CRADA NFE-08-01671 – Materials for Advanced Turbocharger Design

PI – Philip J. Maziasz, ORNL and Pat Pattabiraman, Honeywell

Oral – Wednesday, May 11, 2011

Project ID – PM038

This presentation does not contain any proprietary, confidential or otherwise restricted information

Honeywell

Overview

Timeline

- Project began September, 2009
- Project ends September, 2012
- Project is <50% complete, and extension will be negotiated with Honeywell next year due to expanded commercialization opportunities

Budget

- Total Project Funding
 - DOE Share 50%
 - Honeywell 50%
- FY10 DOE Funding \$300,000
- FY11 DOE Funding \$300,000

Barriers

- Changing internal combustion engine regimes
- Long lead time for materials commercialization
- Durability Current commercially viable materials limit engine efficiency by limiting peak cylinder pressure and exhaust temperatures
- Cost

Partners

- Honeywell's suppliers for turbocharger components
- Materials producers for components

Objective

This CRADA project is relevant to a key technical gap in Propulsion Materials that supports the following Advanced Combustion Engine goal:

2015 Commercial Engine – Improve Thermal Efficiency by 20% over current baseline efficiency

Technical Objective – Higher temperatures (>750°C, diesel, >950°C gasoline) exceed the strength and temperature capability of current materials, particularly cast-iron for turbocharger housings

Impact – Turbocharger housing and other components with more temperature capability and strength will enable higher, sustained operating temperatures. Stainless steel turbo-housings will also reduce weight and retain exhaust heat relative to cast-irons

Approach

- Honeywell and ORNL have considered current materials used for hot (turbine) and cold (compressor) portions of current turbocharger systems
- Honeywell and ORNL have identified turbocharger housings and turbine-wheel/shaft assemblies as priority components for consideration with increased exhaust temperatures
- Cast austenitic stainless steels have more temperature capability as turbocharger housings than cast-irons
- Weld-joints between steel shafts and Ni-based alloy turbine wheels are the focus of residual stress studies

Milestones

- FY2010 new project
- FY2011 begin neutron-scattering residual-stress measurements on wheel/shaft assemblies (Dec, 2010, done)
- FY2011 complete long-term creep-rupture of cast CF8C-Plus stainless steels (Feb, 2011, done)
- FY2011 Obtain new turbocharger housings of cast CF8C-Plus stainless steel (August, 2011, on-track)

Technical Accomplishment – HFIR Neutron Scattering on wheel/shaft assemblies

Honeywell supplied wheel/shaft components from gasoline turbocharger products

HTML User-Center at ORNL will use neutron-scattering to measure residual stresses in the weld-joint between Ni-based superalloy wheel and steel shaft

Technical Accomplishments

– Initial neutron-scattering
experiments done at NRSF2

Incident Slit

Diffracted Slit

Technical Accomplishments – Upgrade Turbo-Housing to Cast Stainless Steel

ORNL developed CF8C-Plus cast stainless steel with more strength than HK30Nb stainless alloy > 750°C.

Both have much more strength than SiMo cast-iron above 500-600°C

Current SiMo cast-iron turbocharger housing for diesel engine product

Technical Accomplishments – Upgrade Turbo-Housing to Cast Stainless Steel for More High-Temperature Creep Resistance

Creep-Rupture
Testing of Cast
CF8C-Plus stainless
steel and HK30-Nb
stainless alloy at
ORNL

- CF8C-Plus cast stainless steel has significantly better creep-resistance than HK30-Nb stainless alloy at 700-900°C
- •CF8C-Plus stainless steel cost is about 33% less than HK30-Nb alloy

Technical Accomplishments – Upgrading Turbo-Housing to Cast Stainless Steel Saves Energy in Manufacturing and Lifecycle Use

Primary Energy for Making Material, Component and for Lifecycle Use of CF8C-Plus steel, HK30 alloy and Ni-based 625 superalloy

Calculations by S. Das, NTRC, ORNL

- Energy savings in manufacturing and in fuelefficiency during vehicle lifecycle are compared for CF8C-Plus steel and HK30 alloy
- Using CF8C-Plus steel for turbo-chargers has significant lifecycle energy savings

Collaboration and Coordination with Other Partners

- Honeywell coordinates with its materials suppliers to provide standard and new prototype turbocharger components
- ORNL provides substantial collaboration between this project and Residual-Stress User Center at the High Temperature Materials Laboratory (HTML) for neutronscattering experiments at HFIR (C. Hubbard and T. Watkins)
- ORNL provides collaboration between this project and the NTRC for economic and energy modeling calculations and analysis (S. Das)

Future Work - Produce stainless steel turbohousings, test materials for other components and continue residual stress experiments

- Honeywell will work with stainless steel foundry to produce turbocharger housings of CF8C-Plus steel
- Expand properties testing for turbine housing and wheel alloys to include oxidation and fatigue
- Examine effects of processing variables on residual stresses in weld-joints of wheel/shaft assemblies
- Examine residual stresses in critical locations of turbocharger housings made of SiMo cast iron and CF8C-Plus cast stainless steel

Summary

- Honeywell and ORNL have initially assessed the effects of higher exhaust temperatures on turbocharger materials and components, and prioritized several for more in-depth study
- Residual stresses in weld-joints between Ni-based alloy turbine wheels and steel shafts are a concern that is being addressed with neutron scattering experiments wheel/shaft components at the HTML at ORNL
- Long-term creep-rupture data has shown that CF8C-Plus cast stainless steel has more performance than HK30-Nb stainless alloy as an upgrade for turbo-housings at 700-900°C
- Economic and energy savings studies show that CF8C-Plus steel is 33% less costly, and produces component manufacturing and vehicle use lifecycle energy savings relative to HK30-Nb stainless alloy for turbocharger housing applications

