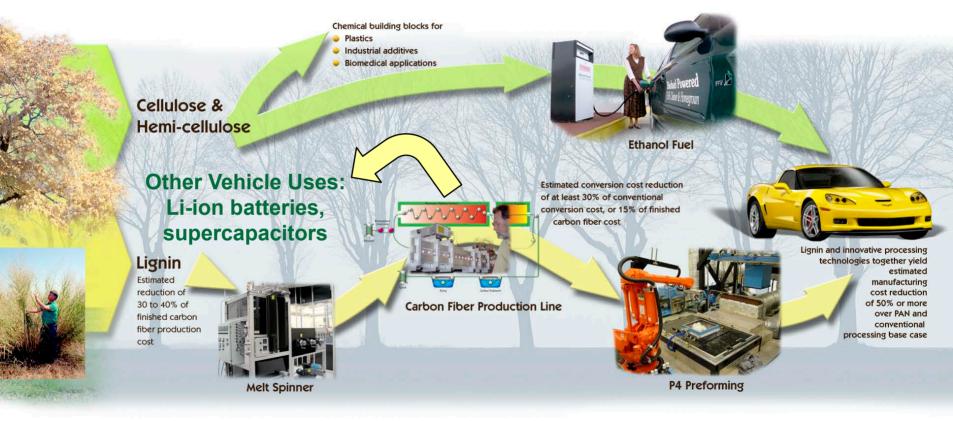


Low Cost Carbon Fiber from Renewable Resources

Frederick (Fred) S. Baker

Oak Ridge National Laboratory P.O. Box 2008, MS 6087 Oak Ridge, TN 37831-6087 Phone: (865) 241-1127 Fax: (865) 576-8424


Email: <u>BakerFS@ORNL.GOV</u>

June 7-11, 2010 Washington, DC Project ID # LM005

This presentation does not contain any proprietary, confidential, or otherwise restricted information

ORNL Research Directed Towards Production of Multiple Value-added Streams from Biomass Feedstock

DOE Office of Vehicle Technologies Lightweight Materials Program

Overview

Barriers

<u>Timeline</u> Project start date: FY'01 Project end date: FY'12 65% Complete

Budget

Total project funding thru' FY'08:

- DOE, \$6,173
- MeadWestvaco,
 - ~ \$500 K (in-kind)
- FY'09 Funding \$900 K
- FY'10 Funding \$975 K

Barriers:

- Vehicle weight reduction (60-70% potential)
- Affordability (target \$5-7/lb price)
- Recyclable/renewable materials

Targets (strength):

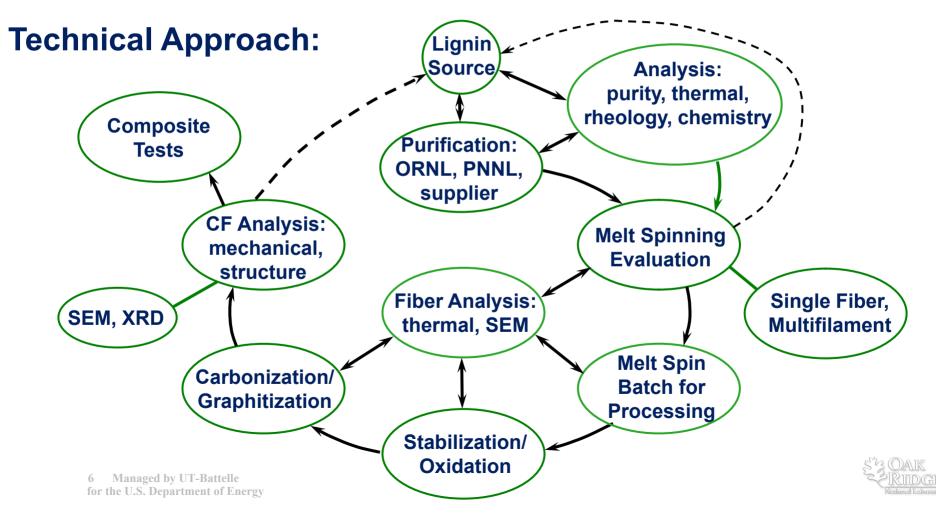
- Tensile 250 Ksi (1.72 GPA)
- Modulus 25 Msi (172 Gpa)
- Strain ≥ 1%

