U. S. Department of Energy Energy Savings Assessment (ESA)

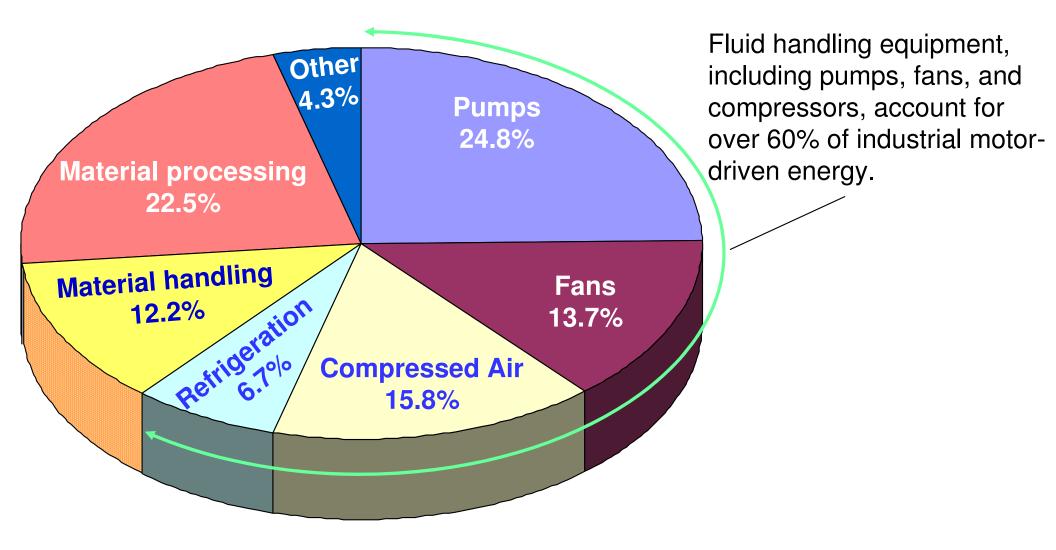
Overview of the Pumping System Assessment Tool (PSAT)

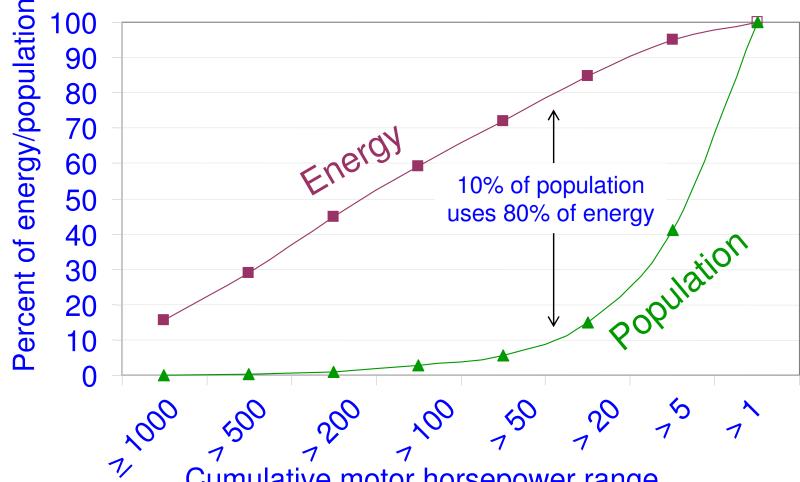
Date: December 15, 2008 By: Don Casada Diagnostic Solutions, LLC doncasada@diagsol.com 865-938-0965

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

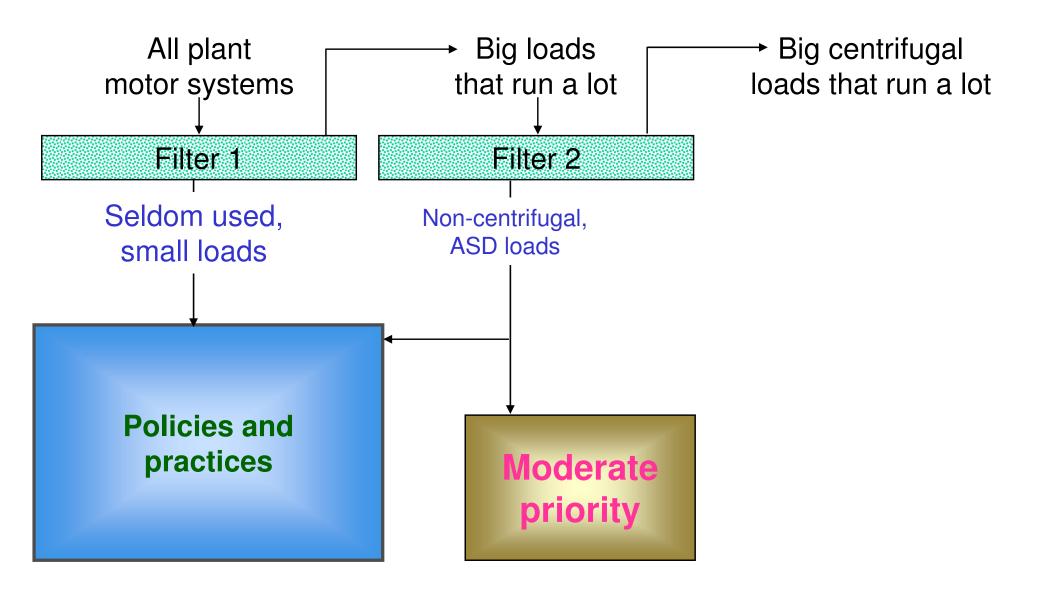
Motor-driven equipment is a dominant electricity consumer

