> </Battery Component>

</BatteryML Doc>

0 0

Ð

component inputs

18 Managed by UT-Battelle for the U.S. Department of Energy

Collaboration and Coordination

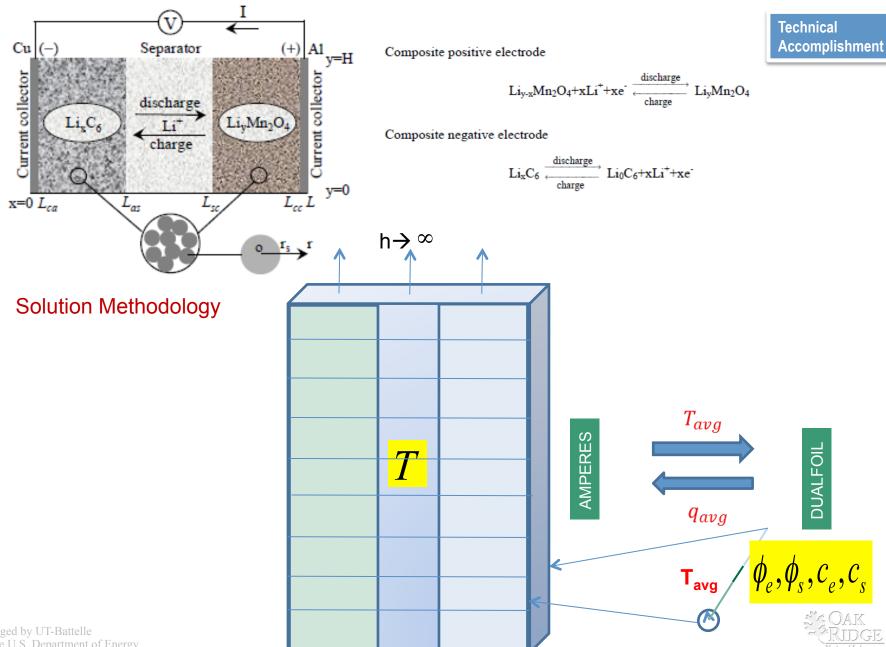
- Monthly telecon/web-meeting with DOE and NREL
- Visit to NREL in Dec. 2010
- Participated in the three kick-off meetings
- We had a joint meeting at ORNL with ORNL, NREL, CAEBAT Partners and DOE
- Several telecons/web-meetings to present and discuss the Battery State and Input Standards with all the CAEBAT partners
- US Drive Energy Storage meeting
- Interactions with ANL on the cost model

Future Work - Planned Activities

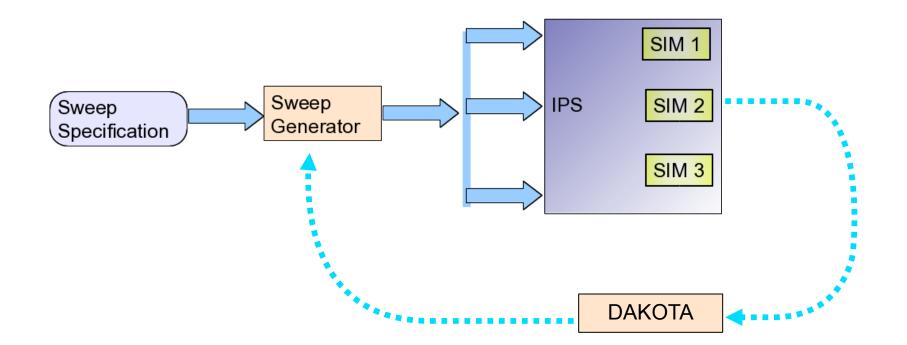
- Near term
 - Improve workflow as well as portability to Windows
 - Interfaces to the inputs and battery state standards
 - Integrate additional components (NREL models and ANL cost model)
 - Demonstrate for complex geometries with new interfaces
 - Integrate additional components (NREL models and ANL cost model)
 - Demonstrate for complex geometries with new interfaces
- Longer term
 - Component interfaces and in-memory transfer
 - Integrate the components from the three project commercial partners
 - Integrate the components from other national labs and universities
 - Thorough verification and validation
 - Extensively populate the input state

Summary

- We have a very good version of the open architecture software for filebased transfer between different components for electrochemistry, transport, electrical and mechanical stresses
- We have an initial standard for the battery state
- We have an initial XML schema and standard for the inputs
- We have integrated and demonstrated various components in VIBE
 - Electrochemistry (dualfoil) with thermal (AMPERES) for a cell
 - Electrochemistry (NTG) with thermal (AMPERES) and electrical (AMPERES) for a cell
 - Electrochemistry (dualfoil) with thermal (AMPERES) and electrical (AMPERES) for a cell module
 - Integrate models from NREL
 - Integrate the ANL cost model
- We are on track for the year-end release of the beta version of OAS + VIBE (with few examples) along with input XML schema and battery state definition


John Turner 865-201-1849 turnerja@ornl.gov Sreekanth Pannala 865-574-3129 pannalas@ornl.gov