Industrial Partners

MeadWestvaco Corporation, USA (2000 through Aug. 2007) Kruger Wayagamack, Canada (from Sept. 2007) Lignol Innovations, Canada (from Mar. 2008) Innventia (former STFI-Packforsk), Sweden (from Mar. 2009)

Focus Research Areas in FY'09

- Establishment of Melt Spinning Conditions for Organosolv[™] Lignin
- Enhancement of Lignin Properties to Facilitate Fiber Stabilization
- Establishment of Maximum Spinning Speed of Lignin Fibers
- Correlation of Fundamental Properties of Lignin Materials with Melt Spinnability and Conversion to Carbon Fiber (CF)
- Conversion of Lignin Precursor Fiber into Carbon Fiber
- High Temperature Treatment of Lignin-based Carbon Fiber
- Correlation of CF Mechanical Properties with Processing Conditions


Industrial Partners:

- Lignol Innovations, Vancouver, Canada (from March'08)
 - Organosolv[™]-pulped Lignins from Cellulosic Ethanol Fuel Production
- Kruger Wayagamack, Quebec, Canada (from Sepember'07)
 - Kraft-pulped Softwood Lignin
- Innventia (former STFI-Packforsk), Stockholm, Sweden (from March'09)
 - Kraft-pulped Softwood and Hardwood Lignins (high purity)

Low-cost, Lignin-based Carbon Fiber

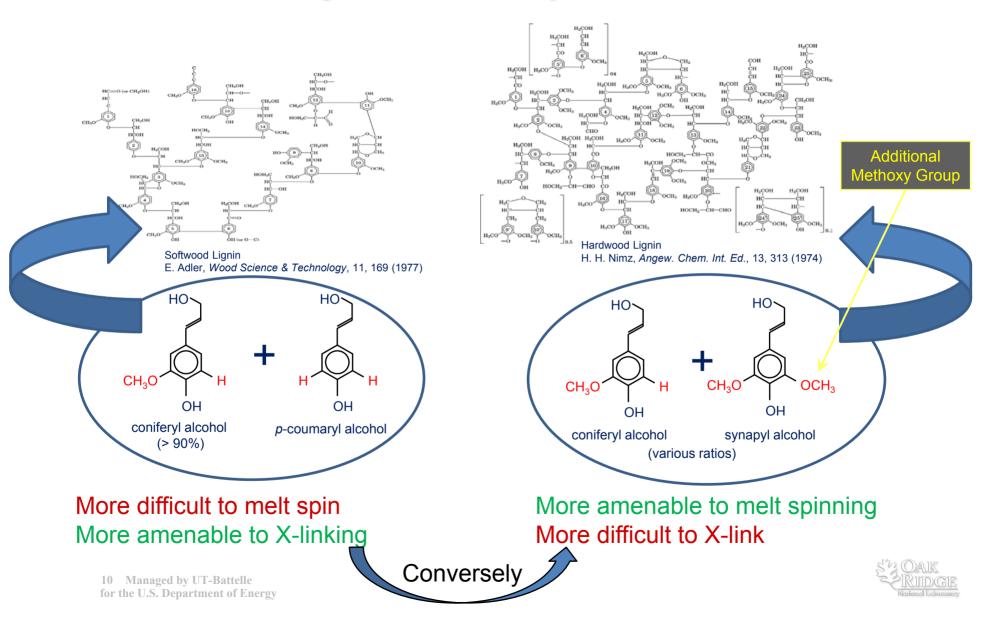
Low Cost Carbon Fiber from Renewable Resources

Animation of Process of Lignin Isolation from Biomass and Melt Spinning into Precursor Fiber for Carbon Fiber Production

Lignin as a Precursor Material for Carbon Fiber Production

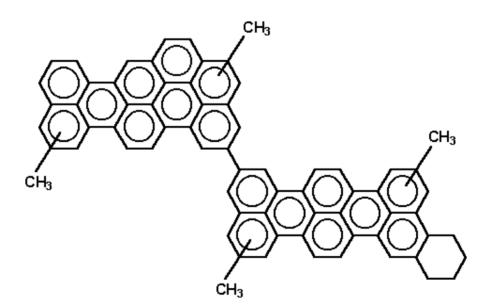
Advantages:

- Sustainable, renewable resource material
- Second most abundant organic substance (polymer) on earth after cellulose
- Accounts for 70% of CO₂ sequestered by plants
- "Readily available": Co-product of pulping processes; about 200 million metric tons annually pass through pulp and paper mills worldwide (2005 data)
- Increasingly available from bio-refineries; by-product of cellulosic ethanol production
- Low cost; target of ≤ 50¢/lb (\$1.10/kg) ready for melt spinning