Industrial motor systems:

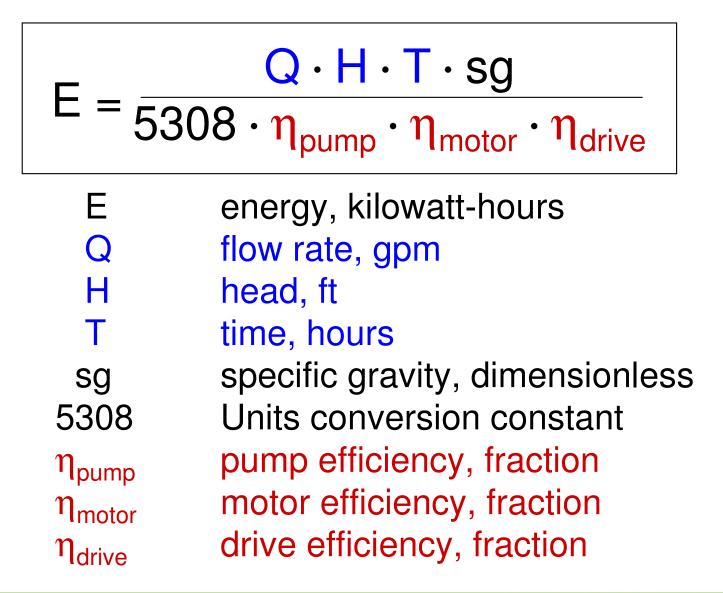

- are the *single largest electrical end use* category in the American economy
- account for 25% of <u>all</u> U.S. electrical sales


Pumps are the largest industrial user of motor-driven electrical energy

BestPractices encourages a three-tiered prescreening and assessment approach


- Initial prescreening based on size, run time, and pump type
- Secondary prescreening to narrow the focus to systems where significant energy reduction opportunities are more likely
- Opportunity assessment and quantification of potential savings

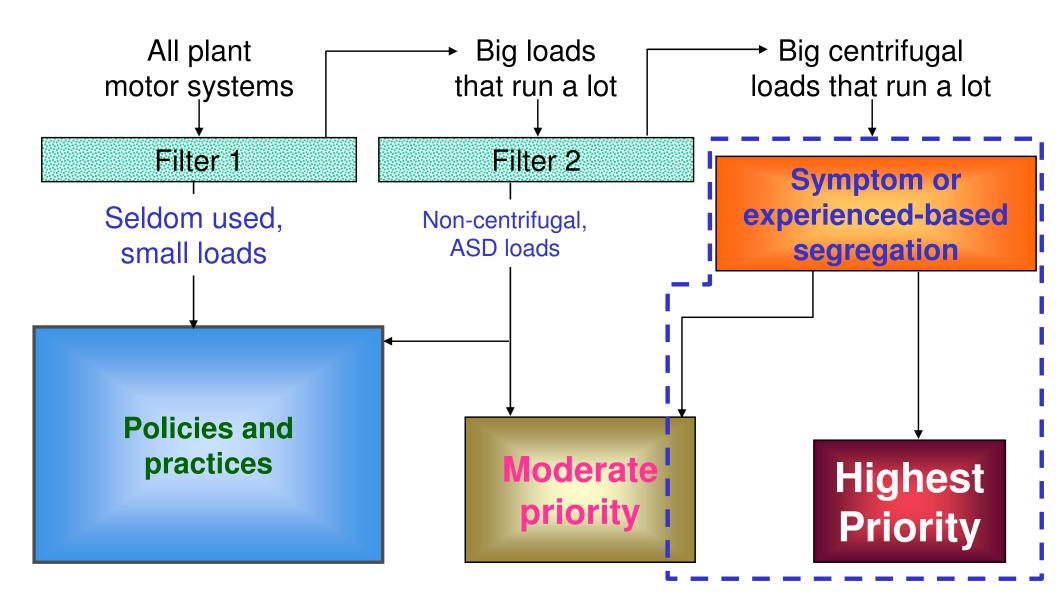
The bulk of motor-driven energy is used by a relatively small part of the population



Cumulative motor horsepower range

Primary prescreening

Pump energy basics are fundamental to secondary prescreening



Five basic causes of less than optimal pumping system operation

- Installed *components* are inherently inefficient at the normal operating conditions
- The installed *components* have degraded in service
- More flow is being provided than the system requires
- More head is being provided than the system requires
- The equipment is being run when not required by the system

