VTP Fuel & Lubricant Technologies

Energy Efficiency & Renewable Energy

May 15, 2012 VTP Annual Merit Review

Kevin Stork, Team Lead

VTP Fuel & Lubricant Technologies

Mission

Enable advanced combustion through improved understanding of fuel-property impacts, evaluate next-generation biofuels & develop efficiency-improving lubricants

Activities

- Chemical and physical fuel property exploitation
- Next-generation biofuel fit-for-service evaluation
- Lubricant additives and base oil development
- Open, bench-scale lubricant testing methodology
- Fully-formulated oil fit-for-service evaluation
- Supporting analytical work

Funding in millions	FY 2011 .	FY 2012	FY 2013
	Approp.	Approp.	Request
Fuel and Lubricant Technologies	\$10.7	\$17.9	\$11.6

Goals

- By 2020, demonstrate expanded operational range of advanced combustion regimes to 75% of LD Federal Test Procedure
- By 2015, demonstrate cost effective lubricant with 2% fuel economy improvement

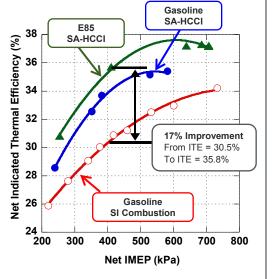
Recent Competitive Awards

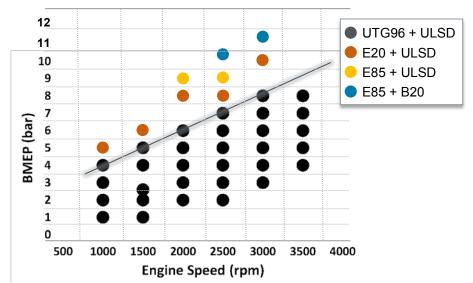
- 4 Fuels Awards
 - Ford: Fuel properties to enable lifted-flame combustion
 - MIT: supplementary alcohol injection for improved SI efficiency
 - NREL: evaluate various oxygenates for suitability as drop-in fuel components
 - Univ. Wisconsin: Optimize fuel-based combustion control of novel combustion strategies in light- and heavy-duty vehicles

- 4 Lubes Awards
 - Ford: RD&D on polyalkylene glycol (PAG)-based engine oil technology to reduce engine friction relative to current mineral and synthetic oils
 - MIT: segregated engine parts with tailored lubricants for each
 - ORNL: Ionic liquid multifunctional (anti-wear and friction modifier) lubricant additives to enable higher VI oils
 - ANL: Boron-based lubricant additives for improved efficiency and durability

Efficiency and emissions opportunities for enabling low temperature combustion

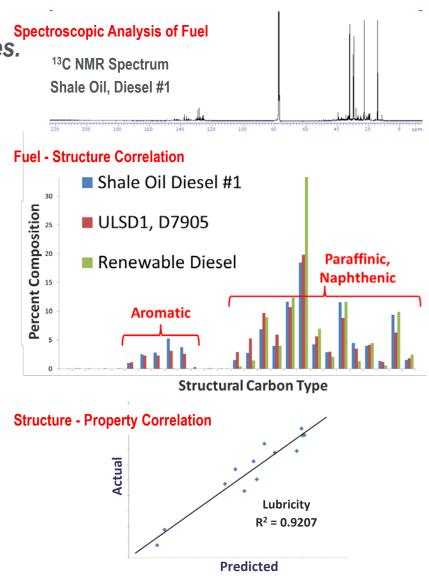
Enables efficiency improvement and load expansion for Spark Assisted HCCI


- Efficiency improvement attributed to differences in thermochemical properties
- Load expansion attributed to higher octane for more optimized combustion phasing with acceptable pressure rise rates


Enables load expansion with RCCI combustion in a multi-cylinder engine

- Higher reactivity stratification for reactivity controlled compression ignition (RCCI) multi-fuel approaches
- Demonstrated efficiency, emissions, and load expansion improvements with ethanol and bio-diesel blends

Research engine with fully flexible valve system, boosting, and EGR system.



Structure-Property Correlations for Unconventional Fuels

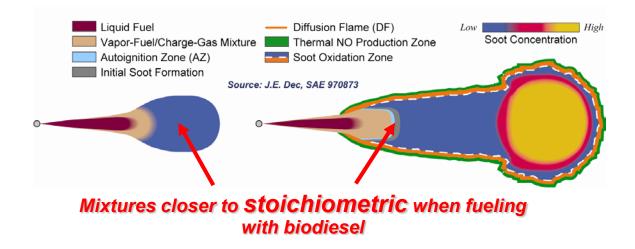
U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- *Improved understanding of fuel chemistry is essential to best utilize unconventional fuel sources.*
- Fuels from unconventional sources
- Shale oil, oil sands, renewable diesel, etc.
- Vary in molecular structure
- Differ in their performance properties
- Correlating fuel molecular structure with performance
- Generate spectroscopic data to quantify fuel component types
- Reduce data sets to facilitate correlations with performance data
- Assemble lubricity, seal swell, and soot formation performance data
- Derive structure property relationships

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF


ENERGY

□ Why does biodiesel tend to increase engine-out NOx emissions?