Lignin as a Precursor Material for Carbon Fiber Production

Technical Challenges:

- Complex chemical structure; dependent on biomass species and pulping process and conditions (predominantly Kraft process today)
 - What is the best lignin chemistry?
 - Inhomogeneity and polydispersity (molecular weight, etc.)
- High level of impurities, at least in Kraft-pulped lignins
 - How to obtain desired level of purity?
 - Cost of purification?eliminated as an issue!
- Rendering the lignin melt spinnable, if not spinnable alone; e.g., softwood
- Stabilizing the lignin precursor fiber at an acceptable rate
- Attainment of target engineering properties



Influence of Lignin Chemistry – Broad Conclusion

The poly(phenolic) molecular structure of lignin is very different from that of the poly(aromatic) hydrocarbon structure of petroleum pitches used to make commercial carbon fibers

Typical pitch molecule

Lignin Materials - Summary

Feature/Property	Kraft-Pulped	Organosolv-pulped
Current Availability Future Availability	Commercial (1 supplier, MWV) P&P mills moving to lignin isolation	Semi-commercial Biorefineries on horizon
Price, as isolated Price, purified	20¢/lb Aqueous purified: ≤ 50¢/lb Organic purified: near target 50¢/lb	≤ 50¢/lb Purification not necessary
Purity (as isolated from black liquor)	MeadWestvaco – Poor Kruger – Progressing to Good	Excellent (Lignol Innovations)
Melt Spinnable, as isolated	Hardwood – Yes* Softwood – No, as is; Yes*, with plasticizer	Hardwood – Yes Softwood - ?
Melt Spinnable, purified	Aqueous purified hardwood – No, but Yes with plasticizer Organic purified hardwood - Highly	Purification not necessary
Control Pulping Conditions (to tailor lignin properties)	No Lignin isolation and any necessary purification is tied to pulping process (modern Kraft mills are highly integrated, closed loop operations)	Yes Organosolv process conditions highly adaptable to enhance lignin properties
for the U.S. Department of Energy * Impurities not withstanding		

Lignin Materials – Summary (cont.)

Feature/Property	Kraft-Pulped	Organosolv-pulped
Molecular Weight	Hardwood: 2000-3000 Softwood: 1000-2000	> 2000 Process controllable
Glass Transition (T _g)	Hardwood: "low" ** Softwood: "high" **	Process controllable
Melting Point (T _m)	Hardwood: "low" ** Softwood: typically decomposes	Process controllable
Reactivity to Oxygen	Hardwood: "low" ** Softwood: "high" **	"low" **
Cross-linking Rate	Hardwood: "low" ** Softwood: "high" **	"moderate" **
Carbon Content (wt% C)	Hardwood: 55-60 Softwood: 60-65	55-65

** Relative, not absolute terms

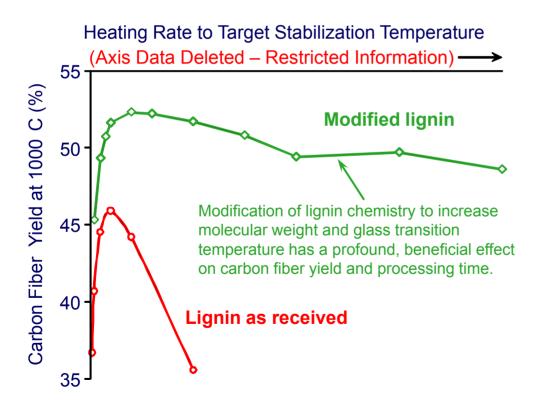
U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Melt Spinning Facilities Installed at ORNL

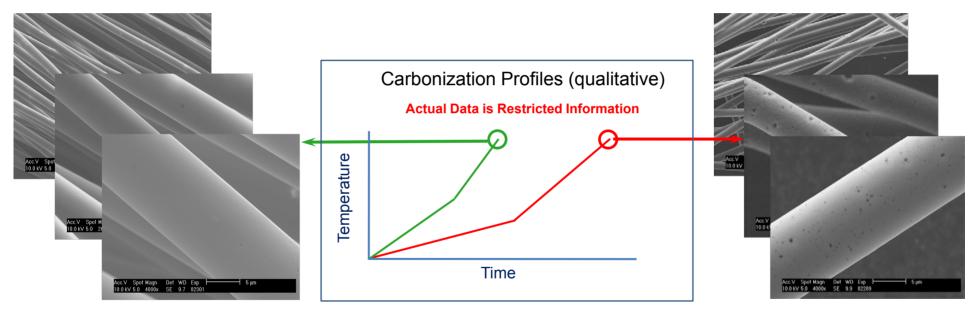
14 Managed by UT-Battelle for the U.S. Department of Energy

