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"The Good and the Bad of Induced Seismicity”

EGS operations rely on small-scale seismicity to
delineate fracture extent, fracture type and pathways
for water

EGS operations need to understand physical connections
between reservoir operations and large-sale seismicity

EGS operations need to avoid large-sale seismicity in
places where population would be affected
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Objective

To develop a combination of techniques to evaluate the
relationship between EGS operations and the induced
stress changes throughout the reservoir and the
surrounding country rock

To investigate relationship between geothermal
activities and large-size induced seismicity (M>3)

To predict maximum magnitude of induced future
earthquakes and associated ground motion

Although The Geysers are no EGS system, the large
database offers the means to develop and test the
proposed technology to be applied to future EGS
systems to manage and mitigate risk
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Overview

1. Timeline:
Start Jan 2010
End Jan 2013
Completion 2%
2. Budget:
Total $ 1,454,615
DOE Share $ 1,158,779
Awardee Share $ 290,473
Fund received 2010 $ O
3. Barriers
No contract in place as of May 2, 2010
4. Partners
UC Berkeley
GFZ Potsdam
Lawrence Berkeley National Lab
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Northern California Historical Seismicity (M 3.5 to 5.0) 1900-2005

ANSS Seismicity 1900/01/01,00:00:00 2004/05/15,23:07:56
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Correlation of Inj./Prod. vs. Seismicity

Geysers Annual Steam Production, Water Injection and Seismicity
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M>4

ALL EVENTS OCT 2003 - SEP 2005
28,132 Events (210 Mag =2, 11 Mag >3)

LONGITUDE (122W)
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after Majer et al., 2007
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Spatial Distribution

a) ALL EVENTS OCT 2003 - SEP 2005
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of Seismicity M>3

ALL EVENTS OCT 2005 - SEP 2006
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Questions to be Answered

Why does rate of large-size seismicity accelerate
with time?

Why do epicenters of large-size seismicity line up
on liniments?

Are large-size events triggered or induced?

What is largest possible event given state of
operations?

What is largest ground shaking (hazard) associated
with that event?

Develop technology to answer these questions
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Proposed Activity

* 4-D Double Difference Tomography for Joint
Hypocenter Locations and Vp & Vs Velocity
Structure (AIT)

- Full Waveform Moment Tensor Analysis of Events
M>3 (UCB)

* Geomechanical Analysis of Steam Production and
Water Injection to Model Stress Evolution in the
Reservoir (6FZ)

- Estimation of Seismic Hazard and Calculation of
Ground Motion (LBNL)
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Data to be Used

* Triggered 3-component waveform data from ~ 30
station network (USGS, LBNL, Calpine?)

- Steam production data of all publicly available wells
* Water injection data of all publicly available wells
- Borehole coordinates and deviation logs
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4-D Double Difference Tomography for Joint
Hypocenter Locations and Vp, Vs Velocity
Structure (AIT)
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Foulger et al., 1997

Observed Vp/Vs change: -9%

Change in Pore Property

Vp/V-Anomaly

Phase Change: Liquid-to-Vapor

-14 %

AT = +10 °C (Liquid)

-1.7%

AT =+10 °C (Vapor)

+0.1 % to 0.7 %

AP = -1 MPa (Liquid)

-0.2 %

AP = -1 MPa (Vapor)

-6.6 % 10 -10 %

Julien et al., 1996
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4-D Double Difference Tomography for Joint
Hypocenter Locations and Vp & Vs Velocity
Structure (AIT)

Double difference method is based on joint inversion for
hypocenters and velocity structure

Hypocenters will be located both, absolutely and relatively (no
collapsing or master event approach)

Determine temporal changes in reservoir throughout 30 year
operation history

Determine magnitude of changes and model with equivalent
medium theories

Locate temporal changes throughout reservoir
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Full Waveform Moment Tensor Analysis of Events M>3 (UCB)

Explosion

]| © Usemoment tensor
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DR orientation of slip on
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e T - Full moment tensor

analysis allows for non-

double couple solutions,
i.e. crack opening/dilation

- Source type plots
(Hudson et al., 1989)
allow to distinguish crack
opening due to cooling of

reservoir rock from slip
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Full Waveform Moment Tensor Analysis of Events M>3 (UCB)
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Determine kinematic
source parameters for
larger events

Utilize co-located smaller
events for empirical
Green function inversions

Determine slip
distribution and stress
drop

Example shows Mw=2.1
event from Parkfield, CA

Small source dimension
~30 m yield high stress
drop of 80 MPa
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Geomechanical Modeling of Stress Evolution in Reservoir (6FZ)

Geomechanical model concept and workflow

Geometry
- topography Material properties =
st - density ' Initial stress state |
- 3D fault system - elastic parameters
- friction coefficient
ﬂ - porosity

Model-independent constraints
- horizontal GPS velocities

- geological fault slip rates

- vertical motion and morphology
- stress orientations

- focal mechanism solutions

Boundary conditions & loads
- velocities

- fluid injection

- vapour extraction

- gravity

Numerical solution

using Hypermesh™

- discretization in finite elements

- solution of poro-elastic equations
implicit solver using Abaqus™

0

Calibration | Output
<———> | - displacements

- seismicity distribution in time
- change in reservoir pressure

Comparison | - stress & strain tensor

g

Analysis and Interpretation

- slip and dilation tendency of faults
- fracture potential of faults

- worst case earthquake scenario

Use large-scale geometry
and material properties to
build reservoir model

Use far-field stress

state, fluid production and
fluid injection to determine
boundary conditions of
reservoir

Use results from moments
tensor analysis, if
consistent, to refine model

Solve poro-elastic egs. to
estimate displacement and
stress and strain tensor

Hergert and Heidbach, 2010
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Estimation of Seismic Hazard and Ground Motion (LBNL)
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Estimation of Seismic Hazard and Ground Motion (LBNL)

Model ATH204 — station ATHA

Fourier Amplitude Spectra AAR Spectro

i - e T e ] T e ] Calculate potential ground
: - o motion for specific faults

; identified through moment
; tensor analyses and

5 geomechanical modeling

: - Compare results to

b observed data

o - * Provides check for

2 . : conventional PSHA studies
e f - Will provide source and
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Hutchings et al., 2007
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Structure of Project

Organization Task Budget Milestone Year
AIT 4-D Double Difference $ 627,123 01/2011 1-3
Tomography for Joint 01/2012
Hypocenter Locations and 01/2013
Velocity Structure, Changes in
Reservoir Parameters, Project
Management
UCB Full Waveform Moment Tensor $ 276,859 01/2011 1-3
Analysis of Events M>3 01/2012
01/2013
GFZ Geomechanical Analysis of $ 365,019 06/2011 05-2.5
Steam Production and Water 01/2012
Injection fo Model Stress 06/2012
Evolution in the Reservoir
LBNL Estimation of Seismic Hazard $ 184,765 06/2012 3
and Calculation of Ground 01/2013

Motion
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Outcome

* Project offers a multidisciplinary approach to understand
relationship between reservoir activities and large-scale
seismicity

- Results will include geomechanical model of reservoir
structure

- Results will provide link between reservoir operations and
seismic hazard

* Project will develop technology for comprehensive
reservoir analyses

* Project will generate first "complete” data set for The
Geysers geothermal reservoir
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