- Understanding will help tailor combustion to mitigate NOx increase

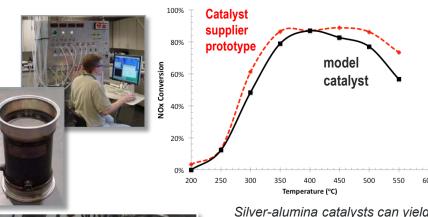
□ Accomplishments:

- Showed that primary factor leading to the NOx increase appears to be ignition and combustion of mixtures that are closer to stoichiometric than for diesel fuel
 - Longer residence times, higher temperatures \rightarrow more thermal NOx formation

SAE John Johnson and SAE Arch T Colwell Awards for outstanding research

Improved Biofuel Utilization

Increased utilization with legacy fleet


- Intermediate ethanol blends studied since 2007
 - \$44M effort
 - SNREs, Vehicles, Infrastructure materials compatibility, etc
- Vehicle emissions testing and aging at three sites
 - 86 vehicles, >6.5 million miles
 - >300,000 gallons of fuel
 - Approximately 1000 emissions tests
- EPA cited DOE Studies in partial waiver

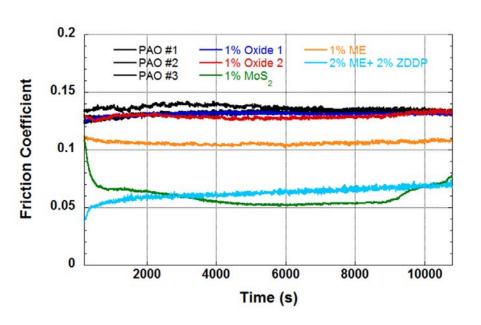
OAK RED NETFORM Late Manual of a re- for the definition	RATORY	8 2015 234	ister	Burnday, November a
Intermed Durability	iate Ethanol Blends Cataly: / Program	st	l Reg	Fact III
February 20 Prepared by Siman B. West	12		edera	Enviro Protect
C. Scott Studer Keth E. Kada John E. Orban Jangya Feng				Notice
UT. BATTEL				

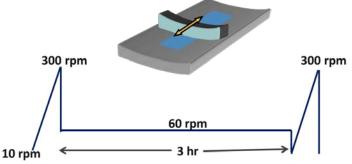
Enabling lean NOx control with nonplatinum metal

- Silver-alumina very effective with oxygenated reductant
- Lean-burn with biofuels for improved fuel economy and biofuel utilization

Silver-alumina catalysts can yield >90% NOx conversion under lean conditions (ethanol reductant in this experiment)

European lean-burn BMW 120i


Lubrication Strategies/Tasks

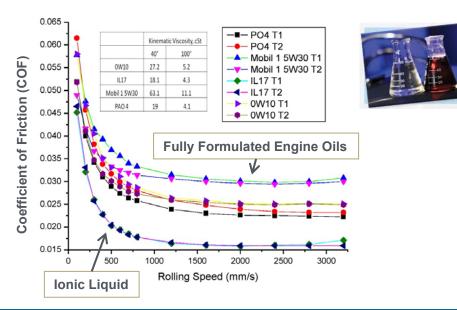

- **ENERGY** Energy Efficiency & Renewable Energy
- Predictive modeling Integration of (continuum) component parasitic friction loss models into subsystems and vehicle level packages – 'what if' parametric studies
- 2. Develop Science/Mechanistic Based Models of Parasitic Losses and Durability/Reliability
- **3. Lubricant Technology Development** Develop advanced lubricants (basefluids and additives) that reduce frictional losses while maintaining or exceeding other performance metrics (durability, reliability, corrosion, deposits, etc.
- 4. Engineered Surface Technology Development Develop advanced engineered surfaces (textures, designs, materials and coatings) that mitigate parasitic losses from a systems approach. Go beyond current ferrous based tribological systems.
- 5. Validation of Modeling and Technologies Develop protocols to improve the fidelity of models and technologies. Improve correlation between labscale tests and engine/vehicle tests. Develop high fidelity databases for models and simulation of parasitic losses. Lab-Rig-Engine-Vehicle Validation Studies

Energy Efficiency & **ENERGY Renewable Energy**

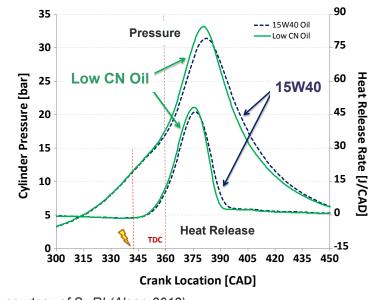
Developing common set of test protocols to evaluate frictional behavior of advanced additives (friction modifiers)

Common test protocols to evaluate frictional behavior of low-friction additives using ring-on-liner configuration

U.S. DEPARTMENT OF


- Comparison of nanoparticulate additives and chemical additives show significant impact on friction response
- Characterization of surfaces in-progress to determine differences in surface finishes and formation of tribofilms

New Lubricant Technologies


New classes of lubricants and additives based on ionic liquids (IL)

- More effective boundary lubrication up to 40% friction reduction compared to fully formulated oils (lab scale)
- Enhanced engine durability due to superior functionality via forming a protective surface boundary film
- GM CRADA, FOA-239 with Shell

Low reactivity lubricants for more efficient operation

- Shown to mitigate spark-ignition gasoline engine knock
 - Allows for improved combustion phasing at higher loads
 - Use of higher compression ratio
- CRADA under development with Southwest Research Institute

Data courtesy of SwRI (Alger, 2012)