High Melt Spinning Speeds Consistently Demonstrated


12-filament fiber spun from Kraft hardwood lignin

- Sustained melt spinning of lignin fiber of target diameter (10 µm) consistently demonstrated at 1500 meters/minute, the maximum speed of the winder on the lab scale equipment
- Both Kraft and Organosolv-pulped lignins (hardwood)
- Almost 3-times speed of commercial mesophase pitch-based fibers; almost 4-times commercial wet spinning speed of PAN-based fibers
- Much higher melt spinning speeds appear within reach; e.g., 5000 meters/minute with appropriate winding equipment

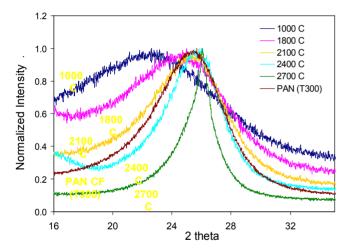
Rapid Stabilization of Lignin Fiber Demonstrated

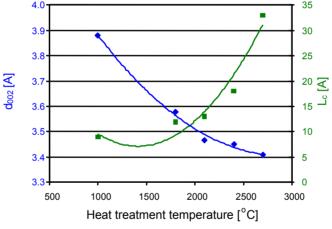


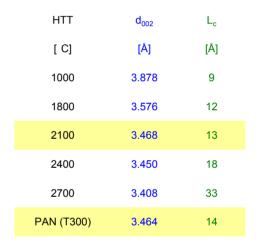
- Time for satisfactory stabilization of lignin fiber reduced from several days to minutes
- May be possible to stabilize fiber "on-thefly"; i.e., immediately after spinneret
- All reported work on lignin-based carbon fiber involved very long stabilization times
- Cost of lignin modification << 1¢/lb
- Stabilized fiber yield increased from 95% to > 100% - confirms oxidative cross-linking
- Carbon fiber yield (at 1000°C) from lignin feedstock increased from 46% to 53%
- Overall, lignin chemistry very important!

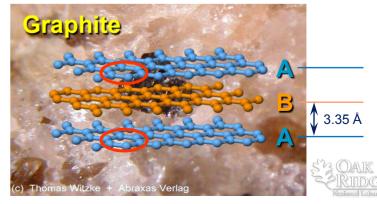
Identified Mechanism of Defect Development During Carbonization of Lignin Fiber

Good Fiber Structure

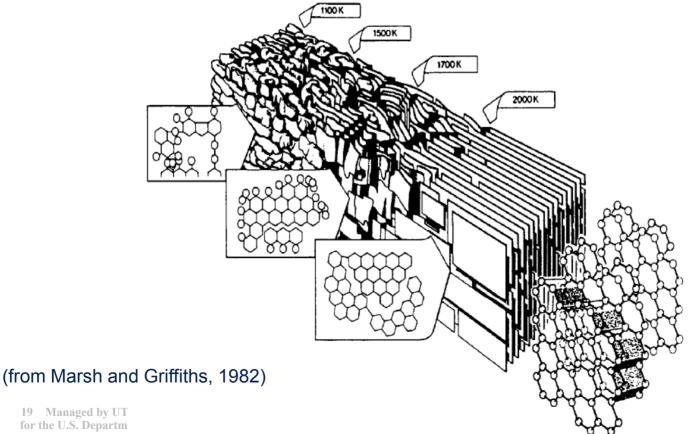

Poor Fiber Structure


- Relatively slow rates of carbonization expose carbon to gasification conditions (H₂O, CO₂ evolution)
- Porosity is introduced into the carbon fiber, including pores with dimensions down to < 1 nm (10 Å) in width
- Pore development is adverse with respect to mechanical properties, but can be exploited in other applications




"Graphitization" of Lignin-based Carbon Fiber – XRD data

- A high degree of graphitic structure can be created in ligninbased carbon fiber through high temperature treatment
- "Graphicity" of lignin-based carbon fiber heat-treated to 2100°C comparable to that of a "T-300" Grade PAN-based carbon fiber
- But, modulus of lignin-based carbon fiber not "tracking" degree of graphitic structure!



