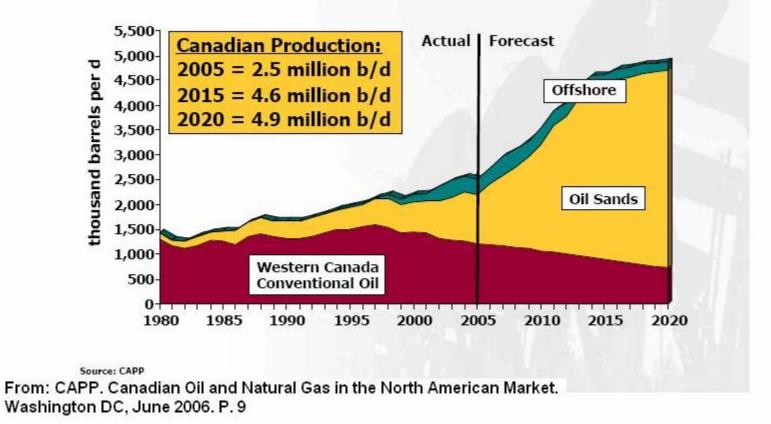


Oil Sands Feedstocks

C Fairbridge, Z Ring, Y Briker, D Hager

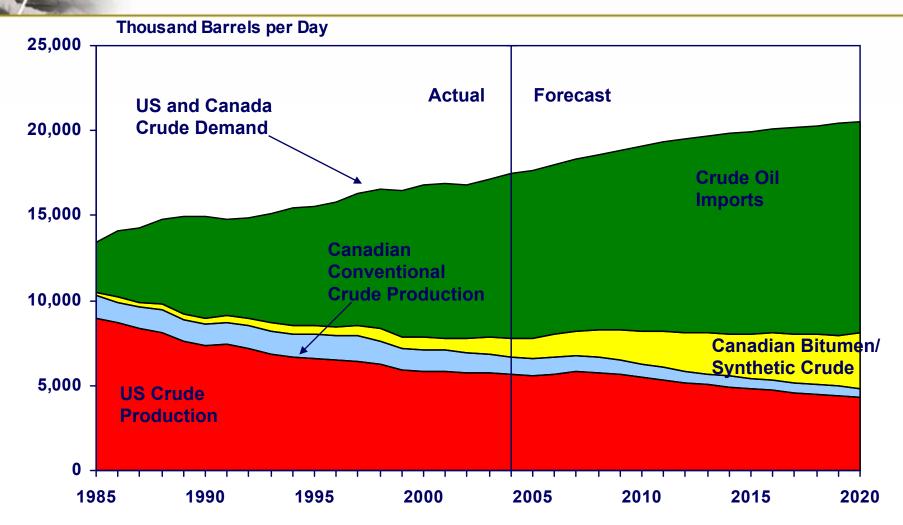
National Centre for Upgrading Technology

K Mitchell

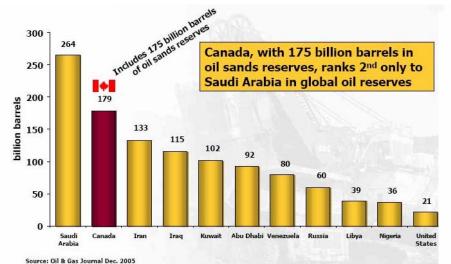

Shell Canada Products

CLEAN ENERGY TECHNOLOGIES

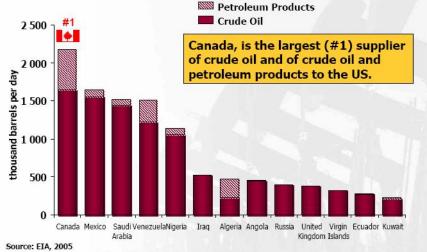
12th Diesel Engine-Efficiency and Emissions Research Conference August 20-24, 2006 Detroit MI



Canadian Oil Production Conventional, Oil Sands and Offshore (CAPP)


National Energy Board concluded that oil sands production will grow from 1.1 million b/d in 2005 to 3.0 million b/d in 2015 Canada's Oil Sands: Opportunities and Challenges to 2010 – An Update

