

DOE Bioenergy Technologies Office (BETO)

Bioenergy 2015: Opportunities in a Changing Energy Landscape

Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production from Sewage Sludge

June 23-24, 2015

Meltem Urgun-Demirtas, Ph. D. Argonne National Laboratory

Project Objectives

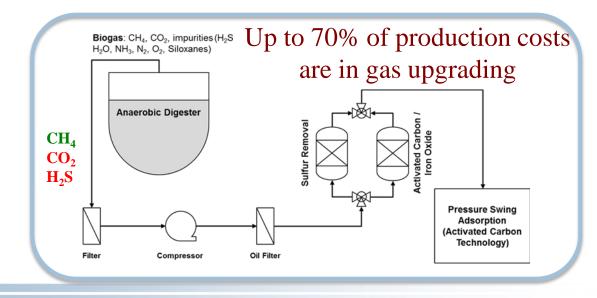
- Ultimate Goal: Transform negative-value or low-value biosolids into high-energy-density, fungible hydrocarbon precursors
 - Enhance anaerobic digestion of biosolids to produce biogas with ~90% methane content and hydrogen sulfide at nondetectable level (Task 1)
 - Develop a Comprehensive Waste Utilization System (CWUS) for production of hydrocarbon precursors from the anaerobic digestion of biosolids (Task 2)
- Enables sustainable production of biogas that is considered as a cellulosic biofuel under new RFS2 (EPA, July 2014)
 - Biogas competes with conventional natural gas
 - Reduce greenhouse gas emissions relative to petroleum-derived fuels
 - Reduce U.S. dependence on foreign oil
 - Over 99% of D3 RINs generated from biogas
- Addresses DOE's goals of development of cost-competitive and sustainable biofuels by advancing efficient production strategies for drop-in biofuels

Enhanced Anaerobic Digestion

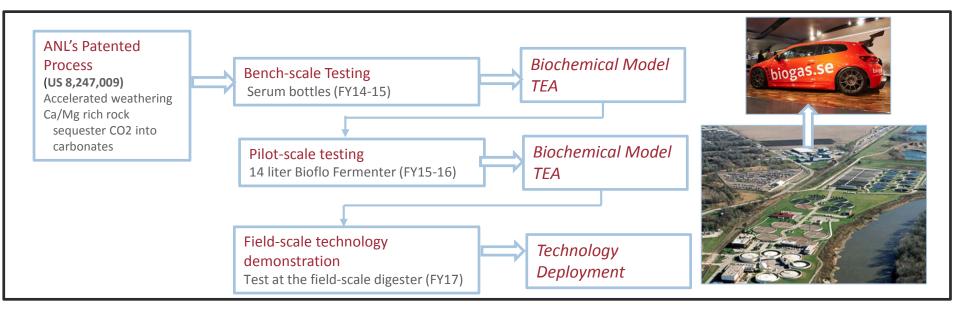
Waste-to-Energy: Why Biogas?

- Renewable sources for natural gas
 - Agricultural residues
 - Manure
 - Wastewater treatment
 - Landfill
 - Co-product in production of algal biofuels

- No competition with food and feed crops used for the production of other biofuels
- 7 days/24 hr production
- Low value materials
- It would displace the equivalent of
 2.5 billion gallons of gasoline/year

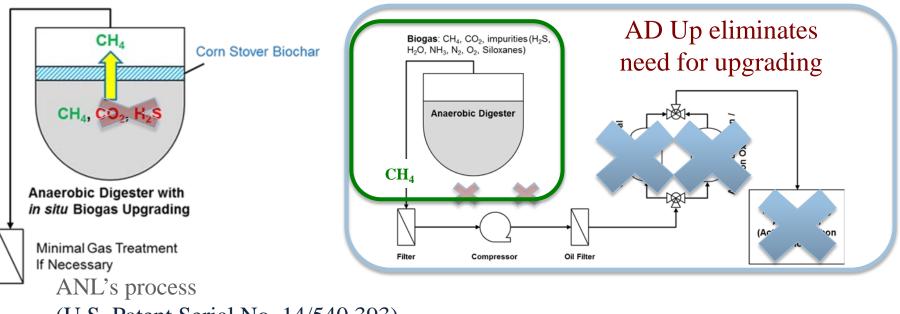


Deer Island WWTP (Boston, MA)


