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We have developed mechanisms for complex long-chain
species, enabling more representative diesel surrogates
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We have developed 2-methyl alkane mechanisms up to C20; branched
iso-alkanes are significant components in gasoline and diesel fuels

Includes all 2-methyl alkanes
up to C20 which covers the
entire distillation range for
gasoline and diesel fuels

Built with the same reaction
rate rules as our successful
Iso-octane and iso-cetane
mechanisms.

7,900 species
27,000 reactions
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Our previous work showed that ignition characteristics of
normal alkanes depend little on carbon chain length
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However, 2-methyl alkanes show more reactivity with
chain length at higher equivalence ratio and pressure:
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In general, 2-methylalkanes show less negative
temperature coefficient (NTC) behavior than n-alkanes
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At rich conditions, n-alkanes show chain-length
reactivity sensitivity
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As mechanisms continue to grow in sophistication, the application of
these mechanisms hecomes more computationally intensive

Includes all 2-methyl alkanes
up to C20 which covers the
entire distillation range for
gasoline and diesel fuels

Built with the same reaction
rate rules as our successful
Iso-octane and iso-cetane
mechanisms.

7,900 species
27,000 reactions

With full (non-sparse) solvers, numerical cost scales with the (# of Species)3
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Solving detailed chemical kinetics combined with 3D fluid
dynamics is computationally (and financially) expensive!

Current state-of-the-art mechanism

= 7900 species needed for the elementary reaction mechanism for 2-
methyl alkanes (Sarathy et al. 2010)

= 2M-10M fluid cells for full 3D cylinder model (2010, CERFACS/IFP)

Fully-coupled computation cost: 42,000 Pflop
» |f the fastest computer in the world was ideally utilized:

* 30 hrs on Jaguar (ORNL) — 240,000 core 1.76 Pflop/s
(Number 1 on Top500 supercomputer list)

= 60 years on a workstation — six core AMD Opteron 100 Gflop/s

Combustion chemistry computational cost is the biggest barrier to
complete physics-based simulation suitable for engine design.
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We seek to bring the most physically accurate
combustion models for the lowest cost

2. New computing
architecture

1. Lower-cost models:
 Reduced Mechanisms
* ANN Ignition Integral

- NVIDIA GTX480

3. Advanced
numerics
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Opportunities for 1000x speedup in computational
chemistry cost through applied mathematics

Perturbation
methods

QAdaptli_Ve Multi-zone

New Computer architectures can
further accelerate these gains

oparse
Solvers
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We seek to bring the most physically accurate
combustion models for the lowest cost

2. New computing
architecture
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General Purpose Graphical Processing Units (GPGPUs)

bring Tflop/s computing power to the desktop

CPU: Inte/AMD =
—,, Cores: upto 12
) Mem:  up to 256GB
!

Originally used for |
graphics intensive |
applications:

« video games
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GPU: NVIDIAGTX 480

Cores: 480 .
Mem: 1.5GB E
Tflop/s: 1.35 :
Price:  $500 1
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NVIDIA’s Compute Unified Device Architecture (CUDA)
has made computational science on the GPU viable

GPUs are now programmed with a simple extension to the C language:
* New Fermi line offers full C++ support.

* NVIDIA currently provides free compilers, debuggers and code profilers
for all platforms (Linux, Mac and Windows).

« 3rd party wrappers for most languages (Python, FORTRAN, etc.).

Best algorithms have high arithmetic intensity (i.e. many mathematical
operations per memory access):

» Researchers performing N-body simulations were early adopters
(molecular dynamics and astrophysics).

* Routinely reached +100x speedup.

Computational science on the GPUs was in the news recently:
» Georgia Tech Research Institute used GPUs to crack passwords.
 Recommend 12-character random passwords to beat today’s GPUs.
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GPU architecture and memory controllers require fine-
scale parallelism for best performance

Optimal GPU algorithms
are designed to exploit the
fast shared memory

Thread Block

W" »Perblocksared  shared (1 - 16)
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Evaluation of thermodynamic properties highlights the
algorithm design considerations for the GPU
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Evaluation of thermodynamic properties highlights the
algorithm design considerations for the GPU
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Further optimization
* 65X speedup
» Every thread calculates both
temperature branches.
« Only assignment is conditional.
» No thread divergence.
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AN

GPU specific coding

Load a; in shared memory

Peak speedup 55x with no

size limit on performance

« Load strategies and variable
reuse have minor impact

Conventional CPU coding
* No shared memory
» Peak speedup limited to

Number of zones x species

less than 30x
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Peak GPU performance is a balance between shared
memory reuse and multiprocessor occupancy

GPU speedup

CDJH (kernel v2.5, 6144 species, GTX280)
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GPU speedup
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* More threads per block: produces greater shared memory reuse
between cooperating threads.

* Fewer threads per block: allows more independent blocks to be placed
on a multiprocessor effectively hiding memory latency.
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Enthalpy and entropy calculations have greater speedup,
benefiting from more arithmetic operations per memory access
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GPUs are a growth area for bringing scientific
computing capability to the desktop

= 64 bit "no-fun” GPU’s being developed for scientific
computing

= Democratizing architecture for large-scale computing:
« Enable greater physics for engineering design

= Puts greater emphasis on programming and numerical
methods for effective utilization
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We seek to bring the most physically accurate

combustion models for the lowest cost
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Species composition

Implicit methods are necessary to integrate the chemical
time scales over an engine cycle

e
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Jacobian construction/solution is more than 95% of the
simulation cost — a big speedup is possible with smart solvers

Block Diagonal Jacobian
Multizone 10x-100x faster

%

Sparse Solver w/o 3 body
Single reacting zone +6x faster
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Approximate Jacobians can be used to precondition
iterative linear system solvers like GMRES

Generalized Minimal RESiduals
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Direct reaction sorting shows promise to be a general
low-cost preconditioner for the Jacobian
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Chemical mechanisms continue to evolve, adding more
a more compounds that are present in real fuels

= Develop detailed chemical kinetic
models for another series iso-alkanes:
3-methyl alkanes

= Validation of 2-methyl alkanes mechanism with new data from
shock tubes, jet-stirred reactors, and counterflow flames

= Develop detailed chemical kinetic models for alkyl aromatics:

= More accurate surrogates for gasoline and diesel

= Further develop mechanism reduction using functional group

method
n-decylbenzene - Diesel Fuels

O o v

Lawrence Livermore National Laboratory UL-

LLNL-PRES- 427539 DEER 2010

26



Continued improvement of physical models and numerical
methods will enable utilization of large mechanisms

) 1. Low-cost 80y

models 2. Improving @
physical |5
KIVA4+ANN and models |8
spray models | =
LTC sensitivity and 18
gaseous injection s
wom -i;nranl-ging-lg K °

Roactor N

4. Advanced || Combine reaction 10°
numerics sort with 2x2 sort

3. New computing
architecture

GPU compute tiles 48
for efficient species
production rates

NVIDIA GTX480 image:
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