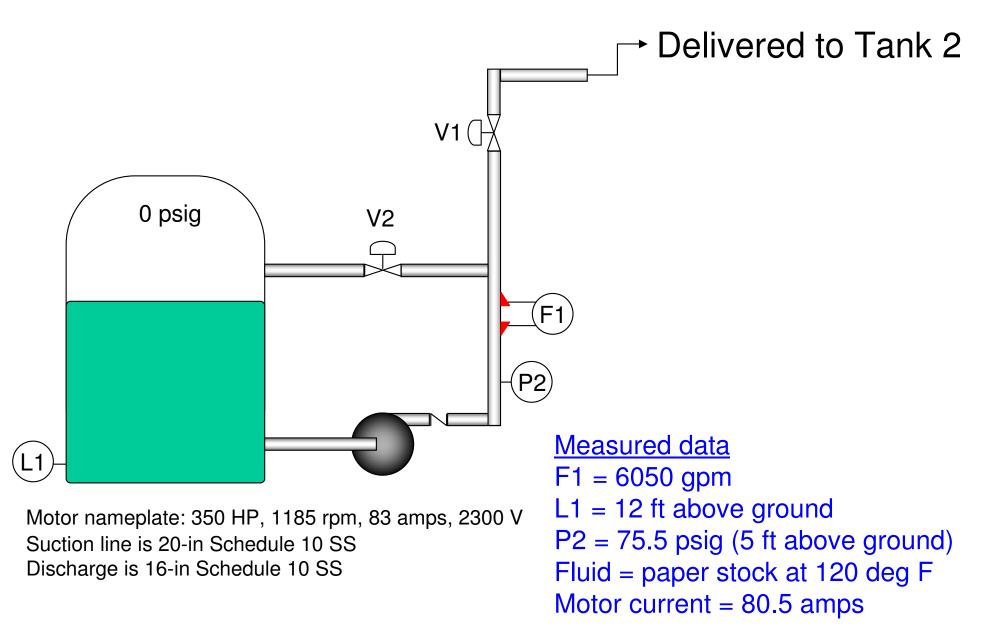
Secondary prescreening

Some symptoms of interest

- Throttle valve-controlled systems
- Bypass (recirculation) line normally open
- Multiple parallel pump system with same number of pumps always operating
- Constant pump operation in a batch environment or frequent cycle batch operation in a continuous process
- Cavitation noise (at pump or elsewhere in the system)
- High system maintenance
- Systems that have undergone change in function

Pumping System Assessment Tool (PSAT)

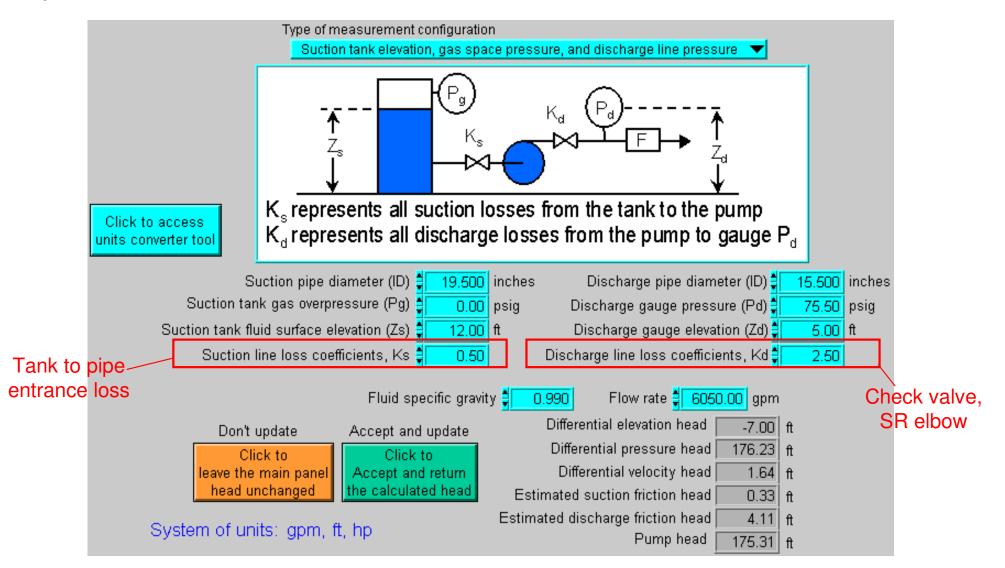
- An <u>opportunity</u> quantification tool
- Relies on field measured (or estimated) fluid and electrical performance data
- Uses achievable pump efficiency algorithms from the Hydraulic Institute
- Motor performance (efficiency, current, power factor) curves developed from average motor data available in MotorMaster+ (supplemented by manufacturer data for larger size, slower speed motors)



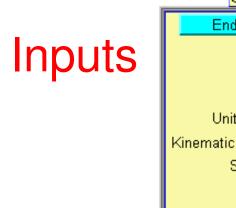
A matter of focus

- PSAT is based on component performance
- It can be used to evaluate component-level performance
- <u>But</u> it can also be used to evaluate systemlevel conditions

An example system



Head calculation


PSAT includes a pump head calculator to support user-measured pressure, flow data.