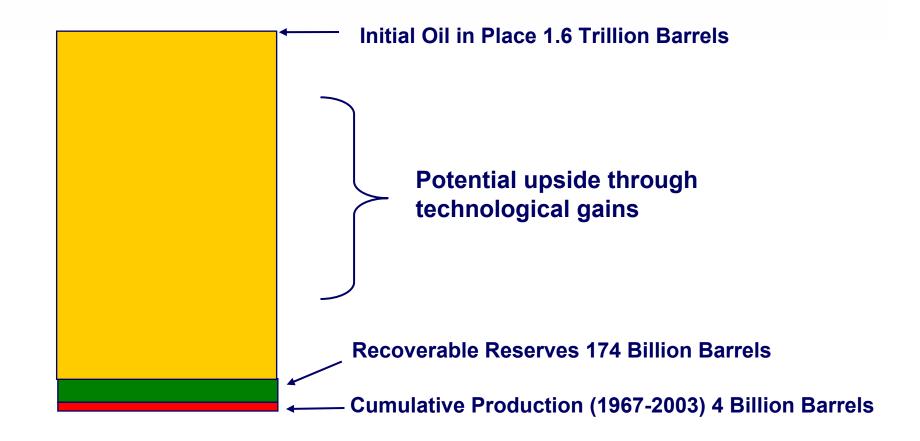
U.S. and Canadian Markets for Crude Oil



T Wise Purvin & Gertz June 2005

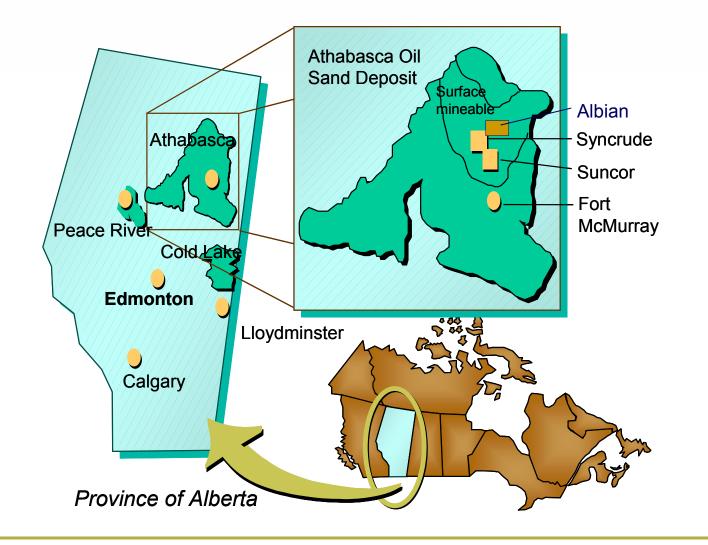
Global Crude Oil Reserves and US Imports (CAPP)

From: CAPP. Canadian Oil and Natural Gas in the North American Market. Washington DC, June 2006. P. 6

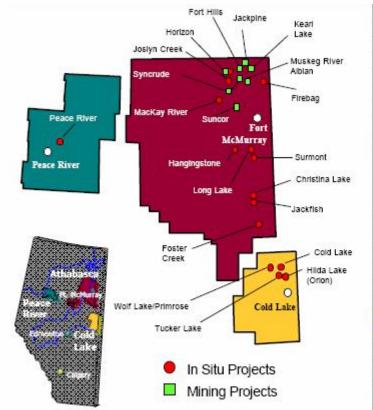


Slide from: CAPP. Canadian Oil and Natural Gas in the North American Market. June 2006. P. 4.