18 Managed by UT-Battelle for the U.S. Department of Energy

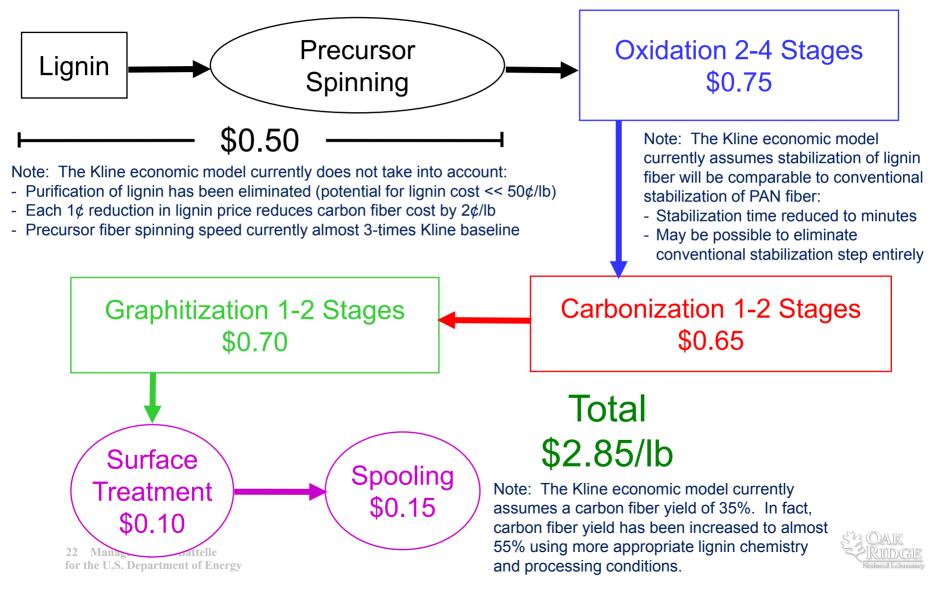
Possible Cause: Inhomogeneous Structure of Fiber

Model of Carbonization/Graphitization Process

19 Managed by UT for the U.S. Departm

Highlights of Progress on the Lignin-based Carbon Fiber Project, FY'09/10

- Consistently demonstrated sustainable melt spinning of multifilament tow from both Kraft-pulped and Organosolv-pulped hardwood lignins, <u>as received</u>, at <u>1500 m/minute</u>
- Through a very low cost modification of lignin properties, accelerated the rate of stabilization of lignin fiber by three orders of magnitude; viable process achieved
- Indications obtained that it may be possible to eliminate conventional stabilization step
- Increased understanding of lignin-chemistry and how to manipulate it to enhance processing of lignin into carbon fiber
- Yield of carbon fiber from lignin feedstock material increased to near 55%; i.e., about 85-90% of average theoretical carbon content of lignin
- Demonstrated high degree of "graphitizability" of lignin-based carbon fiber
- Tensile strength of lignin-based carbon fiber increased to near 70% of target 250 Ksi
- On downside, modulus of fiber hovering around 50% of target 25 Msi



Low Cost Carbon Fiber from Renewable Resources Challenges and Path Forward – FY'10/11

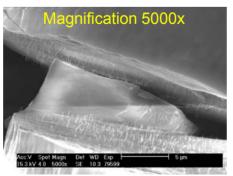
- Continue efforts to refine lignin chemistry to facilitate conversion to carbon fiber
- Continue to optimize fiber conversion conditions to enhance mechanical properties
- Increase work on addition of polymers (PEO, PET) to enhance mechanical properties
- Firmly establish cause of fiber modulus not tracking degree of graphitic structure
- Increase work on continuous conversion of lignin fiber into carbon fiber
- Establish whether lignin precursor fiber can be stabilized "on-the-fly" to eliminate conventional stabilization step

Estimated Production Cost of Lignin-based Carbon Fiber (Kline Economic Model – \$ per lb)

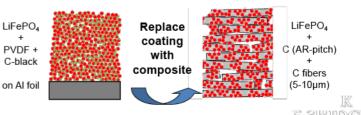
Leveraging of Knowledge Base Developed on Low Cost Carbon Fiber Through the EERE/Vehicle Technologies Lightweight Materials Program

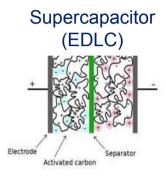
Cross-cutting Applications of Lignin-based Carbon Fibers

ORNL Projects Underway


Electrical Energy Storage for Plug-in Hybrid & All-electric Vehicles (etc.)