Component-based analysis

End

Unit

Fixed

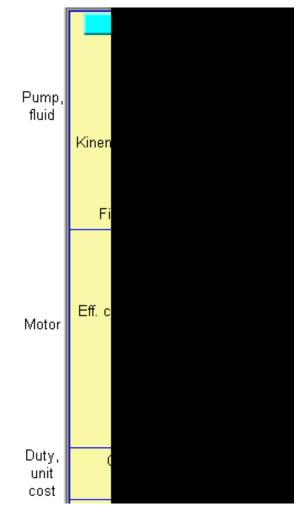
Eff. class

Fu

Opera

Flo

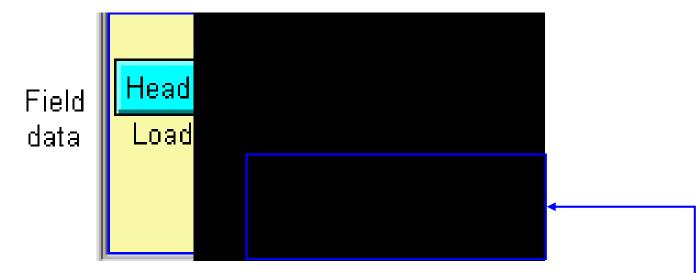
Head tool Load esti


Results

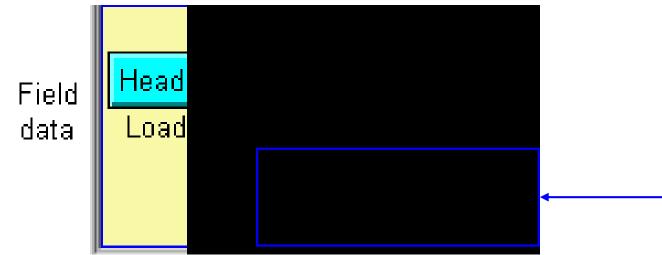
ſ	Pump efficie
	Motor rated po
	Motor shaft po
	Pump shaft po
	Motor efficie
	Motor power fa
	Motor cur
	Motor po
	Annual ene
	Annual c
-	Annual savings p Optimi
	Optim

Input sections 1-3

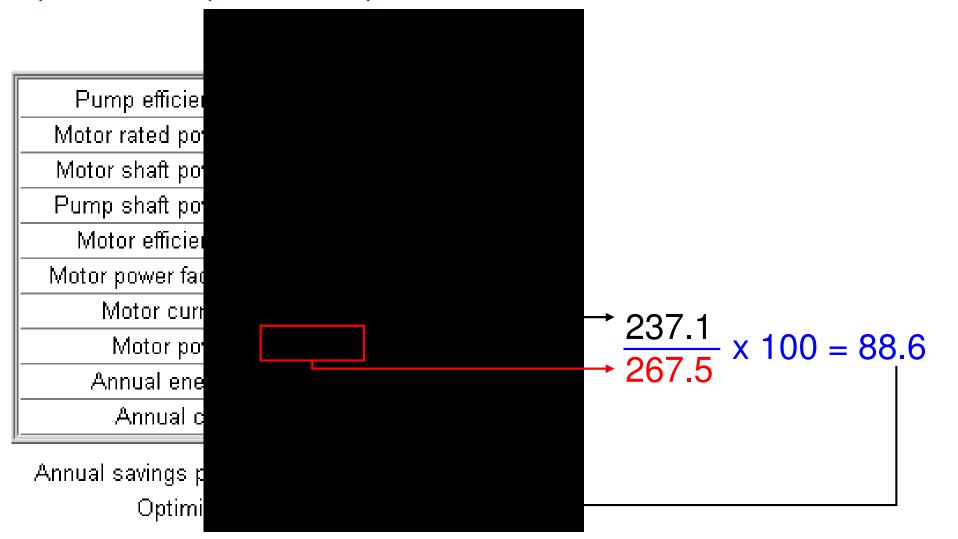
Basic design, operating profile and cost inputs


Input section 4

Accurate performance data is essential



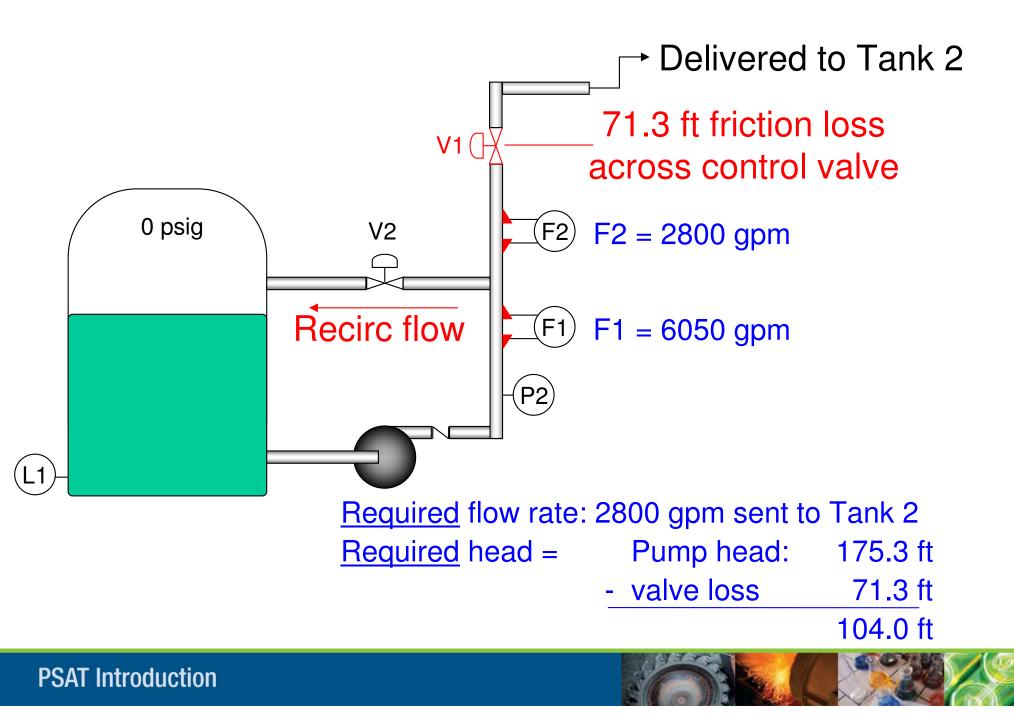
Alternate forms of electrical data input