Canadian Oil Sands Potential

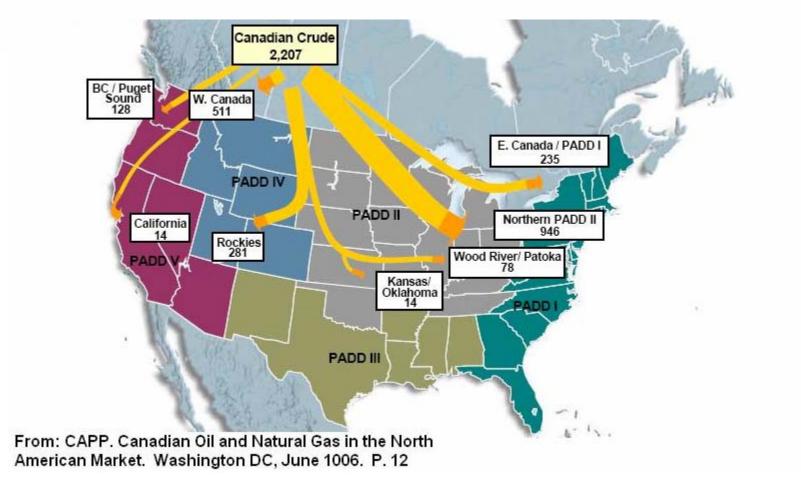

T Wise Purvin & Gertz June 2005

Oil Sands Deposits in Alberta


(Courtesy of Syncrude Canada Ltd.)

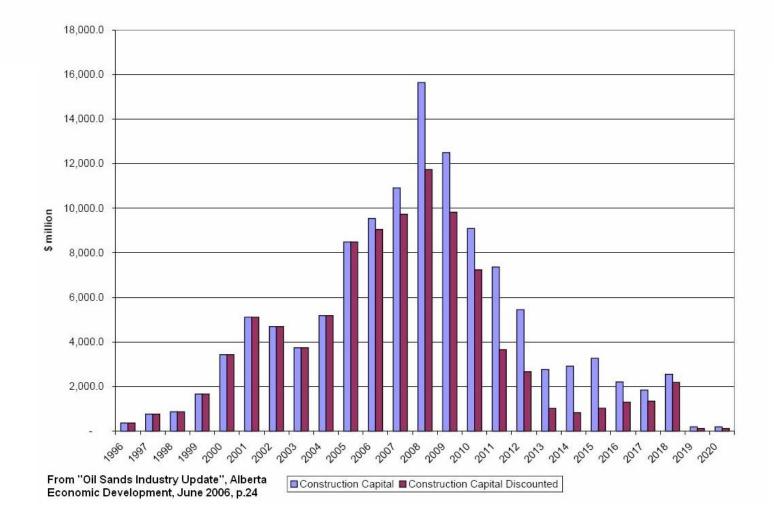
CETC CANMET ENERGY TECHNOLOGY CENTRE - DEVON

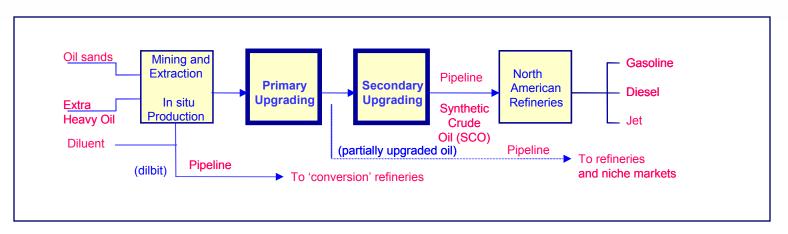
Oil Sands Projects



Athabasca – M	ining	Barrels	s per day	
Operator	Project	Initial	Potential	
Albian/Shell	Muskeg/Jackpine	150,000	500,000	
Suncor	Base Plant	280,000	550,000	
Syncrude	Base Plant	300,000	600,000	
CNRL	Horizon (2008)	110,000	232,000	
Imperial	Kearl (2010)	100,000	300,000	
Petro-Canada	Fort Hills (2011)	50,000	190,000	
Athabasca - In	situ Thermal			
JACOS	Hangingstone (pilot)	10,000	30,000	
Suncor	Firebag	35,000		
ConocoPhillips	Surmont (2006)	16,000	110,000	
Devon	Jackfish (2008)	35,000	70,000	
Encana	Christina/Foster (2006)	30,000	400,000	
Husky	Sunrise (2008)	50,000	200,000	
OPTI/Nexen	Long Lake (2007)	70,000	140,000	
Petro-Canada	MacKay River (2009)	24,000	60,000	
Synenco	Northern Lights (2010)	50,000	100,000	
Total E&P	Joslyn Creek (2006)	10,000	200,000	
Cold Lake – In	Situ Thermal			
Blackrock	Orion-Hilda Lake pilot	500	20,000	
CNRL	Wolf Lake/Primrose	50,000	120,000	
Imperial	Cold Lake	130,000	180,000	
Husky	Tucker (2006)	18,000	35,000	
Peace River -	In Situ Thermal			
Shell	Peace River	12,000	100,000	

