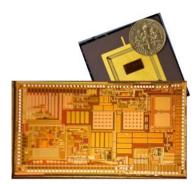


High-Temperature, High-Voltage Fully Integrated Gate Driver Circuit

PI: Leon Tolbert Presenter: Ben Blalock Oak Ridge National Laboratory June 10, 2010

Project ID: APE003

This presentation does not contain any proprietary, confidential, or otherwise restricted information



Timeline

- Start Date: Oct. 2008
- End Date: Sept. 2010
- 80% Complete

Budget

- DOE Share 100%
- FY09 received: \$367K
- FY10 received: \$330K

Barriers

- Achieving high-temperature capability with silicon IC platform
- Achieving universal gate drive solution capable with emerging WBG power switches
- Achieving highly integrated gate drive solution with high output current drive
- High-temperature solutions require high-temperature gate drives

Partners

- Development: The University of Tennessee
- Field Testing: GM ATV

Objective

- Develop a highly reliable, integrated gate drive circuit that is capable of operating at high temperatures with high drive current while driving GaN or SiC JFETs or MOSFETs.
- FY10: Refine and add capability to universal gate driver chip.
 - Design, fabricate and test a silicon on insulator (SOI) chip that is robust over wide temperature range (up to 200° C ambient).
 - Incorporate additional protection features.
 - Add input isolation test circuitry.
 - Enable 100% duty cycle.

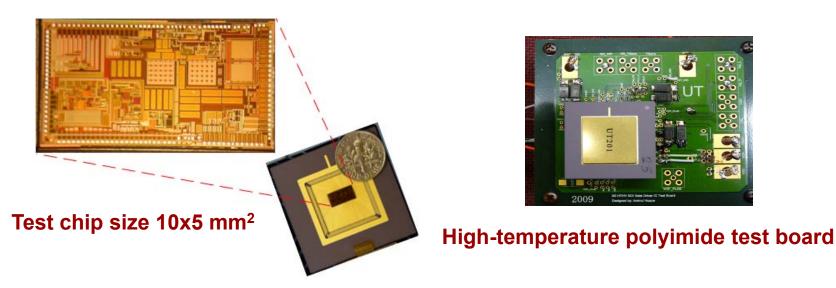
Milestone

 August 2009: Successfully demonstrate that the fabricated SOI gate drive chip (3G) can act as a gate driver over a wide temperature range for prototype SiC MOSFETs and JFETs obtained from suppliers.

 Go/No Go - Ability of SOI chip to drive SiC FET over wide temperature range (-40° C to 175° C)

 August 2010: Demonstrate Corinth (4G) SOI gate drive IC functioning as a gate driver over a wide temperature range (up to 200° C) driving prototype SiC MOSFETs and JFETs. Verify chip features including protection circuits and input isolation test circuitry, and characterize the gate driver operation.

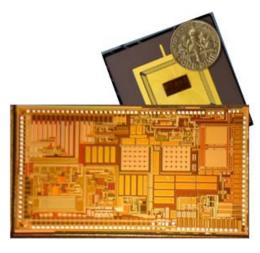
- SOI-based high-temperature, high-voltage gate driver will be developed that can work up to 200° C ambient.
- Improve circuit topology for reliable and repeatable performance at elevated temperatures.
- Test prototypes to support a variety of SiC-based or GaN-based power switches (JFETs and MOSFETs) as they become available. Driver designed as a "universal gate drive" to meet various FET specs.
- Provide additional protection features, such as desaturation protection and gate current monitoring to enhance robustness and incorporate "smart" drive capabilities.
- Successful execution of this research combined with commercially available WBG-based power switches will help realize high-temperature DC-DC converters and traction drive systems (inverters) for HEVs.



Approach (cont'd): Description of Silicon-on-Insulator (SOI) Technology

- Develop high-temperature, high-voltage fully integrated gate driver utilizing Bipolar-CMOS-DMOS on Silicon-on-Insulator (BCD on SOI) technology
 - SOI offers inherently low leakage current and latch-up immunity, thus enabling circuits to operate at higher temperature than their bulk Si-based counterparts.
- Novel circuit design approach to provide gate driver circuit performance insensitive to temperature variation

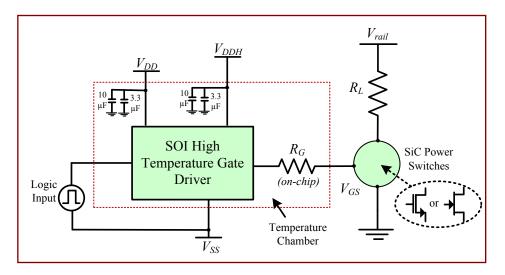
FY09 Technical Accomplishments



- 3G prototype of a high-temperature, high-voltage integrated circuit gate driver designed and fabricated using a BCD-on-SOI process from Telefunken Semiconductor.
- Successfully tested with SiC MOSFETs and JFETs (both normally on and normally off) at 200° C without any heat sink and cooling mechanism.