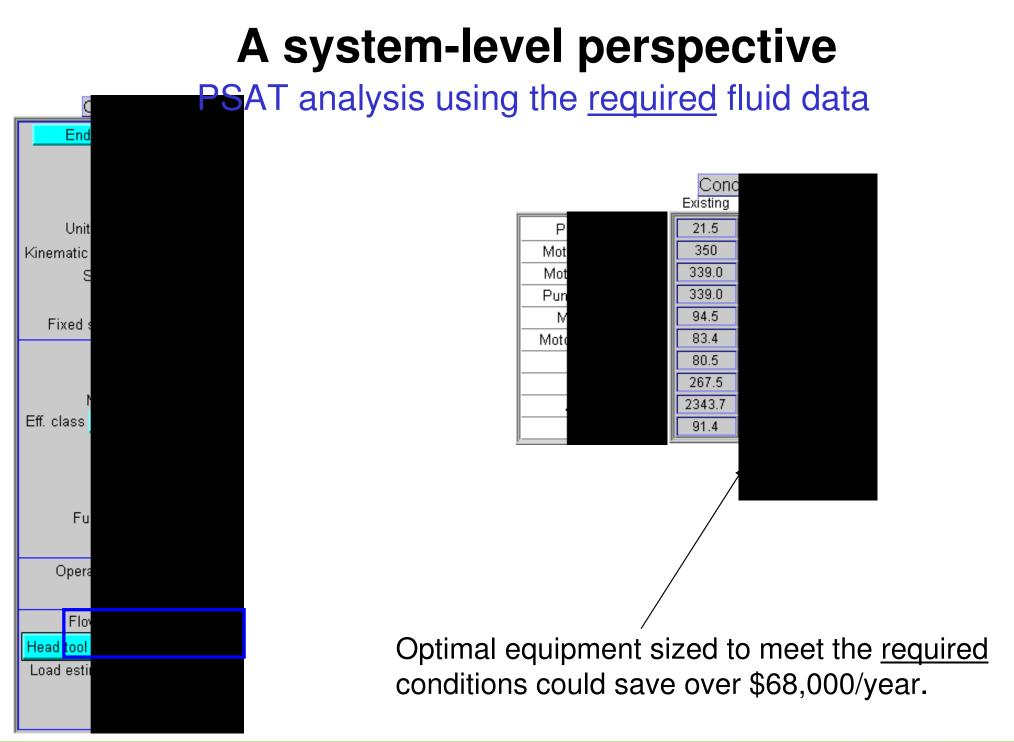


Either motor current or power can be used to estimate the motor shaft load

Results: optimization rating

The optimization rating is akin to an exam grade of how well the existing operation compares with optimal.


Results: cost, savings potential


Pump efficier	
Motor rated po	
Motor shaft po	
Pump shaft por	
Motor efficier	
Motor power fac	
Motor curr	
Motor po	
Annual ene	
Annual c	
Annual savings p	
Optimi	

Annual energy costs for the existing and optimal cases are tabulated, and the potential cost savings is listed

A system-level perspective

PSAT does not identify solutions; some options

- Trimmed impeller
- Reduced speed motor
- Adjustable speed drive
- Different pump

Other factors, such as load variability, extent of system head that is static, and pump details (curve, impeller size, etc.) would be needed to evaluate alternative solutions