From: CAPP. Canadian Oil and Natural Gas in the North American Market. Washington DC, June 1006. P. 8

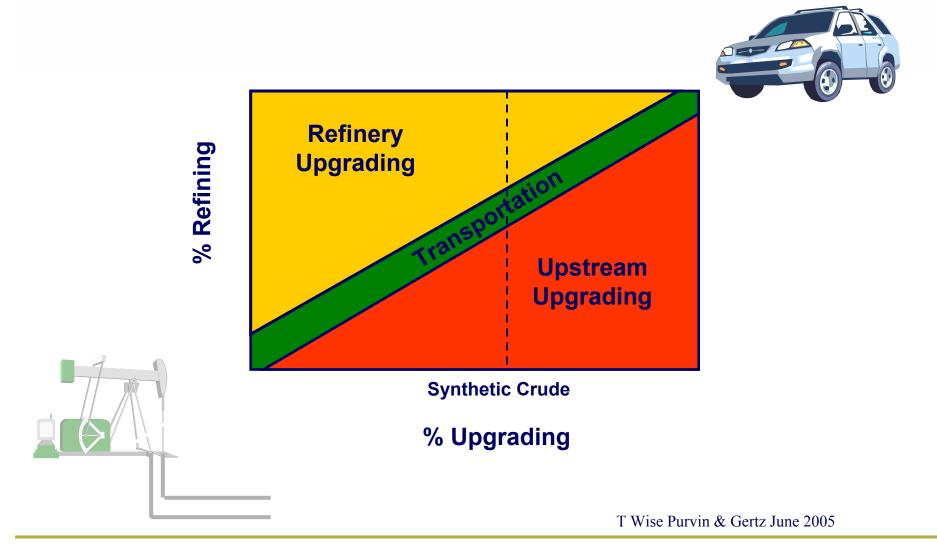


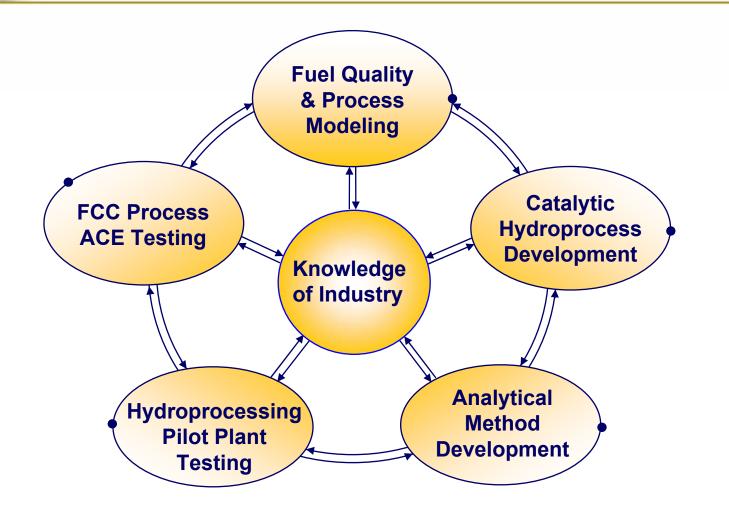

CETC CANMET ENERGY TECHNOLOGY CENTRE - DEVON

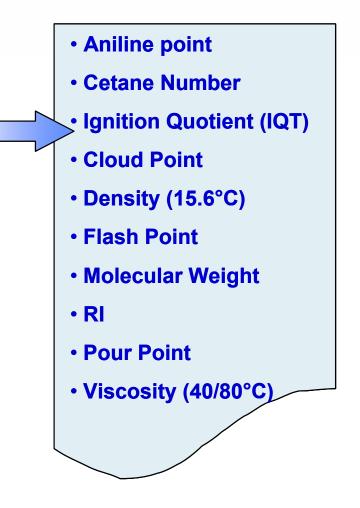
Oil Sands Industry Expenditure Forecast

Upgrading Oil Sands Bitumen to Clean Fuels

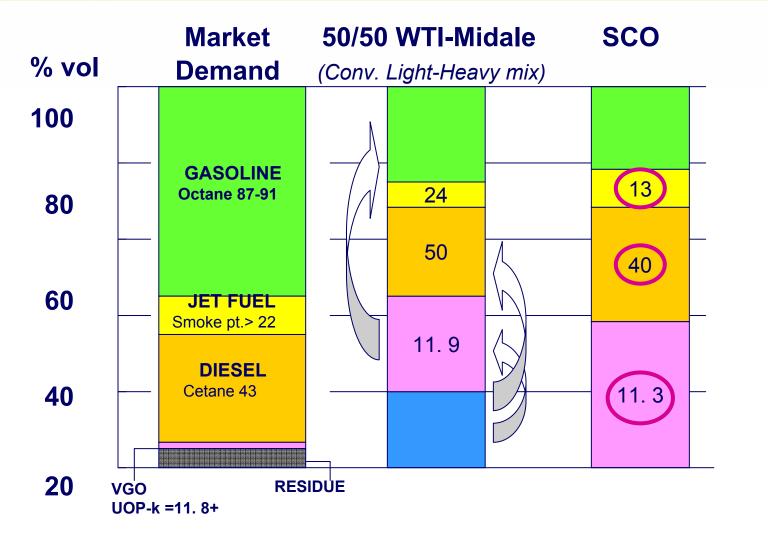
Processes and Markets


Product Quality (Chemistry)