Problem

Organic waste disposal

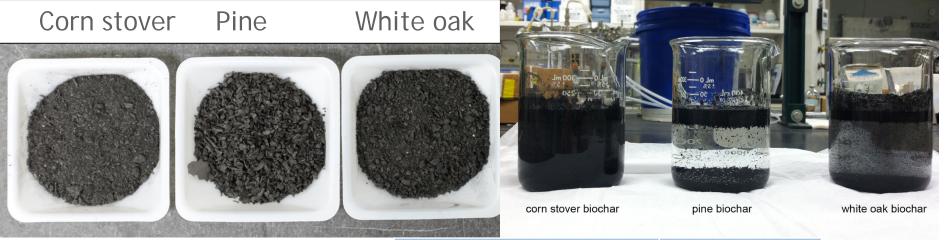
- Multiple, large volume sources; >\$50 billion disposal costs
- e.g. wastewater treatment plants, food and agricultural residues, manure \rightarrow
- Anaerobic digesters (AD) reduce waste volume and generate biogas
 - Only 10% of WWTPs use biogas for energy; the rest is flared \rightarrow
- Expensive AD upgrading required for transportation-quality biogas
 - Capital and energy costs too high
- Biosolids
 - Low-value require a tipping fee
 - Need to generate revenue



Technical Approach

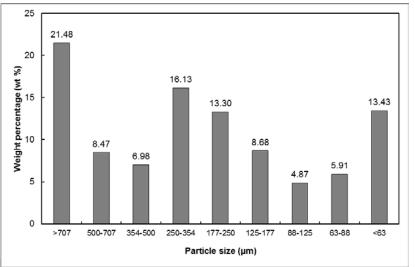
AD Up Solution

Biogas: CH₄ (>90% CH₄)



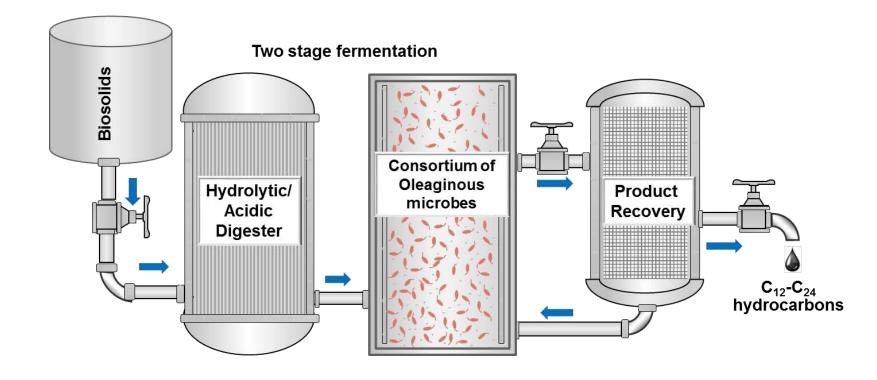
(U.S. Patent Serial No. 14/540,393)

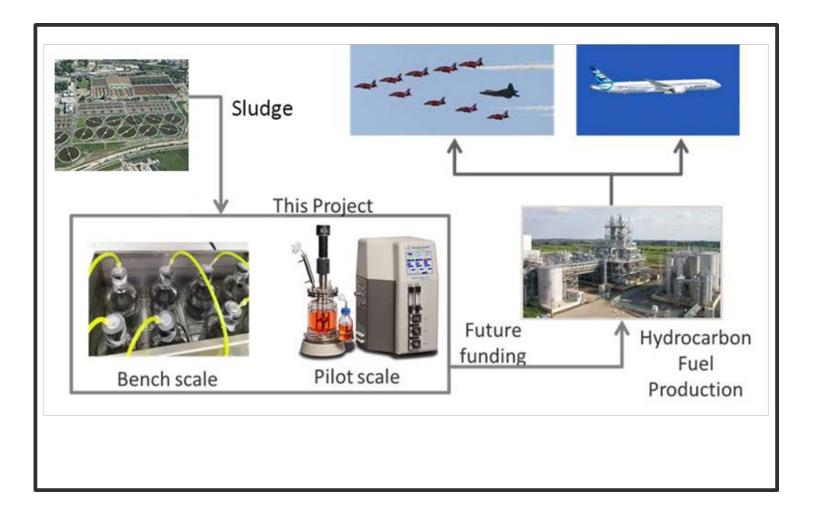
AD Up's secret sauce is biochar


- Biochar is produced by pyrolysis of biomass and is high in multivalent minerals
- The minerals adsorb/react CO_2 and H_2S from the biogas and deposit them in the biosolids
- The minerals significantly increase the fertilizer value.
- Eliminate the need for gas upgrading unit operations

Not All Biochars are Equal!