Help pop-up screens provide run-time assistance

Condi kisting

Pump efficiency21.584.6%21.5Motor rated power350100hp350Motor shaft power339.086.1hp339.0Pump shaft power339.086.1hp339.0Motor efficiency94.594.8%94.5Motor power factor83.482.3%83.4Motor current80.520.6amps80.5Motor power267.567.7kVVScotteAnnual energy91.423.1\$1000OptimizAnnual cost91.423.1\$1000of 100 rOptimization rating, %25.3Mathempower, It is positing the power, It is position the power, It is position the power, It is position to powerIt is position the power, It is position the power, It is position the power, It is position to powerIt is position the power, It is position the power, It is position to powerCondition A NotesDocumentation isThe bacFacilityMid-south PaperSystemSurge chest stoct				lit	tion A			Con
Motor rated power350100hp350Motor shaft power339.086.1hp339.0Pump shaft power339.086.1hp339.0Motor efficiency94.594.8%94.5Motor power factor80.520.6amps80.5Motor current80.5267.567.7kWMotor power267.567.7kW80.5Motor power267.567.7kW80.5Annual energy91.423.1\$10000ptimizAnnual savings potential, \$1,00068.30ptimizThis is a to the o of 100 r existingLog file controls:Summary file controls:Mathem power,CreateAdd to new logExisting summary filesMathem power,RetrieveDeleteDocumentation sting, %CrEATIt is postDocumentation sting, %The bacFacilityMid-south PaperSystemSurge chest stock		117	Existing	i lin	Optimal	Units	17	Existing
Motor shaft power 339.0 86.1 hp Pump shaft power 339.0 86.1 hp Motor efficiency 94.5 94.8 % Motor power factor 83.4 82.3 % Motor current 80.5 20.6 amps Motor power 267.5 67.7 kW Annual energy 91.4 23.1 \$1000 Annual cost 91.4 23.1 \$1000 Optimization rating, % 25.3 Mathem power, for the po	Pump efficiency		21.5		84.6	%		21.5
Pump shaft power 339.0 86.1 hp 339.0 Motor efficiency 94.5 94.8 % 94.5 Motor power factor 83.4 82.3 % 83.4 Motor current 80.5 20.6 amps 80.5 Motor power 267.5 67.7 kW 80.5 96.1 Annual energy 243.7 593.1 MWh 91.4 91.	Motor rated power		350		100	hp		350
Motor efficiency 94.5 94.8 % 94.5 Motor power factor 83.4 82.3 % 83.4 Motor current 80.5 20.6 amps 80.5 Motor power 267.5 67.7 kW 80.5 20.7.5 Annual energy 2343.7 593.1 MVVh Stontes Annual cost 91.4 23.1 \$1000 0ptimiz Annual savings potential, \$1,000 68.3 0ptimiz 0ptimiz Condition rating, % 25.3 Mathem power, it is posen to of 100 mexisting Retrieve log entry Delete log entry Existing summary files Mathem power, it is posen to of 100 mexisting Condition A Notes Documentation stong The bac	Motor shaft power		339.0		86.1	hp		339.0
Motor power factor 83.4 82.3 % 83.4 Motor current 80.5 20.6 amps Motor power 267.5 67.7 kW Annual energy 2343.7 593.1 MWvh Annual cost 91.4 23.1 \$1000 Optimization rating, % 25.3 Optimiz Log file controls: Summary file controls: Mathem power, file controls: Create Add to existing log Existing summary files Mathem power, file controls: Retrieve Delete Existing summary files It is pos in the pi deviation Condition A Notes Documentation store The bac	Pump shaft power		339.0		86.1	hp		339.0
Motor current 80.5 20.6 amps 80.5 Motor power 267.5 67.7 kW kW Annual energy 2343.7 593.1 MWh Socore Annual cost 91.4 23.1 \$1000 Optimiz Annual savings potential, \$1,000 68.3 0 Optimiz Log file controls: Summary file controls: Mathem power, Create Add to existing log Existing summary files Mathem power, It is posing the point of the poi	Motor efficiency		94.5		94.8	%		94.5
Motor power 267.5 67.7 kVV Annual energy 2343.7 593.1 MVVh Annual cost 91.4 23.1 \$1000 Annual savings potential, \$1,000 68.3 0ptimiz Optimization rating, % 25.3 This is a to the original to the or	Motor power factor		83.4		82.3	%		83.4
Annual energy 2343.7 593.1 MWh Annual cost 91.4 23.1 \$1000 Optimiz Annual savings potential, \$1,000 68.3 Optimiz This is a to the o of 100 mexisting Log file controls: Summary file controls: Mathem power, I Create Add to new log Existing summary files Mathem power, I It is posing the point of	Motor current		80.5		20.6	amps		80.5
Annual energy 2343.7 593.1 MVVh Annual cost 91.4 23.1 \$1000 Optimiz Annual savings potential, \$1,000 68.3 This is a to the or of 100 mexisting Optimization rating, % 25.3 Mathem power, 1 Log file controls: Summary file controls: Mathem power, 1 Create Add to existing log Existing summary files Mathem power, 1 Retrieve Delete CREAT It is pose in the pi deviation Condition A Notes Documentation s The bac	Motor power		267.5		67.7	kW		
Annual savings potential, \$1,000 68.3 This is a to the original to the origenergy ore original to the original to the original to	Annual energy		2343.7		593.1	MWh	F	Contex
Annual savings potential, \$1,000 Optimization rating, % 25.3 Log file controls: Create Add to new log existing log Retrieve Delete log entry Delete log entry Delete System Surge chest stock The back	Annual cost		91.4		23.1	\$1000	L	Optimiz
Net pump flow rate and required head (developed head minus ti v0-80; v 60-70; c	Optimization	on g	rating, % Summa Existing	s	y file contr ummary file Docume	es CREAT Intation s		This is a l to the op of 100 m existing : Mathema power, e It is poss in the pro- deviation The back >100: D- 90-100: C 90-100: C 0-80: Y 60-70: C <00: Ref

ition B			
Optimal	Units		
84.6	%		
100	hp		
86.1	hp		
86.1	hp		
94.8	%		
82.3	%		
20.6	amps		
	12.07		
telp			

ptimization rating

his is a measure of the overall rating of the existing pumping system efficiency relative o the optimal motor, optimal pump configuration, expressed as a percentage. A value f 100 means the existing system is equal to the optimal, while a value of 50 means the xisting system is half as efficient as the optimal system.

lathematically, it is simply the Optimal Motor power divided by the Existing Motor ower, expressed as a percentage.