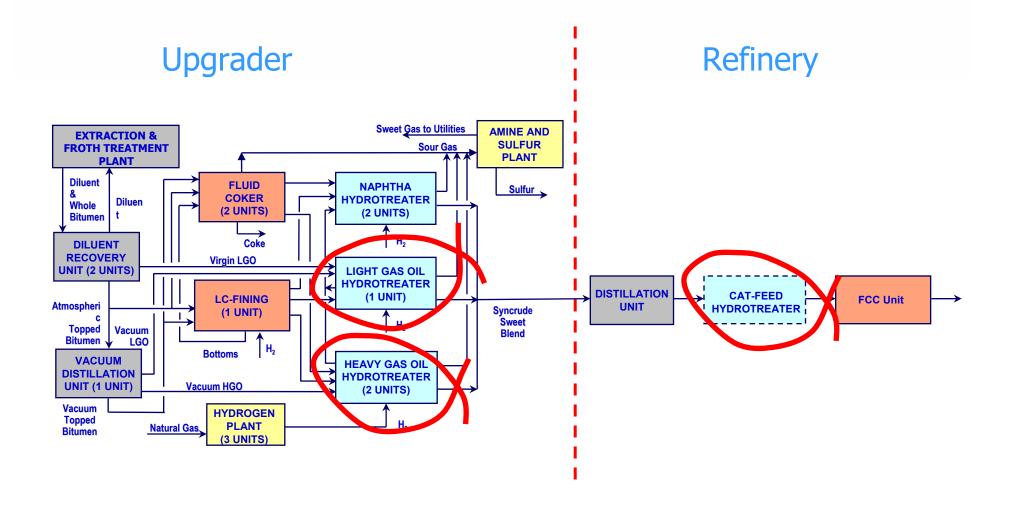


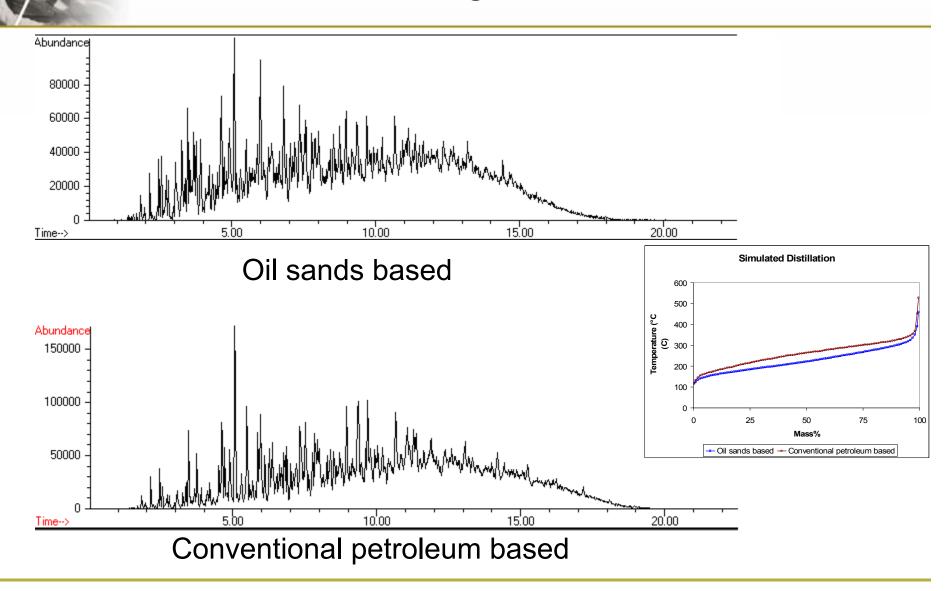


National Centre for Upgrading Technology Secondary Upgrading


NCUT Product Modeling

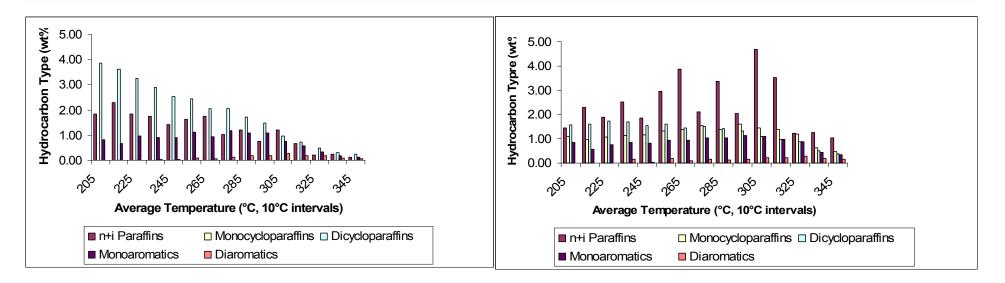
End BP	210	220	230	240	250	260	L.
Saturates	4.84	6.86	7.22	8.56	7.62	8.14	-
Paraffins	1.00	1.18	1.58	1.65	2.19	1.09	
is oparaffins	1.00	0.86	1.58	1.13	2.19	0.45	1
n-Paraffins	0.00	0.32	0.00	0.52	0.00	0.64	0.4
Cycloparaffins	3.84	5.67	5.64	6.91	5.43	7.04	5.72
Monocycloparaffins	1.25	1.67	2.02	2.82	2.13	2.85	2.29
Dicyclop araffins	2.58	3.89	3.40	3.58	2.66	321	2.37
Polycyclop araffins	0.03	0.12	0.22	0.51	0.64	0.99	1.06
Aromatics	0.21	0.24	0.37	0.79	0.58	0.94	0.75
MonoAromatics	0.21	0.24	0.37	0.77	0.58	0.91	
Akylbenzenes	0.18	0.15	0.20	0.23	0.27	0.26	0.24
Benzocycloak an es	0.04	0.09	0.17	0.53	0.31	0.65	0.49
