ENERGY Energy Efficiency & Renewable Energy

Geothermal Technologies Program GRC Presentation, Reno

October 1, 2012

GTP Investments at GRC '12

Total 32 Projects

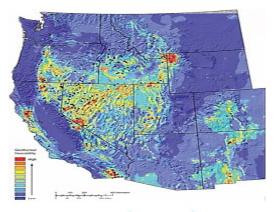
DOE Geothermal Technologies Program has invested over \$68M in research and development being presented by industry, national laboratories and academia.

University of Nevada, Reno

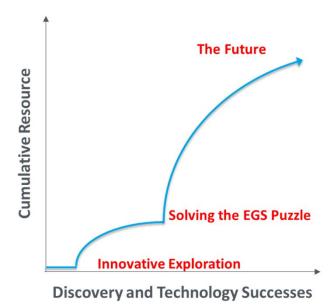
Lawrence Livermore National Laboratory

Massachusetts Institute of Technology

Terralog Technologies USA, Inc.

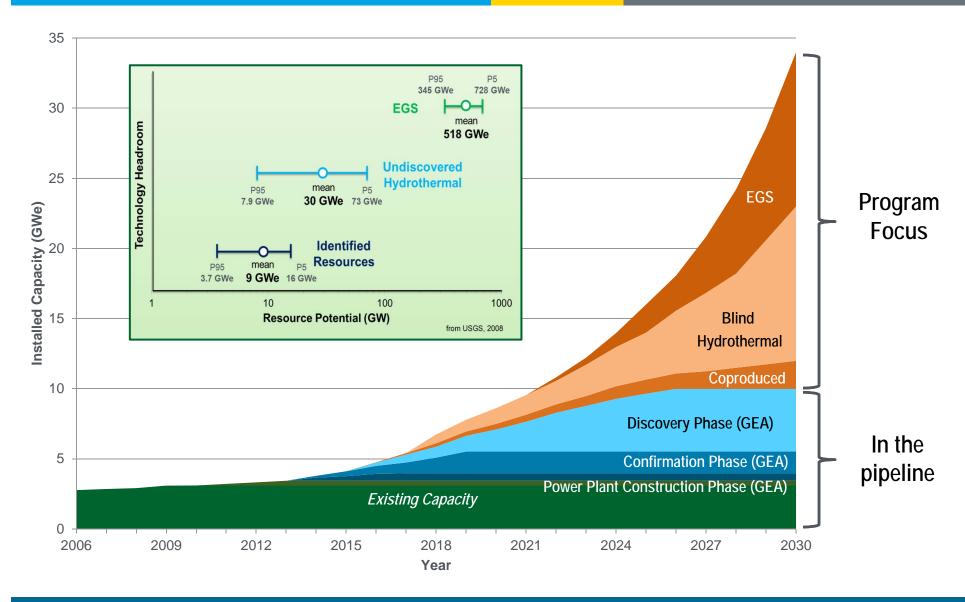


Geothermal Program: Key Goals and Objectives Creating Impact



Increased Focus

- Identify New Geothermal Opportunities
 - Lowered risk and cost
 - New prospecting workflow
- EGS R&D and Field Lab
 - New techniques and technologies
 - Pathway to EGS success
- Regulatory Roadmaps and Optimization
 - Multi-stakeholder involvement
 - Competitive with other energy sources
- Project Synergies
 - Co-Production and Distributed Power
 - Strategic Resources