Technical Backup Slides



Thermo-Electrochemical Modeling – Demo problem 1

23 Managed by UT-Battelle

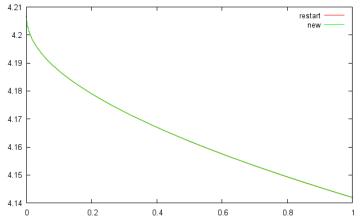
Parameter Sweep using the IPS (Phase 1)

 Dynamic parameter generation for design optimization using the DAKOTA tool kit (From Sandia National Lab)

Technical

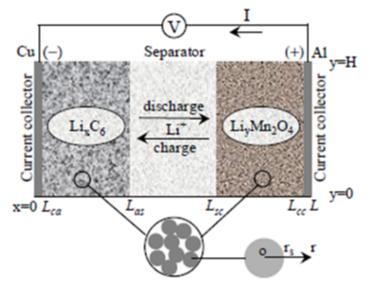
Accomplishment

Modifications to software components for initial demonstration


Changes to DualFoil

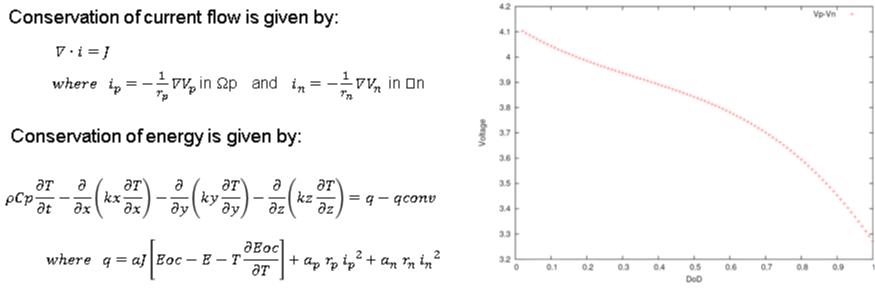
- very minimal changes for one way coupled
- minor modifications to write the information needed for battery state as a function of time and space
- additional modifications to allow restart

Changes to Amperes


- very minimal changes
- minor modifications to read the input files generated by the prepare input wrapper
- additional arguments for conducting the parametric sweeps through the IPS-VIBE framework

Verification of the restart capability

Thermo-Electrochemical-Electrical Modeling – Demo Problem 2


Composite positive electrode

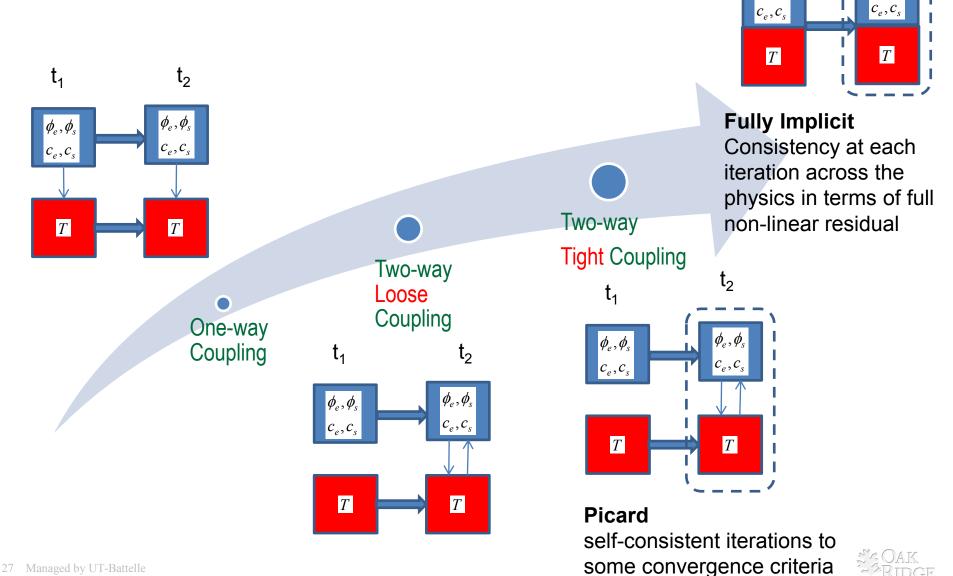
$$Li_{y-x}Mn_2O_4+xLi^++xe^- \xrightarrow{discharge}{charge} Li_yMn_2O_4$$

Composite negative electrode

$$Li_xC_6 \xrightarrow[charge]{discharge} Li_0C_6+xLi^++xe^-$$

Discharge curve at rate of 5 C

"Modeling the Dependence of the Discharge Behavior of a Lithium-Ion Battery on the Environmental Temperature", Kim, U.S. and Yi, J. and Shin, C.B. and Han, T. and Park, S., *Journal of the Electrochemical Society*, 158, 2011



Technical

Accomplishment

Coupling scenarios in battery modeling

t₁

 ϕ_{e}, ϕ_{s}

 t_2

 ϕ_{e}, ϕ_{s}

Managed by UT-Battelle