Benzodi oyoloak anes	0.00	0.00	0.00	9.00	0.00	0.01	0.02
Diaromatics	_	_	_	0.01	0.00	0.03	0.01
Naphthalenes				1.01	0.00	0.03	0.0
Biphenyls		.C (1.00	0.00	0.00	0
Naphthocycloa kan es				1.00	0.00	0.00	
Fluorenes	0.00	0.00	0.00	0.00	0.00	0.00	
Triaromatics	0.00	0.00	0.00	0.00	0.00	0.00	
Phen anthrenes	0.00	0.00	0.00	0.00	0.00	0.01	
Phen anthro cyclolak anes	0.00	0.00	0.00	0.00	0.00	0	
Tetraaromatics	0.00	0.00	0.00	0.00	0.00	F	
Pyrenes	0.00	0.00	0.00	0.00	0.00		
Crysienies	0.00	0.00	0.00	0.00	0.00		
Aromatic Sulfur	0.00	0.00	0.00	0.01	0.00		
Benzothiophenes	0.00	0.00	0.00	0.01	0.00		
Dibenzothiophenes	0.00	0.00	0.00	0.00	0.00	L	
Olefins	0.00	0.00	0.00	0.00	0.00	C C	
С	0.618	0.236	0.340	0.347	0.433	0.5	
н	0.093	0.033	0.044	0.049	0.049	0.06	
S	0.000	0.000	0.000	0.000	0.000	0.000	
N	0.000	0.000	0.000	0.000	0.000	0.000	L




