
CRADA NFE-08-01671 – Materials for Advanced Turbocharger Design

PI – Philip J. Maziasz, ORNL and Pat Pattabiraman, Honeywell

Oral – May 15, 2012

Project ID – PM038

This presentation does not contain any proprietary, confidential or otherwise restricted information

OAK RIDGE NATIONAL LABORATORY

Timeline

- Project began September, 2009
- Project ends September, 2012
- Project is <66% complete, and extension will be negotiated with Honeywell this year due to expanded commercialization opportunities

Budget

- Total Project Funding
 - DOE Share 50%
 - Honeywell 50%
- FY11 Funding \$300,000
- FY12 Funding \$300,000

Barriers

- Barriers addressed include:
 - Difficulty in simultaneously increasing efficiency and reducing emissions
 - HECC Technologies increase exhaust temperatures for turbochargers

Partners

Honeywell's suppliers for turbocharger components
Engine customers for turbochargers

Objective

This CRADA project is relevant to a key technical gap in Propulsion Materials that supports the following Advanced Combustion Engine goal:

2015 Commercial Engine – Improve Efficiency by 20% over 2009 baseline efficiency

Technical Objective – Higher temperatures (>750°C, diesel, >950°C gasoline) exceed the strength and temperature capability of current materials, particularly cast-iron for turbocharger housings

Impact – Turbocharger housing and other components with more temperature capability and strength will enable higher, sustained operating temperatures. Stainless steel turbo-housings will also reduce weight and retain exhaust heat relative to cast-irons

Approach

- Honeywell and ORNL have considered current materials used for hot (turbine) and cold (compressor) portions of current turbocharger systems
- Honeywell and ORNL have identified turbocharger housings and turbine-wheel/shaft assemblies as priority components for consideration with increased exhaust temperatures
- Cast austenitic stainless steels have more temperature capability as turbocharger housings than cast-irons
- Weld-joints between steel shafts and Ni-based alloy turbine wheels are the focus of residual stress studies

Milestones

- FY2012 complete neutron-scattering residual-stress measurements on wheel/shaft assemblies (Dec, 2011, done)
- FY2012 complete creep-rupture of aged cast CF8C-Plus stainless steels (April, 2012, on-track)
- FY2012 Extend CRADA (August, 2012, on-track)

Technical Accomplishment – HFIR Neutron Scattering on wheel/shaft assemblies

Honeywell supplied wheel/shaft components from gasoline turbocharger products

HTML User-Center at ORNL used neutron-scattering to measure residual stresses in the weld-joint between Ni-based superalloy wheel and steel shaft

Technical Accomplishments – Initial neutron-scattering experiments done at NRSF2

Bank

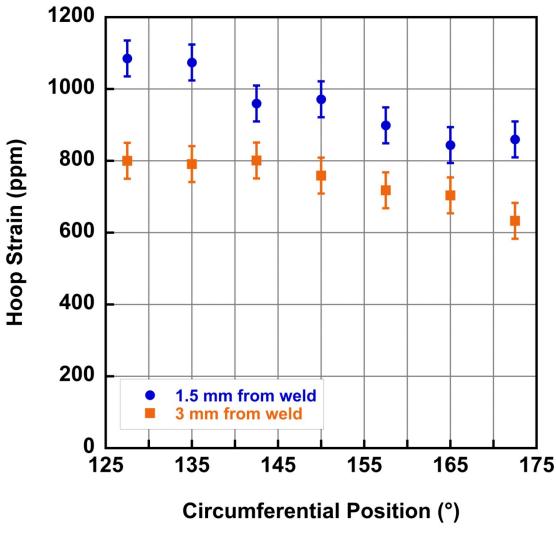
of Detectors

Transmitted

Beam

Incident Beam

Incident Slit

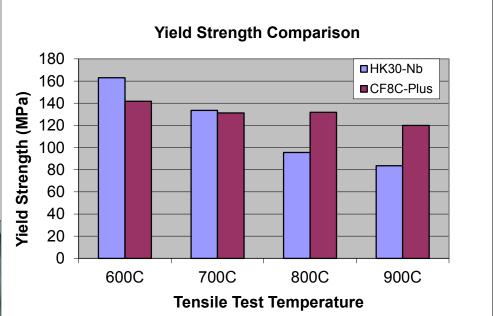

Translation & Rotation

Stage

Diffracted Slit

Neutron scattering shows an assymetric tensile hoop strain

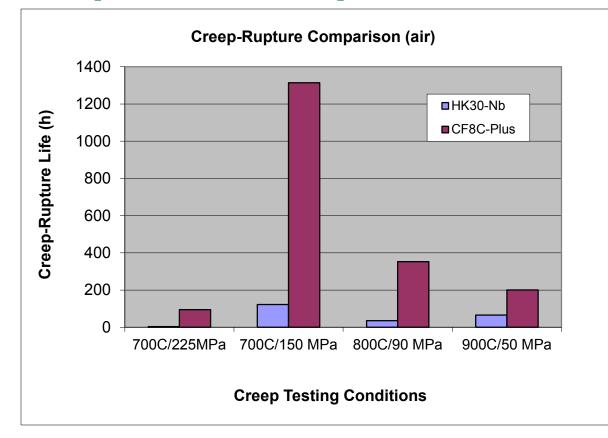
9 Managed by UT-Battelle for the U.S. Department of Energy


Presentation name

Technical Accomplishments – Upgrade Turbo-Housing to Cast Stainless Steel

ORNL developed CF8C-Plus cast stainless steel with more strength than HK30Nb stainless alloy > 750°C.

Both have much more strength than SiMo cast-iron above 500-600°C



Current SiMo cast-iron turbocharger housing for diesel engine product

Technical Accomplishments – Upgrade Turbo-Housing to Cast Stainless Steel for More High-Temperature Creep Resistance

Creep-Rupture Testing of Cast CF8C-Plus stainless steel and HK30-Nb stainless alloy at ORNL

 CF8C-Plus cast stainless steel has significantly better creep-resistance than HK30-Nb stainless alloy at 700-900°C

•CF8C-Plus stainless steel cost is about 33% less than HK30-Nb alloy

11 Managed by UT-Battelle for the U.S. Department of Energ

Collaboration and Coordination with Other Partners

- Honeywell has identified a commercial application of CF8C-Plus for turbohousings with Ford on the V-6 3.5L Ecoboost turbocharged gasoline engine used on light trucks
- ORNL provides substantial collaboration between this project and Residual-Stress User Center at the High Temperature Materials Laboratory (HTML) for neutronscattering experiments at HFIR (T. Watkins)

Future Work – Produce stainless steel turbohousings, test materials for other components and continue residual stress experiments

- Honeywell will work with stainless steel foundry to produce turbocharger housings of CF8C-Plus steel
- Expand properties testing for turbine housing and wheel alloys to include oxidation and fatigue

Summary

- Honeywell and ORNL have initially assessed the effects of higher exhaust temperatures on turbocharger materials and components, and prioritized several for more in-depth study
- Residual stresses in weld-joints between Ni-based alloy turbine wheels and steel shafts are a concern that has been addressed with neutron scattering experiments on wheel/shaft components at the HTML at ORNL
- Long-term creep-rupture data has shown that CF8C-Plus cast stainless steel has more performance than HK30-Nb stainless alloy as an upgrade for turbo-housings at 700-900°C