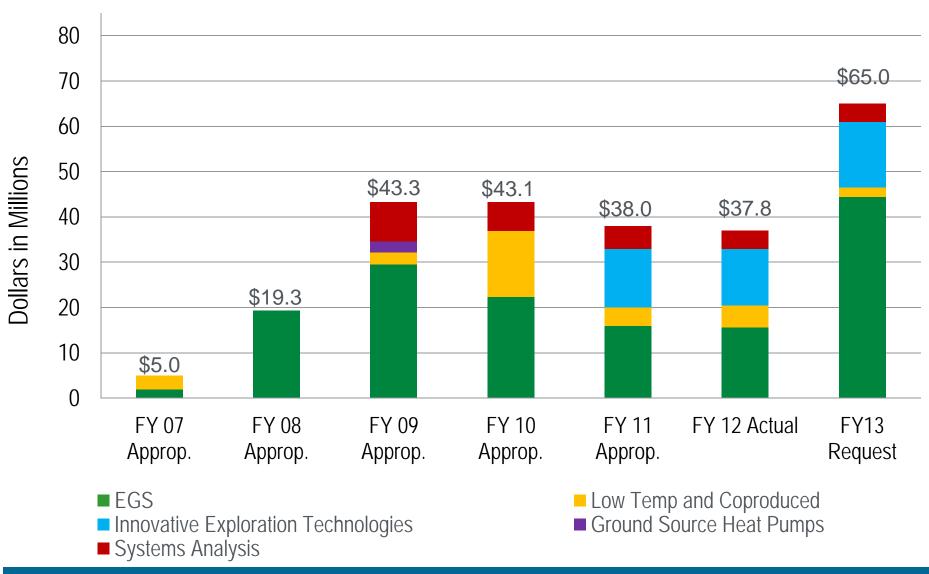

Geothermal Development Potential

Geothermal Potential by 2030

Pathway to Growth

Geothermal Program Balance

Transition from Near to Long Term

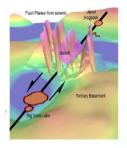


	Low Temp	Co-Production	Hydrothermal	EGS
<u>Timeline</u>	Current	Near Term	Intermediate	Long Term
<u>Strategy</u>	Distributed Energy	Leverages O&G investment	Sector Growth	Transformation
<u>Scale</u>	100's KW to several MW scale	10's-100's MW scale, aggregate to several GW potential	10's GW additional potential	10's - 100's GW potential, but high risk
<u>Constituency</u>	Local or Rural, Direct Use	Growing Interest, New Potential Sector	Majority of the Private Sector	Fewer Players

Program Budget History

(ARRA not shown)

Challenges to Hydrothermal Expansion


Technology and Engineering Needs

Technology Barriers

Potential Solution Set

Goal

Resource Characterization

Non-unique signals, hidden resources, cost, downhole tools limited by temperature

New occurrence models

Advanced seismic

Inverse techniques

Reservoir Access

Comparative lack of high performance drilling tools for large diameter, high-temperature, rock drilling, cost

High temperature tools

Horizontal wells

Rotary steering

Remote sensing

Energy Conversion

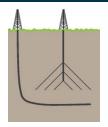
Improve efficiencies for lower temperatures, operation & maintenance, cost

Advanced working fluids

Coproduction

Hydrothermal Growth

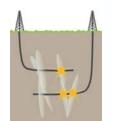
Challenges to EGS Development


Technology and Engineering Needs

Technology Barriers

Potential Solution Set

Goal



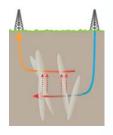
Reservoir Access

New well geometries and concepts, optimized drilling

Hard/Hot-rock drilling, completion technologies

Horizontal wells

Reservoir Creation


Characterize local stress, zonal isolation, novel fracturing methods, increase fractured volume per well

Rotary steering

Stress-field diagnostics

Smart tracers

EGS Success

Productivity

Increase flow rates without excessive pressure needs or flow localization

Zonal Isolation

High-T sensors

Sustainability

Maintain productivity with minimal thermal drawdown and water losses

Cross-well monitoring

Diverter and Zonal Isolation Technologies

Key Market Barriers

Many Elements Unique to Geothermal

Market Barriers Potential Solution Set Goal

Permitting challenges

A non-competitive process can doom projects

Regulatory road-mapping Initiative, Programmatic EIS

National Geothermal Data Repository

Data Access

Creates more prospects, lower risk and cost, more efficient geothermal research and resource development

Demonstrations

analysis

Techno-economic

A Clearer
Pathway for
Geothermal
Development

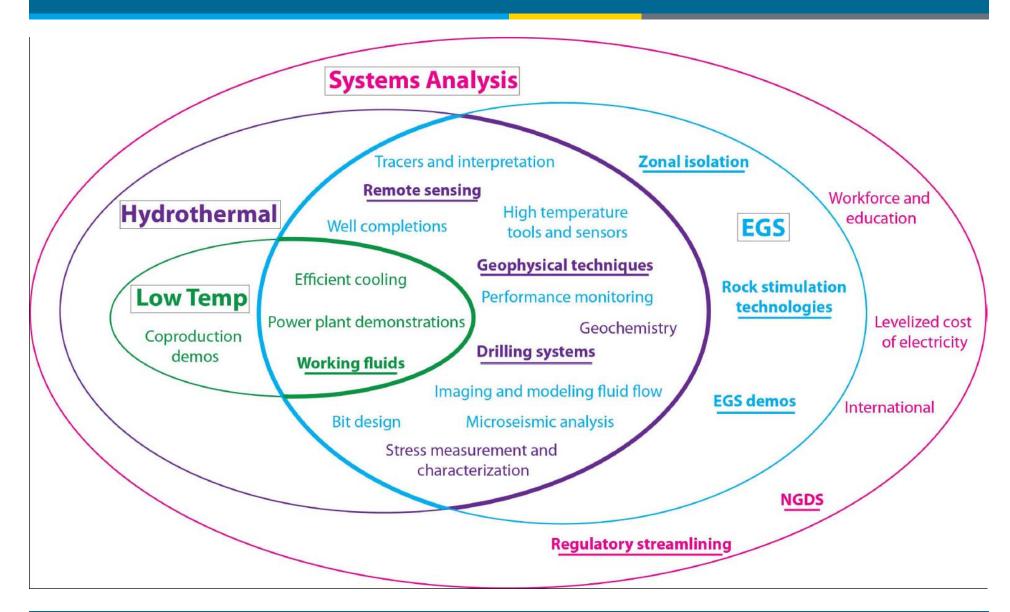
Financing

Relatively small size of the Industry + perceived risk = project financing challenges

Modeling

Market reports

Grid Integration
Solutions to supply
geothermal electricity


to the grid

Working groups

Subprograms support one another

Crosscutting Research

Select Program Accomplishments 2011-2012

EGS Demonstrations

- Geysers project 5 MW
- Additional potential at this site.