Where to attack the problem? @ Upgrading/Refining Interface

CETC CANMET ENERGY TECHNOLOGY CENTRE - DEVON

GC-FIMS Chromatograms of ULSD Blend Streams



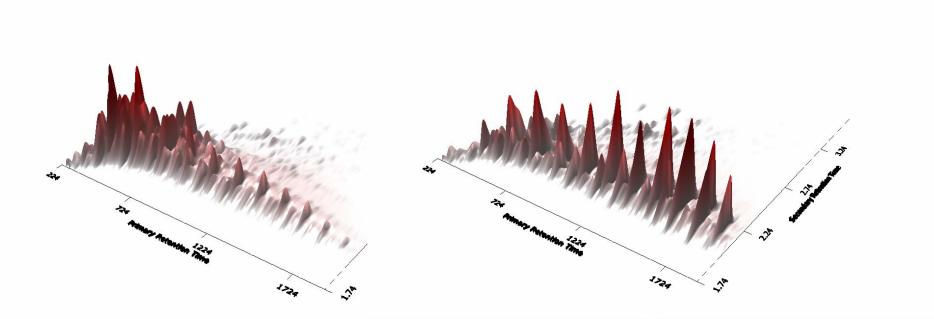
Tabular GC-FIMS Data (200°C+)

Boiling Range	210 - 22	20°C									
	Oil sands based					Cor	Conventional petroleum based				
НС Туре	Z No	C11	C12	C13	C14	Total	C11	C12	C13	C14	Total
Saturates		0.16	5.75	3.59	0.04	9.54	0.13	2.96	1.76	0.15	5.00
n+i Paraffins		0.00	0.66	1.63	0.01	2.29	0.00	1.03	1.12	0.14	2.30
isoparaffins	2	0.00	0.01	1.63	0.01	1.64	0.00	0.03	1.12	0.14	1.29
n-Paraffins	2	0.00	0.65	0.00	0.00	0.65	0.00	1.01	0.00	0.00	1.01
Cycloparaffins		0.16	5.09	1.97	0.03	7.25	0.13	1.93	0.63	0.01	2.71
Monocycloparaffins	0	0.00	2.02	1.09	0.03	3.14	0.00	0.60	0.36	0.01	0.97
Dicycloparaffins	-2	0.12	2.80	0.70	0.00	3.61	0.11	1.25	0.23	0.00	1.59
Polycycloparaffins	-4	0.04	0.28	0.18	0.00	0.50	0.02	0.08	0.04	0.00	0.15
Aromatics		0.37	0.28	0.03	0.00	0.68	0.32	0.22	0.02	0.00	0.56
MonoAromatics		0.37	0.28	0.03	0.00	0.68	0.32	0.21	0.02	0.00	0.55
Alkylbenzenes	-6	0.14	0.21	0.02	0.00	0.36	0.13	0.15	0.01	0.00	0.29
Benzocycloalkanes	-8	0.23	0.06	0.02	0.00	0.31	0.19	0.06	0.01	0.00	0.26
Benzodicycloalkanes	-10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Diaromatics		0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01
Naphthalenes	-12	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01
Biphenyls	-14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Naphthocycloalkanes	-14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fluorenes	-16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triaromatics		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Phenanthrenes	-18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Phenanthrocyclolalkanes	-20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tetraaromatics		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pyrenes	-22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Crysenes	-24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Total	10.22				Total	5.57