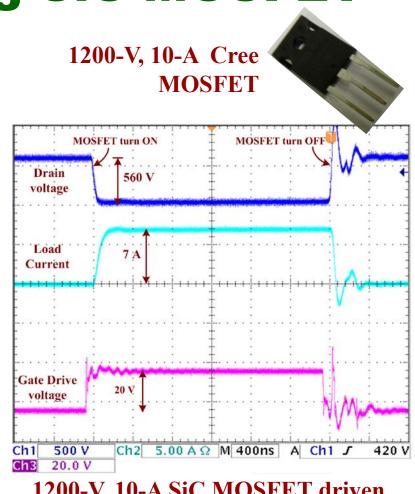
FY09 Technical Accomplishments: Prominent Features of SOI Chip

- High source and sink current capability: peak 2.9 A @ 27° C and 2.2 A @ 200° C ambient
- Gate drive supply range from 10 V to 30 V p-p
- High operating temperature: 200° C ambient without any cooling mechanism
- High capacitive load drive capability: 10 nF in < 100ns @ 200° C

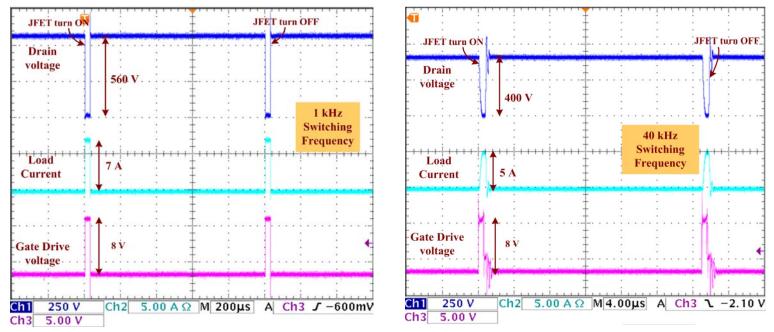


Chip size 10x5 mm²

- Die area of 10 x 5 mm² for fully functional test chip, including the core gate driver circuit, 5-V onchip voltage regulator, short-circuit protection, undervoltage lockout, bootstrap capacitor, dead time controller and temperature sensor
- 0.8-micron, 2-poly and 3-metal BCD on SOI process from Telefunken has been used



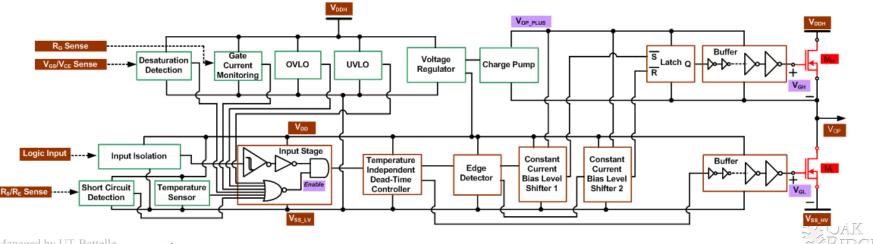
FY09 Technical Accomplishments: Prototype Driving SiC MOSFET


Ambient Temp. (°C)	Drain voltage (V _{DS})		Gate voltage (V_{GS})		
	t _{rise} (ns)	t _{fall} (ns)	t _{rise} (ns)	t _{fall} (ns)	
27	15.7	33.4	2.8	3.6	
125	15.7	35.1	3.1	4	
200	20.2	41.0	4	5.6	

9 Managed by UT-Battelle for the U.S. Department of Energy

1200-V, 10-A SiC MOSFET driven at 200° C ambient temperature $(R_G=4.3 \Omega @ 200° C)$

FY09 Technical Accomplishments: Prototype Driving SiC JFET



1200-V, 50-A SiC JFET (Microsemi/SemiSouth) module driven at 200° C ambient temperature ($R_G = 4.3 \Omega @ 200° C$)

	Ambient Temperature (° C)	Drain voltage (V_{DS})		Gate voltage (V_{GS})	
		t _{rise} (ns)	t _{fall} (ns)	t _{rise} (ns)	t _{fall} (ns)
	85	83	202	2.8	3.2
	125	85	207	3.0	4.0
	200	97	242	3.2	4.1 CAK
10 Managed by UT-Battelle					RIDGE

FY10 Technical Accomplishments

- The next gate driver chip design (4G), *Corinth*, is in progress.
 - Proposed features include test structures for high-temperature capable input isolation to protect logic generator and allow for use in bridge configurations without external isolation hardware.
 - On-chip charge pump replacing the bootstrap diode/capacitor to provide 0-to-100% duty cycle operation.
 - Additional protection circuitry including de-saturation detection.
 - Preliminary gate current monitoring circuitry (toward *smart gate drive*¹).
 - Core gate driver optimized for smaller area.
 - Revising 3G designs including UVLO, Zener-based voltage regulator, shortcircuit current monitoring, and increase maximum output current to 5 A.
 - Low-voltage differential signaling (LVDS) input to better support testing.

National Laboratory

Managed by UT-Battelle for the U.S. Department of Energy *Lihua Chen; Peng, F.Z.; Dong Cao, "A smart gate drive with self-diagnosis for power MOSFETs and IGBTs," Applied Power Electronics Conference and Exposition, 2008. APEC 2008. Twenty-Third Annual IEEE, vol., no., pp.1602-1607, 24-28 Feb. 2008*

Collaborations

- University of Tennessee
 - Gate drive design and testing
- General Motors
 - Gate driver testing with power modules

Future Work – FY10

- Finish Corinth (4G) and send out for fabrication.
- Fabricate and populate polymide high temperature test board.
- Receive fabricated and packaged SOI chips – expected late June/July 2010.
- Measurement and characterization of Corinth prototype circuits with SiC power MOSFETs and JFETs.

Future Work – FY11 and beyond

• Project Ends FY10

Summary

- A highly integrated, high temperature gate drive is being developed for use with future wide bandgap (silicon carbide and gallium nitride) switching devices.
- Universal drive that is capable of driving a wide variety of devices including MOSFETs, JFETs, and IGBTs.
- Gate drive will be an enabling technology for using power electronics at higher temperatures.