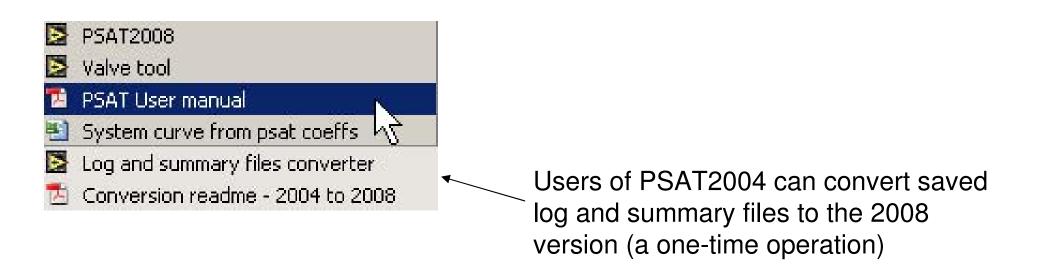
is possible for values of greater than 100% to exist, since the pump efficiencies used the program reflect "generally attainable efficiency levels." There can be significant eviation in efficiency, particularly with smaller pumps (see Figure 1.63 of HI1.3-2000).

he background color for the Optimization rating varies with the rating:

>100: Dark Blue 0-100: Green 0-90; Olive '0-80: Yellow 0-70: Orange è0: Red

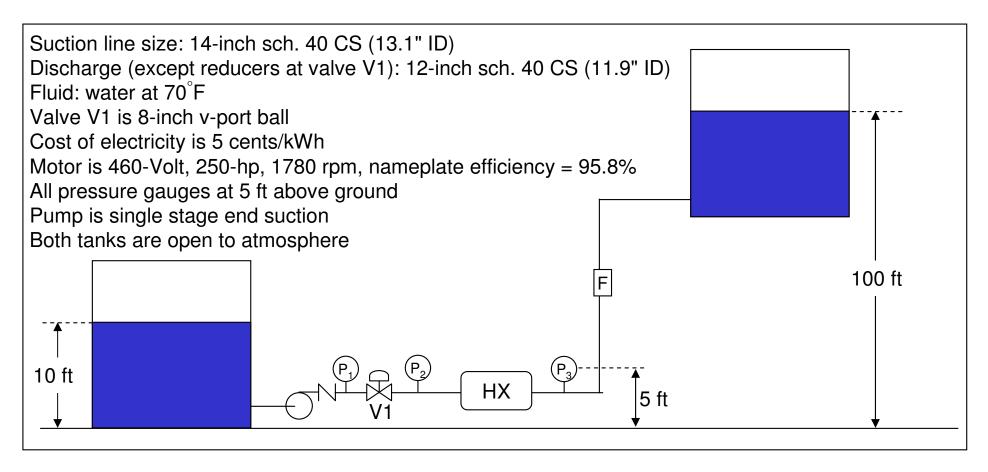
The Context Help window displays information about the control or indicator underneath the mouse pointer

The Background information button provides access to assessment guidance and curves used by PSAT to perform its calculations



Selection menu list
Prescreening - IMPORTA
General background
System measured condition
Sources of system losses
Pump efficiency curves
Motor performance curves
Units conversion utility

User's manual and other support features are included



A demo of the tool use

Example system

Table 1. Measured operating data

Condition	Q, gpm	P1, psig	P2, psig	P3, psig	Motor kW	% of time at Condition
A	2000	90	52	50	135	50%
В	3160	75	66	61	150	40%

We'll do PSAT calculations for Condition A

- Calculate pump head
- Annual energy cost
- Potential savings
- Develop a system curve with artificial control valve losses eliminated
- Take a look at some of the background information and data

Other options for the side-by-side comparison

- Same pump, different operating conditions
- Same pump, different times such as in periodic performance testing/trending
- Parallel pumps
- Old pump/new pump
- etc., etc.

A valve loss estimating tool accompanies PSAT

Units gpm, fi	-	
Available data selector Cv from fl		
Specific gravity 📒 0.990		
Specified flow rate, gpm 🗐 2800		
(P)		
Upstream pressure, psig ‡ 75.5		
Upstream pipe ID, inches <mark>‡ 15.50</mark>		
Upstream gauge elev, ft <mark>‡5.0</mark>		
Upstream gauge velocity, ft/s 4.8		
Create Retrieve		
new log log entry		

Based on standard valve equations (ISA 75.01)

Software download (free) and training links

www1.eere.energy.gov/industry/bestpractices/software.html

BestPractices

Printable Version

About BestPractices

Qualified Specialists

Ways to Save Energy

EERE Information Center

For Corporate Executive

For Plant Management

Resources

Software Tools

Publications

Databases

Opportunities

For Technical

For General Public

Training

BestPractices Home

software Tools

BestPractices has a varied and expanding software collection. Much of the software can be accessed here. A few packages must be ordered from the EERE Information Center via <u>e-mail</u> or by calling 1-877-EERE-INF (877-337-3463).