Exploration:

- ~100+ MW of new hydrothermal capacity
- 17 wells drilled in four states.

Mineral Extraction:

 Simbol Materials: Lithium extraction plant groundbreaking expected 2013

Co-Production:

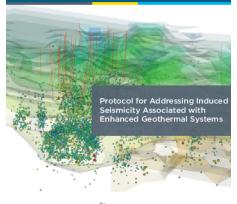
Deploying binary systems in new operating O&G fields.

Select Program Accomplishments (ctd) 2011-2012

National Geothermal Data System (NGDS):

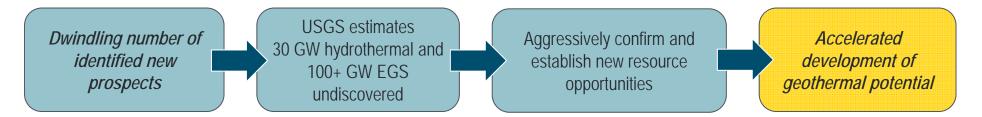
- An interoperable network of data from across all 50 states
- Fully operational by FY 2014

Regulatory Roadmap:


- Documenting regulatory process for eight states at the federal, state, and county level.
- Optimize permitting time, benefit to all stakeholders
- Improves project costs, lessens investor risk

Induced Seismicity Protocol

- Updated Induced Seismicity Protocol
- Best Practices Document underway
- National Academy of Sciences: The geothermal community is a model to other subsurface energy industries for induced seismicity monitoring and mitigation


Ernie Majer, James Nelson, Ann Robertson-Tai Jean Savy, and Ivan Wong

January 2012 | DOE/EE-0662

New Resource Opportunities

Facilitate Industry Growth 2012-2014

Goal

Lower risk and lower costs for exploration through early play and prospect analysis

Barriers

- Lack of comprehensive geothermal occurrence models
- Lacking exploration data in key areas

Progress to date

- NREL completing an exploration data gap analysis (October, 2012)
 - Based on current and incoming data to the NGDS and outreach to industry

Next steps

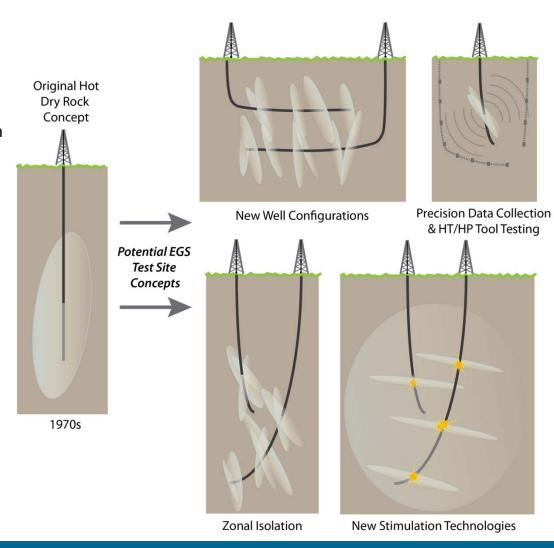
- Assess data gathering needs
- Perform prospect analysis akin to O&G play fairway analysis
- Communicate results

EGS Field Lab

Creating and Optimizing Reservoirs

Targeting:

- Horizontal geothermal wells
- Multi-stage stimulations
- Long term Hi-T/Hi-P tool and technique testing
- Highly controlled modern R&D and data collection


Ideal Characteristics:

Technical

- Well characterized: 1-2 prior wells
- Hi T, some fractures, moderate permeability and porosity
- Not too deep

Logistics

- Existing or nearby infrastructure/assets
- Permitting pathway
- Minimal on-site facilities
 - NOT a long-term, permanent facility

2012 GTP Peer Review

May 7-11, Denver

- 154 projects
- 59 reviewers
 - industry, academia, national lab, government and int'l
- New industry chair
- \$299.7M in DOE investment (includes ARRA)
- \$486.1M in total combined investment
- Final report by end 2012

...and a job well done!

[And the Winner Is...]

2012 GTP Peer Review

May 7-11, Denver

2012 PEER REVIEW EXCELLENCE AWARD U.S. Department of Energy Geothermal Technologies Office

James Faulds, University of Nevada, Reno

"Characterizing Structural Controls of EGS and Conventional Geothermal Reservoirs"