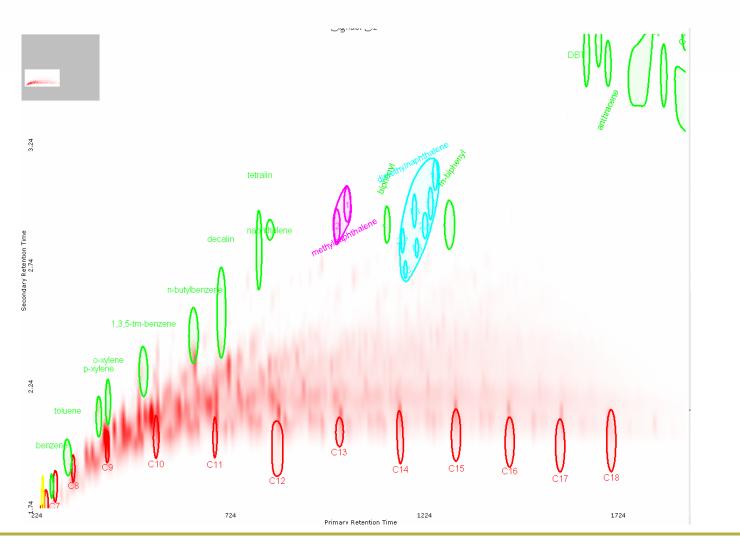
GC-FIMS Distribution by Boiling Point

Oil sands based

Conventional petroleum based



2D-GC Comparison (FID)



Oil sands based

Conventional petroleum based

Oil Sands Development

- Transportation fuel production from Alberta's oil sands is growing at a rapid pace
- Oil sands could be the single largest petroleum supply to the U.S.A.
- The value chain in oil sands is technology intensive
- A number of technology challenges and opportunities to ensure responsible growth have been mapped out
- Capital investment in oil sands production and upgrading is substantial
- Security and Prosperity Partnership of North America Oil Sands Initiative

Knowledge Gaps

- Effect of diesel fuel chemistry on combustion, engine emissions, lubricity, and after treatment technologies for future engines
- Effect of diesel fuel chemistry and blends (conventional crude derived diesel fuel, oil sands, bio-fuels and Fischer Tropsch fuels) on tomorrow's engines
- Could low temperature combustion engine technology change fuel requirements?
- Oil Sands Chemistry and Engine Emissions Roadmap Workshop, June 2005, Edmonton, Alberta, Canada

Where do we go from here?

- Chemistry models and combustion models need to work together (i.e. chemical descriptors used to characterize diesel fuel for processing research need to be useful for combustion models and engine research)
- Standard fuels, including oil sands components, need to be evaluated in several engine R&D programs to better correlate fuel chemistry to engine emissions (both today's and tomorrow's engines)
- National Centre for Upgrading Technology has established working relationships with US researchers (PNNL and ORNL) to understand how future engine technologies may affect oil sands processing and vice versa
- NCUT also has working relationship with combustion researchers at National Research Council Canada

Processing

- ongoing research, development and demonstration activity
- Producer upgrader refiner interface
- new production, upgrading and refining technologies that deliver higher quality products
- variety of bitumen-derived products but Heavy Gas Oil is critical
- FCC conversion capacity
- process models provide guidance and detailed analysis would help

Engines and Emissions

- passenger vehicle and on-road and
 - off-road diesel engines
 - government policy and vehicle/engine regulations and harmonization
 - new vehicle/engine technology standards
- current/future fuels in current/future engines
- analytical research and composition emissions models

Hydrocarbon and Fuel Quality

- •hydrocarbon stream and diesel fuel on-going activity
- government policy, fuel regulations and harmonization
- fuel standards (CGSB & ASTM, EPA & CEPA)
- stability, compatibility, cetane number, lubricity, additives
- analytical research & product quality models

Additional Sources

- There is some useful information on oil sands in the web sites below:
- http://www.energy.gov.ab.ca
- www.ptac.org
- http://www.acr-alberta.com/
- http://www.choa.ab.ca/
- http://www.capp.ca/
- http://www.ccqta.com/
- http://www.neb.gc.ca/whatsnew/index_e.htm