Analysis	Content	Concentration
Proximate Analysis	Moisture	0.97 ± 0.05
	Ash	45.18 ± 0.40
	VM	7.18 ± 0.58
	FC	46.66 ± 086
Elemental Analysis of Ash	SiO ₂	60.58 ± 0.58
	Al ₂ O ₃	5.65 ± 0.10
	TiO ₂	0.27 ± 0.01
	Fe ₂ O ₃	1.93 ± 0.05
	CaO	3.87 ± 0.11
	MgO	4.23 ± 0.13
	Na ₂ O	0.74 ± 0.03
	K ₂ O	14.17 ± 0.15
	P ₂ O ₅	2.19 ± 0.12
	SO ₃	0.22 ± 0.06
	Cl	1.01 ± 0.02
	CO ₂	1.17 ± 0.13

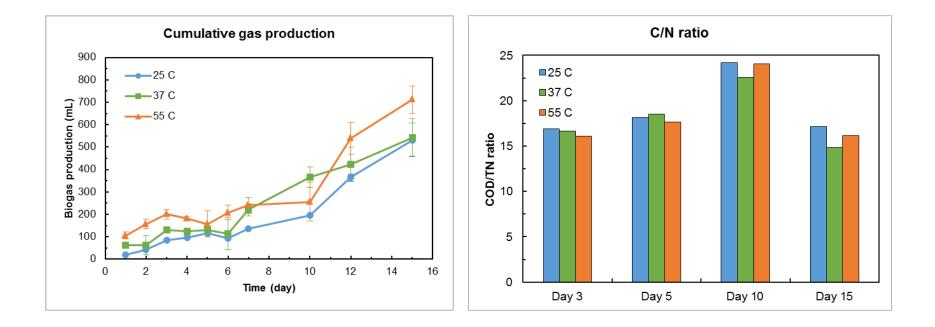

Property	Corn stover biochar	
BET surface area (m ² /g)	105	
Total volume of mesopores (cm ³ /g)	0.02	
Average diameter of mesopores (nm)	6.50	
Total area of micropores (m ² /g)	315	
Total volume of micropores (cm ³ /g)	0.09	


Hydrocarbon Precursor Production

Project Overview

• Development of a low-cost process to produce hydrocarbon fuels

Technical Approach



Results

- Identified and obtained most promising oleaginous microorganisms
- Completed initial short AD screening experiments
- Developed analytical methods for VFA (GC/FID) and FAME (GC/MS)
- Started testing of oleaginous microorganisms growth on digestate permeate

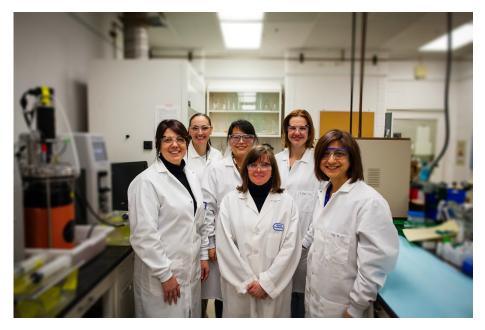
Strain	Growth temp.
Apiotrichum curvatum ATCC20509 (yeast)	20°C to 25°C
Trichosporon oleaginosus ATCC20509 (yeast)	
Lipomyces starkeyi ATCC58680 (yeast)	25.0°C
Mortierella isabellina ATCC38063 (fungus)	24.0°C
Mucor circinelloides ATCC1216B (fungus)	24.0°C
Rhodosporidium toruloides ATCC10788 (yeast)	25.0°C
Rhodotorula glutinis ATCC204091 (yeast)	25°C to 30°C
Yarrowia lipolytica ATCC20460 (yeast)	20°C to 25°C
Rhodococcus wratislaviensis (bacteria)	28 ⁰ C
Pseudomonas aeruginosa (bacteria)	37 ⁰ C
Rhodococcus opacus MITXM-61 (bacteria)	28 ⁰ C

Results

- First trial experiments showed that short AD operation should be less than 10 days.
 - Biogas productions starts to ramp up after 7 days
 - C/N ratio decreases after 10 days
- Second trial experiments needs to be conducted up to 7 days to minimize the biogas production.

Summary

Renewable Methane Production


- We developed a novel process using biochar for producing biomethane at pipeline quality (>90% CH₄)
- A new paradigm of efficient and economical biomethane production for the AD industry
 - Both methane production and *in situ* sequestration of carbon dioxide and hydrogen sulfide take place in the same reactor
 - Facilitated CO_2 sequestration by up to 86.3% and H_2S removal (< 5 ppb), and boosted average CH_4 content in biogas by up to 30.1%
 - Enhance methane production rates $\sim 28\%$
 - Bolt on to existing systems

Hydrocarbon Precursor Production

- Establish the links between feedstock characteristics, microbe community structure and environmental and economic impact on fuel production
- Evaluate pathways to piloting and scale up the process.

Acknowledgments

- Joyce Yang and Daniel Fishman, DOE-BETO Program Managers
- Mark Philbrick, AAAS Senior Fellow, DOE
- Seth Snyder, Ph.D., Argonne Water-Energy-Sustainability Director
- Metropolitan Water Reclamation District of Greater Chicago
- DuPage County Greene WWTP, IL

ANL Waste-to-Energy Group