With the right know-how, you can use these powerful tools to help identify and analyze energy system savings opportunities in your plant. While the tools are accessible here for download, you are also encouraged to attend a <u>training workshop</u> to enhance your knowledge and take full advantage of opportunities identified in the software programs. For some tools, advanced training is also available to help you further increase your expertise. Find out more about <u>training</u>. You can get help on software installation and operation from the EERE Information Center at 1-877-EERE-INF (877-337-3463) or email to <u>eereic@ee.doe.gov</u>.

DOE Industry Tools

- AIRMaster+
- Chilled Water System Analysis Tool (CWSAT)
- Combined Heat and Power Application Tool (CHP)
- Fan System Assessment Tool (FSAT)
- MotorMaster+ 4.0
- MotorMaster+ International
- NOx and Energy Assessment Tool (NxEAT)
- Plant Energy Profiler for the Chemical Industry (ChemPEP Tool)
- Process Heating Assessment and Survey Tool (PHAST)
- Pumping System Assessment Tool 2004 (PSAT)
- Steam System Tool Suite

There are two PSAT workshops

End-user Pumping Systems Field Monitoring

and Application of the Pumping System Assessment Tool (PSAT)

A BestPractices **Workshop**

PSAT Introduction

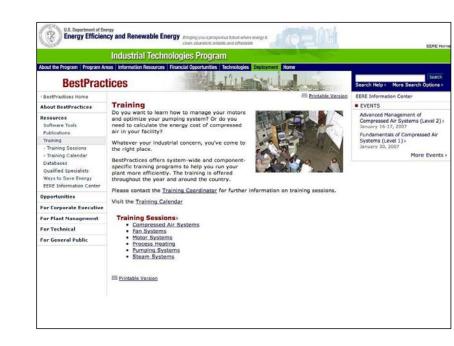
Specialist

PSAT specialists are listed on the DOE web site

http://apps1.eere.energy.gov/industry/bestpractices/qualified_specialists/tool.cfm?software_id=2#find

<u>A</u> <u>B</u> <u>C</u> <u>D</u>	<u>E</u> <u>E</u> <u>G</u>	
A		
Vame	E-N	
Adams, Bill	wao	
Ahlen, Arne	<u>aah</u>	
Ahlgren, Roy‡	roy	
Allen, Jim	jalle	
Anderson, Kent	and	
Angle, Tom‡	ang	
3		
Name	E-N	
<u>Bell, Lloyd</u>	lbel	
<u>Bennington, Steven</u>	<u>ste</u>	
<u> Bettis, Norris</u>	<u>nbe</u>	
<u> Bihl, Mark</u>	<u>mbi</u>	
<u> Bird, Jim</u>	<u>jbin</u>	
<u> Biver, Paul</u>	pau	
<u> Bolles, Steve</u> ‡	<u>sab</u>	
<u> Brashler, Keith</u>	<u>kbr</u> ,	
<u>Butts, Edward</u>	<u>epb</u>	

Find Additional Training


Visit the DOE BestPractices Training Web site: <u>www1.eere.energy.gov/industry/</u>

bestpractices/training.html

See the Training Calendar for events in your area:

www1.eere.energy.gov/industry/
bestpractices/events_calendar.asp

Become a Qualified Specialist: <u>apps1.eere.energy.gov/industry/</u> <u>bestpractices/qualified_specialists/</u>

See the "Industrial Energy Savers" Web Site

- 20 ways to save energy now
- Tools and training you can use to identify savings opportunities U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosp
- Industry expertise available
- Assessments for your plant
- Develop an Action Plan
- Learn how others have saved
- Access the National Industrial Assessment Center (IAC) Database
 - achieved Saving Energy big savings Learn more about energy use in U.S. industry o Tools and training you can use to identify savings opportunities o Assessments for your facility o Industry expertise available

20 Ways to Save **Energy Now**

Develop an Action Plan

Learn More

www.energysavers.gov/industrymanagers.html

clean, abundant, reliable, and affordable

200

400 600 800

Natural Gas Savings (Billion Btu/year)

A consumer quide to energy efficiency and renewable energy

Ask an Energy Expert

Interne

Energy Savers

savings:

Industry Plant Managers & Engineers

 20 Ways to Save Energy Now for quick and easy cost savings Learn more

have

about o How other plants

Boost the Bottom Line:

Lower your plant energy bills

Reducing energy costs can be as easy as adjusting a dial. Get

started today with simple, low-or no-cost steps to energy

EERE Home

EERE Information Center

On-call team of professional engineers, scientists, research librarians, energy specialists, and communications information staff.

Voice: 877-337-3463

E-mail: eereic@ee.doe.gov

Web site: www1.eere.energy.gov/informationcenter

Web Site and Resources

Visit these DOE Web sites for the latest information and resources:

Industrial Technologies Program (ITP) Web site:

www1.eere.energy.gov/industry/

BestPractices Web site:

www1.eere.energy.gov/industry/bestpractices

Save Energy Now Web site:

www1.eere.energy.gov/industry/saveenergynow

- Fact Sheets
- Newsletters
- Tip Sheets
- Brochures
- Reports
- Software Tools
- Data

Acknowledgments

U.S. Department of Energy's Industrial Technologies Program