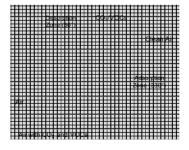
- Supercapacitors: High surface area, nanoporous (activated) carbon fibers for electrostatic energy storage in electrodes
- Lithium-ion Batteries
 - Structural reinforcement and active energy storage in anode
 - Structural reinforcement of cathode
 - Enhanced electrical and thermal conductivities of both electrodes


In situ incorporation of carbon nanotubes during melt spinning – of lignin fiber (to enhance electrical and thermal conductivity properties)


> 24 Managed by UT-Battelle for the U.S. Department of Energy

Approach - graphite current collector

• A conductive carbon skeleton will improve uniformity of current and temperature in cathode - extending lifetimes and safety.


Energy Efficient HVAC Systems with CO₂ and VOC Capture

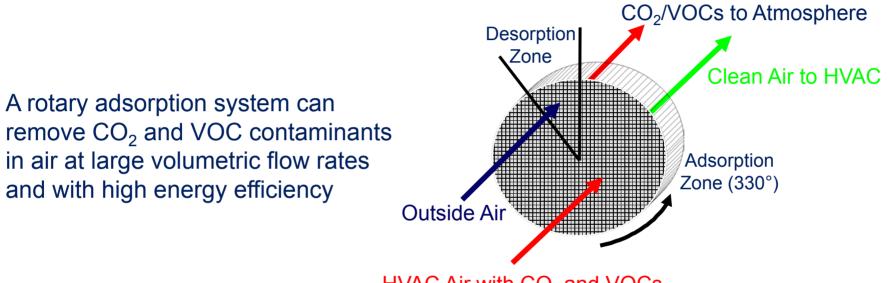
- Regenerable CO₂/VOC adsorption system with very low parasitical energy consumption (< 0.5%)</p>
 - ✓ HVAC energy use in Buildings Sector = 14% of nation's total primary energy consumption in 2006 (99.5 Quads ≈ 17.1 billion barrels of oil)
 - ✓ 30% of energy squandered to simply heat/cool air drawn into HVAC to dilute respiratory CO₂ to ASHRAE 62 Standard (≈ 16% of U.S. oil imports!)

Solution:-

Electrical Swing Adsorption (ESA) Systems

Basic Principle of ESA

Continuous ESA System Patent Application: US-2008-0047436-A1; Frederick S. Baker: "Rotary Adsorbers for Continuous Bulk Separations," Published 2/28/08


Disposable high efficiency filters for VOC Capture

25 Managed by UT-Battelle for the U.S. Department of Energy

Continuous Scrubbing of CO₂/VOCs in HVAC Systems

HVAC Air with CO_2 and VOCs

- The CO₂/VOC-laden air from HVAC passes through the rotary adsorption unit where the CO₂ and VOCs are captured on nanoporous (activated) carbon fiber material in a honeycomb form
- > The clean air is re-circulated back into the HVAC system
- The captured CO₂ and VOCs are continuously desorbed from the adsorption media as the revolving wheel passes through the desorption (regeneration) zone
- > The regeneration air flow with CO_2 and VOCs is rejected to outside atmosphere

26 Managed by UT-Battelle for the U.S. Department of Energy

UT-B Patent Application: US-2008-0047436-A1; Frederick S. Baker "Rotary Adsorbers for Continuous Bulk Separations," Published 2/28/08

Large Industrial Application – Proprietary Research Project

- Structural reinforcement
- Initial test data very positive
- Relevant properties of lignin-based carbon fiber comparable to much more expensive commercial carbon fiber
- Opportunity for near-term commercialization of lignin-based carbon fiber; e.g., 1-2 years

Acknowledgements

US DOE Vehicle Technologies Office Joe Carpenter/Carol Schutte

> Industrial Partners Lignol Innovations (Canada) Kruger Wayagamack (Canada) Innventia (Sweden)

ORNL Lignin Team Members Darren Baker Nidia Gallego Amit Naskar Simioan Petrovan (University of Tennessee) Daniel Webb

